JPH02234073A - Searching device for electricity leakage - Google Patents

Searching device for electricity leakage

Info

Publication number
JPH02234073A
JPH02234073A JP5569189A JP5569189A JPH02234073A JP H02234073 A JPH02234073 A JP H02234073A JP 5569189 A JP5569189 A JP 5569189A JP 5569189 A JP5569189 A JP 5569189A JP H02234073 A JPH02234073 A JP H02234073A
Authority
JP
Japan
Prior art keywords
circuit
leakage
output
detection
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5569189A
Other languages
Japanese (ja)
Other versions
JP2942271B2 (en
Inventor
Yoshinari Furukawa
古川 吉成
Masuo Yamada
山田 満寿夫
Mamoru Nonaka
野中 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Aichi Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP1055691A priority Critical patent/JP2942271B2/en
Publication of JPH02234073A publication Critical patent/JPH02234073A/en
Application granted granted Critical
Publication of JP2942271B2 publication Critical patent/JP2942271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To detect/display a direction of electricity leakage and a leak current and to perform a search for the leakage accurately and efficiently by providing each circuit such as one for leak current detection in a neutral line, detection of voltage against the earth, detection of phase shift/rectangular wave, phase comparison, etc. CONSTITUTION:The device consists of a DC power supply 2, switching circuit 3 changing-over the aforementioned power to output, current detection circuit 4 detecting/ phase-shifting the leak current to output a pulse signal, voltage detection circuit 5 detecting the voltage against the earth to output a rectangular wave signal, phase comparator circuit 6 for outputs of the circuits 4, 5, storage circuit 7 holding/ transferring the aforementioned output, display circuit 8 displaying this output by an output of the circuit 3, and recovering circuit 9 initializing the circuit 7 by the output of the circuit 3. Then, the leakage direction of a detected point is displayed by a comparison with a logical product of one pulse signal in both detected signals for the current/voltage, in which either one phase of the detected leak current or of voltage against the earth is shifted and rectified to the rectangular wave, and another detected signal, and also the existence of the leak current is displayed by the current detection signal. The search for leakage can be thus performed efficiently in high reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低圧配電線からの電力供給区域に発住した漏
電箇所を探査する漏電探査器に関する.〔従来の技術〕 通常、配電用変圧器(以下、柱上変圧器という)の二次
側から延設された低圧配電線は、単相二線式、単相三線
式、三相三線式、三和四線式の各種配電方式が用いられ
ているが、いずれの方式においても混触時の低圧側電圧
上昇を抑制する目的で、一線(または中性点)が柱上変
圧器設置場所で接地されている.そして、この接地線の
接地抵抗を所定値に保つために、複数の柱上変圧器の接
地線を並列に接続することが多い(以下、接地線を並列
に接続する線を中性腺という).この中性線を設けた配
電線に発生した漏電を探査するものとして、例えば、上
記中性線に結合した変流器によって検出した漏れ電流を
矩形波に波形整形した電流検出信号の位相と、上記中性
線と大地に接続したリード線を介して検出した対地電圧
を矩形波に波形整形した電圧検出信号の位相とを比較し
、両位相が同相の期間は正、逆相の期間は負とした矩形
波信号を平滑してメータに印加し、メータの指針を目盛
の中央を中心にして入力信号の極性および大自さに比例
して左右に振らせ、この指針の振れ方向と漏電方向とを
一致させることにより漏電方回がわかるようにしたもの
が提案されている(特公昭53−39579号参照). 〔発明が解決しようとする課題〕 しかしながら、上述のように構成した場合、電流検出信
号と電圧検出信号との位相を比較したアナログ信号でメ
ータの指針を振らせるようにしているため、上記両検出
信号の位相差がO度または180度のときは、同相また
は逆相の期間が最大となって指針が大きく振れるので漏
電方向の判別が比較的容易であるが、漏れ電流が流れる
回路の回路定数のインダクタンスまたは静電容量の割合
が大きくなると上記位相差が90度に近づくため、同相
と逆相の期間の差が小さ《なって、指針の振れがわずか
となり、的確に漏電方向の判別ができないという問題を
有していた. また、中性線の対地電圧と漏れ電流の位相比較によって
漏電方向を探査するようになっているので、例えば需要
家の引込線等における漏電探査のように、漏れ電流のみ
による検出を行うことはできず、この探査には漏れ電流
のみを検出するようにした別の漏電探査器が必要となり
、漏電探査が煩雑となって手間を要するという問題を有
していた. 本発明の目的は、上述の問題点を解決し、漏電方向を明
確に検出・表示することはもちろん、漏れ電流のみの検
出・表示も可能にして、的確な漏電探査を効率的に行う
ことのできる漏電探査器を提供することにある. (!II!を解決するための手段] 本発明は、上記課題を解決するため、中性線に流れる漏
れ電流を検出して矩形波の電流検出信号を出力する電流
検出回路と、中性線の対地電圧を検出して矩形波の電圧
検出信号を出力する電圧検出回路のいずれか一方に移相
回路を設けると共に、少なくとも上記両検出回路の一方
に矩形波の検出信号からパルス信号を出力する矩形波検
出回路を設けて、このパルス信号と他方の検出回路の矩
形波信号とを位相比較回路に入力させて両検出信号の位
相を比較し、この位相比較回路の出力信号により漏電方
向を表示すると共に、上記電流検出信号によって漏れ電
流の有無を表示するようにしたものである. 〔作   用〕 検出した漏れ電流と対地電圧のいずれか一方の位相を移
相させ、矩形波に整形した電流・電圧両検出信号は、そ
のいずれか一方の信号により発生させたパルス信号と他
方の検出信号との論理積によって位相比較され、この比
較信号で検出点における漏電方向を表示させると共に、
上記電流検出信号により漏れ電流の有無を独立して表示
させる.〔実 施 例〕 以下、本発明の実施例を図によって説明する.第1図に
おいて、1は漏電探査器で、電池等からなる直流電源2
と、この直流電源2を切換えて出力する切換回路3と、
漏れ電流を検出し移相してパルス信号を発生させ、これ
を電流検出信号として出力する電流検出回路4と、対地
電圧を検出して矩形波の電圧検出信号を出力する電圧検
出回路5と、上記電流・電圧両検出回路4、5の出力の
位相を比較rる位相比較回路6と、これの出力・を保持
して送出する記憶回路7と、これの出力を上記切換回路
3の出力により表示する表示回路8と、切換回路3の出
力により上記記憶回路7を初期化する復帰回路9とから
構成されている。そして、切換回路3は、2回路4接点
のロータリスイッチ等で形成された切換スイッチからな
り、この切換スイッチの可勅接点alga! は連動し
て、それぞれに対応する固定接点b Il+  b I
f  b 13+  b +aおよびt)H,  bg
t,  b*s+  bx4を順次切換えるようになっ
ている.上記可動接点a,は直流電源2の正極に接続し
、固定接点bl1は遊び接点として、b +x+  b
 13+  b 14は可動接点a.に接続している。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an earth leakage detector for detecting earth leakage points occurring in a power supply area from a low-voltage distribution line. [Prior Art] Usually, low-voltage distribution lines extending from the secondary side of a distribution transformer (hereinafter referred to as a pole transformer) are of single-phase two-wire type, single-phase three-wire type, three-phase three-wire type, Various Sanwa four-wire power distribution systems are used, but in each system, one wire (or neutral point) is grounded at the location where the pole transformer is installed, in order to suppress the voltage rise on the low voltage side in the event of cross contact. It has been done. In order to maintain the grounding resistance of this grounding wire at a predetermined value, the grounding wires of multiple pole transformers are often connected in parallel (hereinafter, the wire that connects the grounding wires in parallel is called a neutral gland). To investigate the leakage occurring in the distribution line provided with this neutral wire, for example, the phase of the current detection signal obtained by shaping the leakage current detected by the current transformer connected to the neutral wire into a rectangular wave, Compare the phase of the voltage detection signal obtained by shaping the ground voltage into a rectangular wave, which is detected through the neutral wire and the lead wire connected to the ground, and the period when both phases are in the same phase is positive, and the period when the phases are opposite is negative. A smoothed rectangular wave signal is applied to the meter, and the pointer of the meter is swung left and right around the center of the scale in proportion to the polarity and amplitude of the input signal, and the direction of the sway of this pointer and the direction of the leakage are determined. A method has been proposed in which the leakage direction can be determined by matching the numbers (see Japanese Patent Publication No. 53-39579). [Problem to be Solved by the Invention] However, in the case of the configuration as described above, since the pointer of the meter is caused to swing by an analog signal that compares the phases of the current detection signal and the voltage detection signal, both of the above detections are performed. When the phase difference of the signals is 0 degrees or 180 degrees, the period of in-phase or anti-phase is maximum and the pointer swings greatly, so it is relatively easy to determine the direction of leakage, but the circuit constant of the circuit where the leakage current flows As the ratio of inductance or capacitance increases, the above phase difference approaches 90 degrees, so the difference between the in-phase and anti-phase periods becomes small, and the pointer swings slightly, making it impossible to accurately determine the direction of leakage. There was a problem. In addition, since the direction of leakage is detected by comparing the phase of the ground voltage of the neutral wire and the leakage current, it is not possible to detect leakage current only, as in the case of leakage detection in customer service lines, for example. First, this detection required a separate earth leakage probe designed to detect only leakage current, which caused the problem that the leakage detection was complicated and time-consuming. The purpose of the present invention is to solve the above-mentioned problems, to clearly detect and display the direction of leakage, and also to detect and display only the leakage current, thereby enabling accurate and efficient leakage detection. Our goal is to provide an earth leakage detector that can (Means for solving !II!) In order to solve the above problems, the present invention provides a current detection circuit that detects leakage current flowing in a neutral wire and outputs a rectangular wave current detection signal, A phase shift circuit is provided in either one of the voltage detection circuits that detect the voltage to ground and output a rectangular wave voltage detection signal, and a pulse signal is output from the rectangular wave detection signal to at least one of the two detection circuits. A rectangular wave detection circuit is provided, this pulse signal and the rectangular wave signal from the other detection circuit are input to a phase comparison circuit, the phases of both detection signals are compared, and the leakage direction is indicated by the output signal of this phase comparison circuit. At the same time, the presence or absence of leakage current is displayed using the current detection signal. [Function] The phase of either the detected leakage current or the ground voltage is shifted, and the current is shaped into a rectangular wave.・The voltage detection signals are phase-compared by logical product of the pulse signal generated by one of the signals and the other detection signal, and this comparison signal indicates the direction of the leakage at the detection point,
The presence or absence of leakage current is independently displayed using the above current detection signal. [Examples] Examples of the present invention will be explained below using figures. In Figure 1, 1 is an earth leakage detector, and 2 is a DC power source consisting of a battery, etc.
and a switching circuit 3 that switches and outputs this DC power supply 2,
A current detection circuit 4 that detects leakage current, shifts the phase to generate a pulse signal, and outputs this as a current detection signal; and a voltage detection circuit 5 that detects ground voltage and outputs a rectangular voltage detection signal. A phase comparator circuit 6 that compares the phases of the outputs of the current and voltage detection circuits 4 and 5, a storage circuit 7 that holds and sends out the output of this circuit, and a storage circuit 7 that stores and transmits the output of this circuit, and the output of this circuit that uses the output of the switching circuit 3 It is comprised of a display circuit 8 for displaying images, and a recovery circuit 9 for initializing the storage circuit 7 with the output of the switching circuit 3. The changeover circuit 3 is composed of a changeover switch formed by a two-circuit, four-contact rotary switch, etc., and the changeover switch's movable contacts (alga!) are interlocked and the corresponding fixed contacts b Il+ b I
f b 13+ b +a and t) H, bg
t, b*s+bx4 are switched sequentially. The movable contact a, is connected to the positive pole of the DC power supply 2, and the fixed contact bl1 is used as an idle contact, b + x + b
13+ b 14 is a movable contact a. is connected to.

また固定接点b !l *  b 14は遊び接点とし
、bigは?帰回路9の入力端に、固定接点btsは表
示回路Bの入力端に接続している.そして、上記切換ス
イッチの可動接点alga!が固定接点b l l +
  b ! 1に切換接続されたときは、漏電探査器1
の各回路への電源供給を停止し、可動接点al+alが
固定接点b1■.btzに切換接続したときは、直流電
源2を、表示回路8を除いた他の回路へ供給し(電源供
給線は第1図に図示した以外は図示省略)、このとき記
憶回路7を初期化するようになっている。可動接点al
ga!が固定接点b+3+1)!3に切換接続したとき
は、直流電源2を、復帰回路9の人力端を除いた他の回
路へ供給して漏電検出動作を行うようになっている.可
動接点alga!が固定接点b14+b14に切換接続
したときは、直流電#2を、表示回路8および復帰回路
9の入力端を除いた他の回路へ供給して漏電検出動作を
行うようになっている。
Fixed contact b again! l * b 14 is a play contact, and big is ? A fixed contact bts is connected to the input end of the return circuit 9 and the input end of the display circuit B. And the movable contact alga! of the changeover switch mentioned above! is the fixed contact b l l +
b! When connected to 1, earth leakage detector 1
The power supply to each circuit is stopped, and the movable contacts al+al switch to the fixed contacts b1. btz, the DC power supply 2 is supplied to other circuits except the display circuit 8 (power supply lines are omitted except those shown in FIG. 1), and the memory circuit 7 is initialized at this time. It is supposed to be done. Movable contact al
Ga! is the fixed contact b+3+1)! 3, the DC power supply 2 is supplied to other circuits other than the human power end of the recovery circuit 9 to perform earth leakage detection operation. Movable contact alga! When the switch is connected to the fixed contacts b14+b14, DC current #2 is supplied to other circuits other than the input terminals of the display circuit 8 and the return circuit 9 to perform a leakage detection operation.

電流検出回路4について説明する.10は漏れ電流検出
部で、環状鉄心を分割して拡開可能に形成して、=れに
2次巻線を巻装し、この環状鉄心に通電状態にある配電
線(中性線)、引込線等を貫通させるようにした漏れ電
流検出用の変流器CTと、これの2次出力端子間に挿入
した抵抗R1 とからなり、この抵抗R1の端子間から
、漏れ電流を電圧に変換して出力するようになっている
。1lは移相回路で、上記電流検出回路4の出力端子間
にコンデンサC1 と抵抗R.とを直列に挿入して微分
回路を形成し、上記抵抗R,の端子間から入力信号の位
相を例えば60度進めて出力するようになっている。l
2は増幅回路で、演算増幅器OP.の反転入力端子に上
記移相回BllのコンデンサC,と抵抗R,の接続点を
入力抵抗R,を介して接続すると共に、負帰還回路に抵
抗R4を接続し、非反転入力端子に上記抵抗R2の他端
を接続して、入力信号を反転増幅して出力するようにな
っている.そして、この増幅回路l2の増幅度R4/R
3 は、検出レベル(例えばlomA)以上の漏れ電流
が上記漏れ電流検出部10に入力したとき、立上りが急
峻で波高値がほぼ電源電圧に等しい矩形波となるように
設定されている。13は矩形波検出回路で、上記増幅回
路12の出力端とアース間に、コンデンサC2と抵抗R
.とを直列に接続して時定数02 ・R,の小さい微分
回路とし、抵抗R,の両端にダイオードD,を逆方向に
接続して、入力の立上りで上記コンデンサCと抵抗R,
の接続点に正のパルスを発生させると共に、上記パルス
のレベルがノット回路NIのしきい値を越えたとき、そ
の出力端からLレベルの出力信号を送出するようになっ
ている.14は遅延回路で、上記切喚回路3の切換スイ
ッチの可動接点a.とアース間に、抵抗R.とコンデン
サC,を直列に接続して時定数Rh”Csの積分回路と
し、抵抗R.とコンデンサC3の接続点を、該接続点に
アノードを接続したダイオードD8を介して上記矩形波
検出回路13のノット回路N1の出力端に接続すると共
に、ノット回路N8に接続し、このノット回路N2の出
力端とアース間に、抵抗R,とコ′ンデンサC4を直列
に接続して時定数R,・C4の積分回路を設け、上記抵
抗R?の両端にはダイオードD3を逆方向に接続して、
上記抵抗R,とコンデンサC4の接続点(出力端)から
出力するようになっている.上記時定数R,・C,は、
上記遅延回路l4への入力信号の周期T(第4図eのT
)の時間にコンデンサC3が抵抗R.を介して直流電+
flX2から充電されてもノソト回路N2のしきい値に
達せず、上記周期TX2の充電時間でしきい偵に達する
ように設定されている。また、上記時定数R,・C4は
、上記周期TX4以上の時間、コンデンサC4が抵抗R
,を介してノット回路N2から充電されると、アンド回
路A1のしきい値に達するように設定されている.そし
て、上記矩形波検出回路l3のコンデンサC2と抵抗R
Sの接続点と、遅延回路14の出力端とをアンド回路A
1に接続し、このアンド回路A+ の出力端から電流検
出信号を送出するようになっている. 次に、電圧検出回路5について説明する。l6は電圧検
出部で、一端に着脱可能な接続金具をつけた図示しない
接続線の他端をそれぞれ接続するようにした端子15a
,15b間に抵抗Rs,Rを直列に挿入し、抵抗R,の
端子間から入力を分圧して出力するようになっており、
上記図示しない接続線を介して、上記端子15aを中性
線に、また、端子15bを大地に着脱可能に接続して対
地電圧を入力させるようになっている.17は増幅回路
で、上記増幅回路l2と同様、演算増幅器OP3の反転
入力端子に入力抵抗R,。を介して上記電圧検出部16
の抵抗RsとR,の接続点を接続すると共に、負帰還回
路に抵抗Rl1を接続し、非反転入力端子を上記端子1
5bに接続して、演算増幅器OP意の出力端から反転増
幅した出力信号を送出するようになっており、この増幅
回路17の増幅度Rll/Rl@は、検出レベル(例え
ばIV)以上の対地電圧が電圧検出部16に入力したと
き、立上りが急峻で波高値がほぼ電源電圧に等しい矩形
波となるように設定している.18は矩形波検出回路で
、上記矩形波検出回路13と同様、増幅回路l7の出力
端とアース間にコンデンサCと抵抗Rlfとを直列に接
続して時定数C.−R目の小さい微分回路とし、抵抗R
lmの両端にダイオードD4を逆方向に接続して、入力
の立上りで正のパルスを発生させ、このレベルがノット
回路N,のしきい{直を越えたとき、その出力端からL
レベルの信号を送出するようになっている.19は遅延
回路で、上記遅延回路14と同様、上記切換回路3の切
換スイッチの可動接点a2とアース間に、抵抗R.とコ
ンデンサC.を直列に接続して時定数Rl3・Chの積
分回路とし、抵抗RI3とコンデンサChの接続点を、
該接続点にアノードを接続したダイオードD,を介して
上記矩形波検出回路18のノット回路N,の出力端に接
続すると共に、ノット回路N4に接続し、このノット回
路N4の出力端とアース間に、抵抗RI4とコンデンサ
C,を直列に接続して時定数Rl4・C,の積分回路を
設け、上記抵抗Rl4の両端にはダイオードD.を逆方
向に接続して、上記抵抗R 14とコンデンサC▼の接
続点(出力端)から出力するようになっている.上記時
定数Rl3・C.および時定数Rl4・C,は、上述し
た遅延回路14の時定数Rh”Cwおよび時定数R.・
C4にそれぞれ対応して同様に設定されている.そして
、上記増幅回路l7と遅延回路l9の出力端から電圧検
出信号をそれぞれ送出するようになっている.位相比較
回路6は、電流検出回路4のアンド回路A1の出力端と
電圧検出回路5の遅延回路l9の出力端とから接続され
たアンド回路A8と、このアンド回路A8の出力端と電
圧検出回路5の増幅回路17の,出力端とから接続され
たアンド回路A4と、上記アンド回路A,の出力端と上
記増幅回路l7の出力端に接続されたノット回路Nsの
出力端とから接続されたアンド回路A,とから形成され
、上記アンド回路A,とA,の出力端からパルス信号を
それぞれ出力するようになっている.記憶回路7につい
て説明する, S R+ . S RISR.は、例え
ば8個以上のパルスが入力したとき、Hレベルの信号を
保持して出力するようにした例えば8ビットのシフトレ
ジスタである.このシフトレジスタSR+ ,SRt 
.SRsのデータ端子Dは、上記切換回路3の切換スイ
ッチの可動?点atに接続して、漏電検出を行うときに
はHレベルとなるようにしている.シフトレジスタSR
,のクロック端子CKに上記電流検出回路4のアンド回
路A1の出力端を、また、シフトレジスタSR.,SR
sのクロック端子CKに上記位相比較回路6のアンド回
路A,とA4の出力端をそれぞれ接続している.シフト
レジスタSR.のリセット端子Rを復帰回路9の出力端
に接続し、シフトレジスタSR.,SR3のリセット端
子RをそれぞれダイオードD?,DIを介して復帰回路
9の出力端に接続して、復帰回路9がリセット信号(L
レベル)を送出したとき、シフトレジスタSR+   
SRg ,SR.sが初期化するようになっている.ま
た、シフトレジスタSR■,SR.のりセット端子Rは
それぞれ高抵抗の抵抗R+s. R,.を介レて上記切
換スイッチの可動接点atに接続し、漏電検出を行うと
きにはHレベルとなるようにしている.シフトレジスタ
S R+ ,  S RtS R sの出力端Qにはそ
れぞれノット回路N,Ny,Nsを接続し、漏電検出時
に上記出力端Q?ら送出されるHレベルの出力信号を反
転して出力すると共に、シフトレジスタSR.のりセッ
ト端子RをダイオードD嗜を介してノット回路N.の出
力端に、また、シフトレジスタSR.のリセット端子R
をダイオードD1。を介してノット回路N,の出力端に
それぞれ接続して、シフトレジスタSR.(またはSR
,)が漏電検出信号(Hレベル)を出力したとき、シフ
トレジスタSR.(またはSR.)のリセット端子Rを
Lレベルにして、両方から同時に漏電検出信号を出力し
ないようになっている. 表示回路8は、上記記憶回路7のノット回路NN,,N
,の出力端に制限抵抗Rl ? +  R + I +
RI9を介して発光ダイオードLD.   LD*  
 LD,のカソードをそれぞれ接続し、この発光ダイオ
ードLD.,LD■,LD! のアノードは切換回路3
の切換スイッチの固定接点b0に接続して、上記切換ス
イッチの可動接点a8が固定接点busに切換接続され
た状態で、上記シフトレジスタSR,,SRt ,SR
sからノット回路Nh,NqN.を介してLレベルの出
力信号を受けたとき、発光ダイオードLD1,LDg 
,LDsを点灯して表示するようになっている。そして
、発光ダイオードLD+ ,LDt ,LD3 は第2
図に示すように、この漏電探査器lの外部から目視可能
に配置され、変流器の配電線貫通部の一方の側面に例え
ば符号「A」.他方の側面に例えば符号r3Jを付して
おいて、漏電検出動作により、発光ダイオードLD,の
点灯で漏れ電流検出を表示すると共に、発光ダイオード
LD.が点灯すればA側方向、発光ダイオードLD.が
点灯すればB側方向に漏電箇所があることを表示するよ
うになっている. 復帰回路9は、入力端を、上記切換回路3のスイッチの
固定接点bttに接続すると共に、アース間に抵抗R,
。を挿入し、ノット回路N,を介して記憶回路7へ出力
するようになっている。
The current detection circuit 4 will be explained. Reference numeral 10 denotes a leakage current detection unit, which is formed by dividing an annular core so as to be expandable, and winding a secondary winding around the annular core. It consists of a current transformer CT for detecting leakage current that is passed through a lead-in line, etc., and a resistor R1 inserted between its secondary output terminals.The leakage current is converted into voltage from between the terminals of this resistor R1. It is designed to be output as follows. 1l is a phase shift circuit, which has a capacitor C1 and a resistor R.1 between the output terminals of the current detection circuit 4. are inserted in series to form a differentiating circuit, and the phase of the input signal is advanced by, for example, 60 degrees between the terminals of the resistor R, and then output. l
2 is an amplifier circuit, which includes an operational amplifier OP. The connection point between the capacitor C and the resistor R of the phase shift circuit Bll is connected to the inverting input terminal of the circuit via the input resistor R, and the resistor R4 is connected to the negative feedback circuit. The other end of R2 is connected to invert and amplify the input signal and output it. Then, the amplification degree R4/R of this amplifier circuit l2
3 is set so that when a leakage current equal to or higher than the detection level (for example lomA) is input to the leakage current detection unit 10, a rectangular wave with a steep rise and a peak value approximately equal to the power supply voltage is formed. 13 is a rectangular wave detection circuit, and a capacitor C2 and a resistor R are connected between the output terminal of the amplifier circuit 12 and the ground.
.. are connected in series to form a differentiation circuit with a small time constant 02 ・R, and a diode D is connected across the resistor R in the opposite direction, and at the rising edge of the input, the capacitor C and the resistor R,
A positive pulse is generated at the connection point of the not circuit NI, and when the level of the pulse exceeds the threshold of the NOT circuit NI, an L level output signal is sent from its output terminal. 14 is a delay circuit, which is a movable contact a. of the changeover switch of the switching circuit 3; and ground, a resistor R. and a capacitor C are connected in series to form an integrating circuit with a time constant Rh"Cs, and the connection point between the resistor R. and the capacitor C3 is connected to the rectangular wave detection circuit 13 through a diode D8 whose anode is connected to the connection point. A resistor R, and a capacitor C4 are connected in series between the output terminal of the knot circuit N2 and the ground, and a time constant R, . An integrating circuit C4 is provided, and a diode D3 is connected in the opposite direction to both ends of the resistor R?.
It is designed to be output from the connection point (output end) of the above resistor R and capacitor C4. The above time constant R,・C, is
The period T of the input signal to the delay circuit l4 (T in Fig. 4e)
), capacitor C3 connects to resistor R. Direct current +
Even if it is charged from flX2, it does not reach the threshold of the nosoto circuit N2, and it is set so that the threshold is reached within the charging time of the cycle TX2. In addition, the above time constant R,・C4 is such that for a time longer than the above period TX4, the capacitor C4 is connected to the resistor R.
, is set so that when it is charged from the NOT circuit N2 through the AND circuit A1, the threshold value of the AND circuit A1 is reached. Then, the capacitor C2 and the resistor R of the rectangular wave detection circuit l3
The connection point of S and the output terminal of the delay circuit 14 are connected to an AND circuit A.
1, and a current detection signal is sent from the output terminal of this AND circuit A+. Next, the voltage detection circuit 5 will be explained. 16 is a voltage detection section, and terminals 15a each have a removable connection fitting attached to one end and are connected to the other end of a connecting wire (not shown).
, 15b are inserted in series, and the input voltage is divided and output between the terminals of the resistor R.
The terminal 15a is removably connected to the neutral wire and the terminal 15b is connected to the ground via the connection wire (not shown), so that a ground voltage can be input. Reference numeral 17 denotes an amplifier circuit, which, like the amplifier circuit 12 described above, has an input resistor R, connected to the inverting input terminal of the operational amplifier OP3. via the voltage detection section 16
At the same time, a resistor Rl1 is connected to the negative feedback circuit, and the non-inverting input terminal is connected to the terminal 1.
5b to send out an inverted and amplified output signal from the output terminal of the operational amplifier OP, and the amplification degree Rll/Rl@ of this amplifier circuit 17 is higher than the detection level (for example IV). When the voltage is input to the voltage detection unit 16, it is set so that it becomes a rectangular wave with a steep rise and a peak value approximately equal to the power supply voltage. 18 is a rectangular wave detection circuit, which, like the rectangular wave detection circuit 13 described above, has a capacitor C and a resistor Rlf connected in series between the output terminal of the amplifier circuit 17 and the ground, and has a time constant C. −R is a small differentiator circuit, and the resistance R
A diode D4 is connected in the opposite direction to both ends of lm to generate a positive pulse at the rising edge of the input, and when this level exceeds the threshold of the not circuit N, the output terminal of L
It is designed to send out a level signal. 19 is a delay circuit, and like the delay circuit 14, a resistor R. and capacitor C. are connected in series to form an integrating circuit with a time constant Rl3・Ch, and the connection point between the resistor RI3 and the capacitor Ch is
It is connected to the output terminal of the NOT circuit N of the rectangular wave detection circuit 18 through a diode D, whose anode is connected to the connection point, and also connected to the NOT circuit N4, and between the output terminal of this NOT circuit N4 and the ground. A resistor RI4 and a capacitor C are connected in series to form an integrating circuit with a time constant Rl4·C, and a diode D. are connected in the opposite direction, and the output is output from the connection point (output end) between the resistor R14 and the capacitor C▼. The above time constant Rl3・C. and the time constant Rl4·C, are the time constant Rh”Cw and the time constant R.· of the delay circuit 14 mentioned above.
The settings are the same for C4. Voltage detection signals are sent out from the output terminals of the amplifier circuit l7 and delay circuit l9, respectively. The phase comparison circuit 6 includes an AND circuit A8 connected from the output terminal of the AND circuit A1 of the current detection circuit 4 and the output terminal of the delay circuit 19 of the voltage detection circuit 5, and an output terminal of the AND circuit A8 and the voltage detection circuit. AND circuit A4 connected to the output terminal of the amplifier circuit 17 of No. 5, and the output terminal of the NOT circuit Ns connected to the output terminal of the AND circuit A and the output terminal of the amplifier circuit I7. It is formed of AND circuits A and A, and pulse signals are output from the output terminals of the AND circuits A and A, respectively. Describing the memory circuit 7, SR+. SRISR. is, for example, an 8-bit shift register that holds and outputs an H-level signal when eight or more pulses are input. This shift register SR+, SRt
.. Is the data terminal D of SRs the movable changeover switch of the changeover circuit 3? It is connected to point at so that it becomes H level when detecting earth leakage. shift register SR
, the output terminal of the AND circuit A1 of the current detection circuit 4 is connected to the clock terminal CK of the shift register SR. ,SR
The output terminals of AND circuits A and A4 of the phase comparator circuit 6 are connected to the clock terminal CK of s. Shift register SR. The reset terminal R of the shift register SR. is connected to the output terminal of the recovery circuit 9, and the shift register SR. , SR3's reset terminal R is connected to a diode D? , DI to the output terminal of the recovery circuit 9, and the recovery circuit 9 outputs a reset signal (L
level), shift register SR+
SRg, SR. s is designed to be initialized. In addition, shift registers SR■, SR. The glue set terminals R are each connected to a high resistance resistor R+s. R,. It is connected to the movable contact at of the changeover switch through the terminal, and is set to the H level when detecting earth leakage. Not circuits N, Ny, and Ns are connected to the output terminals Q of the shift registers S R+ and S RtSR s, respectively, and the output terminals Q? It inverts and outputs the H level output signal sent from shift register SR. Connect the glue set terminal R to the knot circuit N through the diode D. Also, a shift register SR. Reset terminal R of
diode D1. are connected to the output terminals of the NOT circuits N, respectively through shift registers SR. (or SR
, ) outputs an earth leakage detection signal (H level), shift register SR. (or SR.) is set to L level so that the earth leakage detection signal is not output from both at the same time. The display circuit 8 includes NOT circuits NN, , N of the storage circuit 7.
, a limiting resistor Rl ? + R + I +
Light emitting diode LD. via RI9. LD*
The cathodes of the light emitting diodes LD. ,LD■,LD! The anode of is switching circuit 3
The shift registers SR, SRt, SR are connected to the fixed contact b0 of the changeover switch and the movable contact a8 of the changeover switch is connected to the fixed contact bus
s to knot circuit Nh, NqN. When receiving an L level output signal through the light emitting diodes LD1 and LDg
, LDs are turned on to display the information. The light emitting diodes LD+, LDt, and LD3 are the second
As shown in the figure, for example, a symbol "A" is placed on one side of the distribution line penetration part of the current transformer and is arranged so as to be visible from the outside of the earth leakage probe l. For example, the symbol r3J is attached to the other side surface, and when the leakage detection operation is performed, the leakage current detection is indicated by lighting up the light emitting diode LD, and the light emitting diode LD. If it lights up, the light emitting diode LD. If it lights up, it will indicate that there is a leakage point towards the B side. The return circuit 9 has its input end connected to the fixed contact btt of the switch of the switching circuit 3, and also has a resistor R,
. is inserted and output to the storage circuit 7 via the NOT circuit N.

このように構成された漏電探査器1は、第2図に示すよ
うに、通称クランプ形電流計と呼ばれている計測器と同
様、内部に上記各回路を収納配置した凶状の本体部40
と、この本体部40内に図示しない枢着部を有して突出
した上記電流検出部lOの変流器CTの拡開可能に2分
割された環状鉄心部41と、本体部40から出没可能に
常時突出した操作釦42とを備え、上記操作!042を
押し込むことにより、上記環状鉄心部41を拡開させて
開口端から中性腺27を挿入し、押し込みの解除により
、上記拡開を復帰させて環状鉄心部41に中性線27を
貫通装着するようになっている。
As shown in FIG. 2, the earth leakage detector 1 configured in this manner has a main body part 40 in which the above-mentioned circuits are housed, similar to a measuring instrument commonly called a clamp-type ammeter.
and an annular core part 41 which is divided into two parts so that the current transformer CT of the current detecting part 10 can be expanded and retracted from the main body part 40, and which has a pivot part (not shown) inside the main body part 40 and protrudes from the current transformer CT. It is equipped with an operation button 42 that always protrudes, and the above operations! By pushing 042, the annular iron core 41 is expanded and the neutral wire 27 is inserted from the open end, and by releasing the push, the expansion is restored and the neutral wire 27 is inserted through the annular iron core 41. It is supposed to be done.

また、上記本体部40には図示しないフック金具を備え
た適当な長さの取付紐を具備させて、このフック金具を
装着近傍の部材に掛けて吊り支持ができるようになって
いる. 次に、漏電探査器1の動作を、第3図に示す単相三線式
低圧配電線に適用した例で説明する.第3図において、
21.22.23は柱上変圧器であり、この柱上変圧器
21.22.23の二次巻線の中性点をそれぞれ接地線
24,25.26にて接地し、この接地線24,25.
26を中性線27で相互に接続している.また、上記接
地線24,25.26はそれぞれ接地抵抗28,29.
30を有している.上記柱上変圧器21.22.23の
二次巻線の両端部から接続された電圧線を上記中性腺2
7と共に柱上変圧器毎の供給区域に延設して、電力が単
相三線式配電方式で図示しない負荷に供給されている。
Further, the main body part 40 is equipped with a mounting string of an appropriate length equipped with a hook metal fitting (not shown), so that the hook metal fitting can be hung on a member near the attachment for hanging support. Next, the operation of the earth leakage detector 1 will be explained using an example in which it is applied to a single-phase three-wire low-voltage distribution line shown in FIG. In Figure 3,
21, 22, and 23 are pole transformers, and the neutral points of the secondary windings of the pole transformers 21, 22, and 23 are grounded through ground wires 24, 25, and 26, respectively. , 25.
26 are interconnected by a neutral wire 27. The grounding wires 24, 25.26 are connected to grounding resistors 28, 29.26, respectively.
It has 30. The voltage lines connected from both ends of the secondary winding of the pole transformer 21, 22, 23 are connected to the neutral gland 2.
7 and extending to the supply area of each pole transformer, and power is supplied to a load (not shown) in a single-phase three-wire distribution system.

上記供給区域は境界点31.32で分離されていて、こ
の境界点3l,32の中性線27には負荷電流は流れな
いよ゜゜うになっている. 上記配電線で、柱上変圧器22の供給区域の電圧線のP
点で漏電が生じた場合、漏れ電流の経路は、第3図に矢
印で示したように、漏れ電流はP点より大地を介して、
接地線24,25.26に分流して中性線27を通り、
柱上変圧器22を経てP点に帰る経路で流れる.このと
き、漏れ電流が接地線24,25.26の接地抵抗28
.2930を流れることにより中性線27には対地電圧
が生じる.また、境界点31.32の中性vA2 7に
は、第3図に示すように、漏れ電流だけが互いに逆方向
に流れる。
The supply areas are separated by boundary points 31 and 32, so that no load current flows through the neutral wire 27 of these boundary points 3l and 32. In the above distribution line, P of the voltage line in the supply area of the pole transformer 22
If a leakage occurs at a point, the path of the leakage current is as shown by the arrow in Figure 3, from the point P through the ground,
Divided into the ground wires 24, 25, and 26 and passed through the neutral wire 27,
It flows through the pole transformer 22 and returns to point P. At this time, the leakage current is caused by the ground resistance 28 of the ground wires 24, 25, 26
.. 2930, a ground voltage is generated in the neutral wire 27. Furthermore, only leakage currents flow in the neutral vA2 7 of the boundary points 31, 32 in opposite directions, as shown in FIG.

漏電探査器1を上記中性線27に取付ける際は、先ず、
切換回路3の切換スイッチの可動接点a,a8を固定接
点b l l +  b ! lから固定接点b+i.
 b■へ切換えると、直流電源2は表示回路8以外の各
回路に供給される.これをうけた復帰回路9の入力端が
Hレベルとなり、ノット回路N,の出力端から記憶回路
7へLレベルのリセント信号を送出する.これをうけた
シフトレジスタSR.のリセット端子RはLレベルとな
り、また、シフトレジスタSR.,SR.のりセット端
子RはそれぞれダイオードD?,DI の導通によりL
レベルとなって、シフトレジスタS Rr ,  S 
Rz ,  S Rsは初期化される。
When attaching the earth leakage probe 1 to the neutral wire 27, first,
The movable contacts a and a8 of the changeover switch of the changeover circuit 3 are connected to the fixed contacts b l l + b! l to fixed contact b+i.
When switched to b■, the DC power supply 2 is supplied to each circuit other than the display circuit 8. In response to this, the input terminal of the return circuit 9 becomes H level, and an L level recent signal is sent to the memory circuit 7 from the output terminal of the NOT circuit N. The shift register SR that received this. The reset terminal R of the shift register SR. , S.R. Is each glue set terminal R a diode D? , DI conduction causes L
level, and the shift registers S Rr , S
Rz and S Rs are initialized.

次に、可動接点at ,a.を固定接点b,3,  b
2,に切換接続すると、復帰回路9の・入力端を除いて
、各回路に直流電源2が供給され、復帰回路9のノット
回路N,は、その入力端が抵抗R,。を介してアースさ
れるので出力信号はHレベルに反転する.このため、シ
フトレジスタS Rt ,  S R3のリセット端子
Rは、ダイオードDt,C++が不導通となるので、そ
れぞれ高抵抗の抵抗R+s, R.,を介して直流電源
2をうけてHレベルに反転し、シフトレジスタSR!,
SR.はSR.  と共に動作待機の状態となり、漏電
検出・記憶・表示の動作が可能となる. この際、漏電探査器lを探査のために長時間取付け・放
置してお《場合は、切換スイッチの可動接点a,,at
を固定接点b 14+  b zaに切換接続して、表
示回路8への電源供給を停止の状態にしておけば、漏電
検出動作時の表示回路8の発光ダイオードLD,,t,
n* ,LD.の点灯による直流電源2の消耗が軽減さ
れる. (イ)漏電方向の探査. 上記の状態にした複数の漏電探査器lを、探査しようと
する複数個所の境界点(本例では3l32)の中性1!
!j127に、例えば、第2図に示した操作鎖42の位
置を、第3図において手前側にして(jlpち、符号「
A」を右側にして)、柱上において貫通装着する.次に
、電圧検出回路5の端子15aと15bを、図示しない
接続金具を有した接M線を介して中性!1127と大地
にそれぞれ接続する. ■ 漏電が発生していない場合. 電流検出回路4および電圧検出回路5への入力信号は無
く、位相比較回路6と記憶回路7の入・出力信号も無い
ので、シフトレジスタSR,   SRz ,SR.の
出力端子QはすべてLレベルであり、ノット回路N.,
Nff ,N.を介した発光ダイオードLD+ ,LD
t ,LDs のカソードはすべてHレベルに保持され
て、これらのアノードに電源を供給しても漏電検出表示
はしない.■ 検出レベルに達しない微小な漏電が第3
図P点に発生した場合. 電流検出回路4の漏れ電流検出部10で微小電流を検出
し、移相同路11を経て増幅回路12により増幅して出
力することになるが、入力レベルが小さいため、出力波
形は立上がりが急峻な矩形波とならず、これが矩形波検
出回路13に入力しても、ノット回路N1およびアンド
回路A1のしきい値を越えるパルスは発生しないため、
ノット回IR N + の出力信号はHレベル、アンド
回路AIの出力信号はLレベルのままである. 一方、電圧検出回路5は、電圧検出部l6で微小電圧を
検出することになるが、上述同様、増幅回路17の出力
波形は立上がりが急峻な矩形波とならないので、矩形波
検出回路18はノット回路N,のしきい値を越えるパル
スを出力しないため、ノット回路Nsの出力信号はHレ
ベル、遅延回路19の出力信号はLレベルのままである
.このとき、増幅回路17の出力信号が位相比較回路6
のノ7ト回路Nsとアンド回路A,に送出されるが、ア
ンド回路As ,Aaの一方の入力端はアンド回路A,
からしレベルの出力信号を受けているので、位相比較回
路6の出力信号はLレベルのままである.従って、上述
の漏電が発生していない場合と同様、発光ダイオードL
 D+ ,  L Dt ,  L Dsに電源を供給
しても漏電検出表示はしない。
Next, the movable contacts at, a. Fixed contact b, 3, b
2, the DC power supply 2 is supplied to each circuit except the input terminal of the return circuit 9, and the NOT circuit N of the return circuit 9 has its input terminal connected to the resistor R. The output signal is inverted to H level because it is grounded through the terminal. Therefore, the reset terminals R of the shift registers S Rt and S R3 are connected to high resistance resistors R+s and R, respectively, since the diodes Dt and C++ become non-conductive. , receives DC power supply 2 through , and is inverted to H level, and the shift register SR! ,
S.R. is SR. At the same time, the device enters a standby state and becomes capable of detecting earth leakage, storing information, and displaying information. At this time, if the earth leakage probe l is installed and left unattended for a long time for investigation, the movable contacts a,,at of the changeover switch
If the power supply to the display circuit 8 is stopped by switching and connecting it to the fixed contact b14+bza, the light emitting diodes LD,,t, of the display circuit 8 during the leakage detection operation can be
n*, LD. The consumption of DC power supply 2 due to lighting is reduced. (b) Exploration of the direction of electrical leakage. Neutral 1! of multiple boundary points (3l32 in this example) to be detected using multiple earth leakage probes l in the above state!
! j127, for example, by changing the position of the operating chain 42 shown in FIG. 2 to the front side in FIG.
A) on the right side), and install it through the pillar. Next, the terminals 15a and 15b of the voltage detection circuit 5 are connected to neutral! through a tangent M wire having a connecting fitting (not shown). Connect to 1127 and earth respectively. ■ If there is no electrical leakage. Since there are no input signals to the current detection circuit 4 and voltage detection circuit 5, and there are no input/output signals to the phase comparison circuit 6 and memory circuit 7, shift registers SR, SRz, SR. All of the output terminals Q of the not circuit N. ,
Nff, N. Light emitting diode LD+, LD via
The cathodes of t and LDs are all held at H level, and even if power is supplied to these anodes, there is no earth leakage detection display. ■ Micro leakage that does not reach the detection level is the third cause.
If it occurs at point P in the diagram. A small current is detected by the leakage current detection section 10 of the current detection circuit 4, and is amplified and outputted by the amplifier circuit 12 via the phase shift circuit 11, but since the input level is small, the output waveform has a steep rise. Even if it does not become a rectangular wave and is input to the rectangular wave detection circuit 13, a pulse exceeding the thresholds of the NOT circuit N1 and the AND circuit A1 will not be generated.
The output signal of the not circuit IR N + remains at H level, and the output signal of AND circuit AI remains at L level. On the other hand, the voltage detection circuit 5 detects a minute voltage at the voltage detection section l6, but as described above, the output waveform of the amplifier circuit 17 is not a square wave with a steep rise, so the square wave detection circuit 18 is not Since no pulse exceeding the threshold of circuit N is output, the output signal of NOT circuit Ns remains at H level, and the output signal of delay circuit 19 remains at L level. At this time, the output signal of the amplifier circuit 17 is
The input terminals of AND circuits As and Aa are sent to AND circuits A and A, respectively.
Since the output signal of the mustard level is being received, the output signal of the phase comparison circuit 6 remains at the L level. Therefore, as in the case where the above-mentioned leakage does not occur, the light emitting diode L
Even if power is supplied to D+, LDt, and LDs, there is no earth leakage detection display.

■ 検出レベル以上の漏電が第3図P点に発生した場合
. 境界点31に取付けた漏電探査器lは、このときの漏れ
電流を漏れ電流検出部10で検出し(第4図a.第5図
d)、これを移相回路1lによって例えば60度移相(
進相)させる(第4図b).これをうけた増幅回路12
は、反転増幅して、立上りが急峻で波高値が電源電圧に
ほぼ等しい矩形波の信号を送出する(第4図C.第5図
C).これをうけた矩形波検出回路l3は入力の立上り
でパルスを発生させ(第4図d)、これをアンド回路A
1へ送出すると共に、ノット回路N1を介して反転した
出力信号を遅延回路14に送出する(第4図e)e こ
れをうけた遅延回路14は、入力信号の立下がりでダイ
オードD8が導通して、コンデンサC,は、直流電源2
により抵抗R,を介して充電されていた電荷を瞬時に放
電し、入力信号の立上りでダイオードDオが不導通とな
ると、コンデンサC,は抵抗R.を介して充電される、
充放電動作を繰り返す.この充放電動作におけるコンデ
ンサC,はその充電電圧がノット回路Nxのしきい値に
達する前に放電される動作を繰り返すため、ノット回路
Ntの出力信号はHレベルに保持される.これにより、
コンデンサC4が抵抗R,を介して時定数04 ・R7
で充電され、その充電電圧は、上記矩形波検出回路13
からパルス信号が連続して例えば5個入力したとき(即
ち、上記入力信号の周朋TX4の充電時間で)、アンド
回路A1のしきい値に達し、遅延回路I4がHレベルの
出力信号を送出する(第4図B,これをうけたアンド回
路A.は、上記矩形波検出回路13の出力パルスと同位
相のパルス信号を、電流検出回路4の電流検出信号とし
て、位相比較回路6のアンド回路As と記憶回路7の
シフトレジスタSR.とに出力する(第4図g,第5図
f)。
■ If an electric leakage exceeding the detection level occurs at point P in Figure 3. The earth leakage probe l attached to the boundary point 31 detects the leakage current at this time with the leakage current detection unit 10 (Fig. 4a, Fig. 5d), and phase-shifts it by, for example, 60 degrees by the phase shift circuit 1l. (
(Fig. 4b). Amplifier circuit 12 that received this
is inverted and amplified, and sends out a rectangular wave signal with a steep rise and a peak value approximately equal to the power supply voltage (Figure 4C and Figure 5C). Rectangular wave detection circuit 13 receives this and generates a pulse at the rising edge of the input (Fig. 4d), which is sent to AND circuit A.
At the same time, the inverted output signal is sent to the delay circuit 14 via the NOT circuit N1 (Fig. 4e) e The delay circuit 14 receives this, and the diode D8 becomes conductive at the fall of the input signal. So, capacitor C, is DC power supply 2
When the charge stored in the resistor R is instantly discharged by the resistor R, and the diode DO becomes non-conductive at the rising edge of the input signal, the capacitor C is transferred to the resistor R. is charged via,
Repeat charging and discharging operations. During this charging/discharging operation, the capacitor C repeats the operation of being discharged before its charging voltage reaches the threshold of the NOT circuit Nx, so the output signal of the NOT circuit Nt is held at H level. This results in
Capacitor C4 has a time constant of 04 through resistor R, R7
The charging voltage is the same as that of the rectangular wave detection circuit 13.
When, for example, five pulse signals are input in succession (that is, within the charging time of Shuho TX4 of the above input signal), the threshold of AND circuit A1 is reached, and delay circuit I4 sends out an H level output signal. (FIG. 4B, AND circuit A) receives this and uses the pulse signal having the same phase as the output pulse of the rectangular wave detection circuit 13 as the current detection signal of the current detection circuit 4, and outputs the AND circuit of the phase comparison circuit 6. It is output to the circuit As and the shift register SR of the memory circuit 7 (FIG. 4g, FIG. 5f).

これをクロック端子CKにうけた上記シフトレジスタS
R,は、入力パルスの立上がり毎にセットして1ビット
づつシフトさせ、このシフトレジスタSR,が例えば8
ビットであれば、8個のパルス信号が入力すると出力端
子QはHレベルに反転して(第4図h)、ノット回路N
.を介して表示回路8の発光ダイオードLD.のカソー
ド側を■,レベルとし、漏れ電流が消滅しても、リセッ
ト信号が入力するまでシフトレジスタSR,はこれを保
持(記憶)する. 他方、電圧検出回路5の電圧検出部16は、中性線27
の対地電圧を検出し(第5図a)、これをうけた増幅回
路l7は反転増幅して、立上がりが急峻な矩形波の信号
を送出する(第5図b).これをうけた矩形波検出回路
1Bは、上述した矩形波検出頗路13と同様、入力の立
上がりでパルス信号を発生させ、これをノット回路N,
を介して出力する.これをうけた遅延回路19は、上述
した遅延回路14と同様、コンデンサC.は、ノット回
路N.のしきい値に達しない充電電圧で充放電動作を繰
り返して、ノット回路N4の出力信号をHレベルに保持
し、コンデンサC,を抵抗R,を介して時定数C? ・
R.で充電させ、その充電電圧は、パルス信号が連続し
て例えば5個入力したとき(即ち、入力信号の周期TX
4の充電時間で)、出力信号がHレベルとなる.これを
うけた位相比較回路6のアンド回路Amは、上記電流検
出回路4のアンド回路A1の出力信号との論理積を出力
する.すなわち、アンド回路Atは、アンド回路A,の
出力信号と同位相のパルス信号(第5図f)をアンド回
路A3とA4に出力する。
The above shift register S receives this at the clock terminal CK.
R, is set and shifted one bit at a time at each rising edge of the input pulse, and this shift register SR, for example, has 8 bits.
If it is a bit, when 8 pulse signals are input, the output terminal Q is inverted to H level (Fig. 4h), and the NOT circuit N is inverted.
.. The light emitting diode LD. of the display circuit 8 is connected to the display circuit 8 through the light emitting diode LD. The cathode side of the shift register SR is set to the level ■, and even if the leakage current disappears, the shift register SR holds (memorizes) this level until a reset signal is input. On the other hand, the voltage detection section 16 of the voltage detection circuit 5
The amplification circuit 17 that receives this detects the voltage to ground (Fig. 5a), inverts and amplifies it, and sends out a rectangular wave signal with a steep rise (Fig. 5b). Rectangular wave detection circuit 1B receiving this generates a pulse signal at the rising edge of the input, similar to the above-mentioned rectangular wave detection circuit 13, and sends this to the knot circuit N,
Output via . The delay circuit 19 receiving this includes a capacitor C. is the knot circuit N. By repeating charging and discharging operations at a charging voltage that does not reach the threshold value of , the output signal of the NOT circuit N4 is held at H level, and the time constant C? is connected to the capacitor C via the resistor R.・
R. The charging voltage changes when, for example, five pulse signals are input in succession (i.e., the period TX of the input signal
4), the output signal becomes H level. The AND circuit Am of the phase comparator circuit 6 receives this and outputs the logical product with the output signal of the AND circuit A1 of the current detection circuit 4. That is, AND circuit At outputs a pulse signal (FIG. 5f) having the same phase as the output signal of AND circuit A to AND circuits A3 and A4.

これをうけたアンド回路A,とA4は、入力端の他方に
電圧検出回路5の増幅回路17の矩形波の出力信号(第
5図b)を、アンド回路A,はノット回路Nsを介して
(第5図C)、またアンド回路A4は直接に、それぞれ
入力させているので、いずれか一方(本例ではアンド回
路A,)のみパルス信号を位相比較回路6の出力信号と
して出力することになる. このように、位相比較回路6は、漏れ電流と対地電圧が
共に検出レベル以上になったときのみ、アンド回路Am
がパルス信号を出力するように(であるので、両信号の
位相比較を的確に行うことが可能となる.しかも、位相
比較回路6には、上記漏れ電流と対地電圧のいずれか一
方(本例では漏れ電流)を移相させて、電流、電圧両検
出信号を入力させるようにしているので、漏れ電流が流
れる回路.の定敗により、例えば、漏れ電流が対地電圧
より少し進んだ位相関係にあると、上記パルス発生時に
おける電圧波形のレベルはLとなり、また、これとは反
対に漏れ電流が対地電圧より少し遅れた位相関係にある
と、上記パルス発生時における電圧波形のレベルはHレ
ベルとなって、両者の位相関係が同相的であっても判別
することができない、といったことが生ずることな《、
両者の位相関係を的確に判別した位相比較を行うことが
可能となる. そして、上記位相比較回路6のアンド回路A3からパル
ス信号(第5図f)をうけた記憶回路7のシフトレジス
タSR8は、上述したシフトレジスタSR.と同様、例
えば8個のパルス信号が入力すると出力端子Qは■レベ
ルに反転して(第5図g)、ノット回路N.を介して表
示回路8の発光ダイオードLD.のカソード側をLレベ
ルとし、これ以後、漏れ電流が消滅しても、リセット信
号が入力するまでシフトレジスタSRうはこれを保持(
記憶)する. この際、上記シフトレジスタSR.の出力信号がHレベ
ルになったとき、ノット回路N’t を介してダイオー
ドI)toが導通し、シフトレジスタSR3のリセット
端子Rの入力をLレベルにするので、シフトレジスタS
R3はリセットされる.また、上記遅延回路14の動作
において、矩形波検出回路13からパルス信号が連続し
て5個入力しながった(例えば電気機器の誤操作による
瞬間的な漏電が発生した)場合は、ダイオードD,が、
上記パルス信号の周期TX2以上不導通の間にコンデン
サC,が抵抗R.を介してHレベルに充電され、これを
うけたノット回路Ntの出力はLレベルとなってダイオ
ードD,が導通して、コンデンサCはその充電電圧がH
レベルに達する上記周期T×4の充電時間の前に放電す
るので、これを・うけたアンド回路A.は、入力端がL
レベルのままであり、パルス信号を送出しないことにな
る。この動作は、遅延回路19においても全く同様であ
る。
The AND circuits A and A4 which received this input the rectangular wave output signal (Fig. 5b) of the amplifier circuit 17 of the voltage detection circuit 5 to the other input terminal, and the AND circuits A and A4 receive the rectangular wave output signal (Fig. 5b) of the amplifier circuit 17 of the voltage detection circuit 5 through the NOT circuit Ns. (FIG. 5C), and since the AND circuit A4 is directly inputted, only one of them (AND circuit A in this example) outputs the pulse signal as the output signal of the phase comparator circuit 6. Become. In this way, the phase comparator circuit 6 activates the AND circuit Am only when both the leakage current and the ground voltage exceed the detection level.
outputs a pulse signal (so that it is possible to accurately compare the phases of both signals.Moreover, the phase comparison circuit 6 is configured to output either the leakage current or the ground voltage (in this example). Since the current and voltage detection signals are inputted by shifting the phase of the leakage current (leakage current), due to constant failure of the circuit in which the leakage current flows, for example, the leakage current may be in a phase relationship that is slightly ahead of the ground voltage. If so, the level of the voltage waveform at the time of the above pulse generation is L level, and on the contrary, if the leakage current is in a phase relationship slightly delayed from the ground voltage, the level of the voltage waveform at the time of the above pulse generation is H level. Therefore, even if the topological relationship between the two is homeomorphic, it will not be possible to distinguish between them《,
It becomes possible to perform a phase comparison that accurately determines the phase relationship between the two. The shift register SR8 of the storage circuit 7 receives the pulse signal (FIG. 5f) from the AND circuit A3 of the phase comparison circuit 6, and the shift register SR. Similarly, when, for example, eight pulse signals are input, the output terminal Q is inverted to the ■ level (Fig. 5g), and the NOT circuit N. The light emitting diode LD. of the display circuit 8 is connected to the display circuit 8 through the light emitting diode LD. The cathode side of the shift register SR is set to L level, and even if the leakage current disappears, the shift register SR is held until the reset signal is input (
Remember. At this time, the shift register SR. When the output signal of the shift register S becomes H level, the diode I)to becomes conductive via the NOT circuit N't, and the input of the reset terminal R of the shift register SR3 becomes the L level.
R3 is reset. Furthermore, in the operation of the delay circuit 14, if five consecutive pulse signals are not input from the rectangular wave detection circuit 13 (for example, an instantaneous leakage occurs due to incorrect operation of electrical equipment), the diode D ,but,
The capacitor C and the resistor R. In response to this, the output of the NOT circuit Nt becomes an L level, and the diode D becomes conductive, and the capacitor C is charged at a high voltage.
Since it is discharged before the charging time of the period T x 4 reaches the level, the AND circuit A. , the input end is L
It remains at the same level and no pulse signal is sent out. This operation is exactly the same in the delay circuit 19 as well.

そして、上記遅延回路14.19は、所定数(例えば5
個)以上のパルス信号が連続的に入力しないと(即ち、
入力信号の周期TX4の時間充電しないと)Hレベルの
出力信号を送出しないようにしているので、漏れ電流検
出部10の変流器CTの残留磁気等に起因する誘導電流
が流れたり、あるいは電圧検出部16にノイズが侵入し
たりしても誤動作することなく電流電圧両検出信号を出
刀して、的確な漏電検出表示を行うことが可能となる. 他方、境界点32に取付けた漏電探査器lは、第3図に
示すように、配電線の漏電箇所P点を挟む境界点31.
32の中性127に流れる漏れ電流は互いに逆方向に流
れるので、上記漏れ電流検出部lOの変流器CTの2次
巻線の極性を同じ向きにして境界点31および32に取
付けると、両者の出力電流波形の位相差は180度とな
る.従って、両者に共通となる中性I127の対地電圧
の位相(第5図a)に対して、上述の境界点31におけ
る漏れ電流の位相が同相的(第5図d)であれば、境界
点32において検出した漏れ電流の位相は逆相的(第5
図h)となる.そして、これ以後の電流検出回路4の動
作は、境界点31に取付けた漏電探査器lの電流検出回
路4とほぼ同様であるが位相のみ180度異なる(第5
図’.J)+1一方、電圧検出回路5の出力は、境界点
31に取付けた漏電探査器1の電圧検出回路5と全く同
樺である(第5図a,b,c),そして、境界点32に
取付けた漏電探査器lの電流検出回路4の出力信号(第
5図j)と電圧検出回路5の出力信号(第5図b)は、
位相比較回路6にて位相比較され、両信号の論理積はア
ンド回路A4からパルス信号となって出力される(第5
図j).これをうけた記憶回路7のシフトレジスタSR
,は、例えば8個のパルス信号が人力すると出力端子Q
は!lレベルに反転して(第5図k)、ノット回路N,
を介して表示回路8の発光ダイオードLD.のカソ一ド
側をLレベルとし、これを保持(記憶)する. この際、上記シフトレジスタSR,の出力信号がHレベ
ルになったとき、ノット回路N.を介してダイオードD
,が導通し、シフトレジスタSRのリセット端子Rの入
力をLレベルにしてリセ?トさせる. 上述のように、シフトレジスタSR.が漏電検出動作す
るとシフトレジスタSR3をリセットし、また、シフト
レジスタSR.が漏電検出動作するとシフトレジスタS
R.をリセットするようになっているので、例えば上記
両シフトレジスタSR.,SR.が同時に漏電検出信号
を出力するような誤動作は発生しない. そして、上述の状態で切換回路3の可動接点aa,を固
定接点bl4+  bl4からb ts+  b *s
”切換えると、表示回路8の発光ダイオードLD.LD
■,LDsのアノードに直流電源2の正極が接続される
ので、境界点3lに取付けた漏電探査器1は、漏れ電流
検出を表示する発光ダイオードLD,  と漏電方向を
表示する発光ダイオードLDが点灯し、境界点32に取
付けた漏電探査器lは発光ダイオードLD.とLD.が
点灯する.このとき、第2図に示したように、発光ダイ
オードLDtはA方向、発光ダイオードLD.はB方向
を表示し、これはあらかじめ漏電方向と上記AまたはB
による方向表示とが一致するように電流検出部10の変
流器CTの極性を設定してあって、この漏電探査器1の
中性線27への取付向きは、前述したように、操作釦4
2を第3図において手前側にして取付けてあるので、上
記Aは第3図において右側,Bは左側に漏電箇所がある
ことを表示することになり、漏電箇所が境界点31と3
2の間の柱上変圧器22の供給区域にあることが分かる
. なお、例えば、境界点32の漏電探査器lだけを上記の
向きと逆(操作釦42を第3図において向こう側、即ち
、零体40の側面の符号「A」およびr B Jを第3
図においてそれぞれ左側および右側)にして中性線27
に取付けた場合には、前記電流検出回路4の出力パルス
の位相は、上記の場合と180度反転して出力されるの
で、発光ダイオードLDオが点灯しA方向、即ち、第3
図において境界点32の左側に漏電箇所があることを表
示する.従って、実際の使用においては、漏電探査器1
の中性線27への取付向きをどちらにしても問題ない.
また、漏れ電流の有無および漏電方向は記憶回路7に記
憶されているので、上記の表示をさせるための切換回路
3のスイッチ切換操作は、この漏電探査器lを配電線か
ら取外してから操作してもよい. 次に、切換回路3の可動接点a ., a ,を固定接
点b I 1 +  bR Zに切換えると、復帰回路
9から記憶凹路7へ゛リセット信号が送出されるので、
記憶回路7が初期状態に復帰すると共に上記発光ダイオ
ードは消灯する。そして、可動接点al+atを固定接
点b l l +  b@ +に切換えると、直流電源
2の供給を停止する. 以上の動作から理解されるように、本発明の漏電探査器
lを、漏電が発生していると推定される地域の低圧配電
線の境界点毎の中性線に取付けておけば、漏電が一時的
にでも発生すれば動作して漏電方向を記憶・表示するの
で、この漏電方向表示が互に内側を指している2つの探
査器に挟まれた柱上変圧器の供給区域内に漏電箇所があ
ることがわかる。そしてその漏電箇所は、通常、上記電
力供給区域内の配電線から引込線によって供給を受けて
いる需要家の負荷または配線にあるので、この需要家を
特定するには、引込線から漏れ電流を検出すればよいこ
とになる. (口)漏電箇所の探査. 次に、上記引込線の漏電探査について説明する.この場
合は、漏れ電流検出部IOの変流器CTに引込線を貫通
させて取付け、電圧検出部16の端子15a,15bに
は対地電圧を入力しない。そして、引込線は、通常2本
または3本の絶縁電線からなる撚り線であり、引込線の
負荷側で漏電が発生すると、この引込線に流れる電流が
不平街となり、この不平街分の電流を上記漏れ電流検出
部10が検出し、上述したように、漏れ電流が検出レベ
ル以上であれば、電流検出回路4から記憶回路7のシフ
トレジスタSR.に電流検出信号が送出され、シフトレ
ジスタSR.の出力がHレベルとなり、ノット回路Nh
を介して発光ダイオードLD.のカソードをLレベルと
してこれを保持し、切換回路3のスイッチ切換操作によ
り発光グイオ一ドLD.が点灯し、これを取付けた引込
線に漏れ電流が流れたことを表示する.そして、この引
込線に接続された負荷または配線について、上述同様の
探査を順次行って漏電電流の有無の範囲をせばめていけ
ば漏電箇所を探査(すなわち発見)できることになる. なお、上記実施例において、移相同路l1は微分回路で
形成して位相を進めるように説明したが、電圧・電流両
検出信号の相対的な位相関係を比較すればよいので、積
分回路にして位相を遅らせるようにしてもよく、また、
移相回路11は電流検出回路4にでなく、電圧検出回路
5に設けるように構成してもよい.また、実施例におい
て、矩形波の検出信号からパルス信号を出力する矩形波
検出回路を電流検出回路4に設け、他方の電圧検出回路
5から出力した矩形波との位相を比較するようにしたが
、矩形波の検出信号からパルス信号を出力する矩形波検
出回路を電圧検出回路5に設けて、電流検出回路4から
矩形波を出力させて位相を比較するようにしてもよい.
この際、漏電方向動作表示と実際の漏電方向とが一致す
るように上記変流器CTの極性を合せておく必要がある
ことはいうまでもない. さらに、上記実施例では、漏電検出動作表示に発光ダイ
オードを用いたが、これに限らず他の表示素子を使用し
てもよい. 実施例によれば、記憶回路7に例えば8ビットのシフト
レジスタを用いているので、上記漏電方向の探査におい
て、位相比較回路6にて漏れ電流と対地電圧の位相を比
較し、アンド回路A,またはA4から信号を出力してい
るときに、漏電を発生している負荷の電源が切れたり、
変流器CTを中性腺27から取外したり、電圧検出部l
6の端子15a,15bにつないだ接続線を取外したり
などした瞬間、電流検出回路4または電圧検出回路5の
出力信号の一方のみが先にとぎれて、例えば、アンド回
路Atがパルスを出力したときに電圧検出回路5の増幅
回路l7からの矩形波信号がHレベルからLレベルに反
転して、位相関係が一瞬逆転すると、それまでアンド回
路A,からバルス信号を出力していたのが、一瞬他方の
アンド回路A,からバルスを送出することになるが、シ
フトレジスタのクロック端子CKに8個のパルスが入力
しないと出力信号を送出しないようにしているので、上
記のような瞬間的な信号が入力しても誤った検出動作に
よる表示をすることはない.さらに、本実施例によれば
、漏れ電流検出表示および漏電方向表示は、小形かつ微
小電力で動作する発光ダイオードLD,,t,ox ,
LDsを使用しているため、従来の表示装置(メータ)
を使用した漏電探査器に比較して、容積および電源容量
を小形化できる.また、この漏電探査itを配電線に取
付けておく際、切換回路3の可動接点a1,a,を固定
接点b tar  b 14の位置に切換接続しておけ
ば、漏電を検出・記憶しても発光ダイオードは点灯しな
いので、点灯による電池の消耗がなく、また、各回路に
は消費電力の小さな相補形Mosyc等の素子を使用す
ることにより、小形・小容景の電池を使用しても、漏電
探査器1を配電線に長時間連続して取付けておくことが
できる.さらに、上記実施例では発光ダイオードを用い
たが、これに限らず他の表示素子を使用してもよい.〔
発明の効果〕 以上説明したように本発明の漏電探査器は、漏電方向表
示が、アナログ表示でなく、オンオフ表示によって明確
に得られ、また、漏電方向を表示すると共に、漏れ電流
のみの検出・表示ができるので、信鯨性の高い、効率的
な漏電探査を行うことができる.
The delay circuits 14 and 19 have a predetermined number (for example, 5
(i.e., if more than one pulse signal is not input continuously)
Since an H level output signal is not sent unless charging is performed for the period of the input signal TX4, an induced current due to residual magnetism of the current transformer CT of the leakage current detection unit 10 may flow, or the voltage may change. Even if noise intrudes into the detection unit 16, it is possible to output both current and voltage detection signals without malfunctioning, and to perform accurate earth leakage detection display. On the other hand, as shown in FIG. 3, the earth leakage probe l attached to the boundary point 32 is connected to the boundary point 31.
Since the leakage currents flowing through the neutral 127 of 32 flow in opposite directions, if the polarities of the secondary windings of the current transformer CT of the leakage current detection unit IO are the same and are installed at the boundary points 31 and 32, both The phase difference between the output current waveforms is 180 degrees. Therefore, if the phase of the leakage current at the boundary point 31 described above is in phase (Figure 5 d) with respect to the phase of the ground voltage of the neutral I127 (Figure 5 a), which is common to both, then the boundary point The phase of the leakage current detected in 32 is in reverse phase (5th
Figure h). The subsequent operation of the current detection circuit 4 is almost the same as that of the current detection circuit 4 of the earth leakage probe l attached to the boundary point 31, but only the phase is different by 180 degrees (the fifth
figure'. J)+1 On the other hand, the output of the voltage detection circuit 5 is exactly the same as the voltage detection circuit 5 of the earth leakage probe 1 attached to the boundary point 31 (Fig. 5 a, b, c), and The output signal of the current detection circuit 4 (Fig. 5 j) and the output signal of the voltage detection circuit 5 (Fig. 5 b) of the earth leakage probe l installed on the
The phases are compared in the phase comparator circuit 6, and the logical product of both signals is output as a pulse signal from the AND circuit A4 (fifth
Figure j). Shift register SR of the storage circuit 7 that receives this
, for example, when 8 pulse signals are input manually, the output terminal Q
teeth! Inverted to l level (Fig. 5k), the not circuit N,
The light emitting diode LD. of the display circuit 8 is connected to the display circuit 8 through the light emitting diode LD. The cathode side of is set to L level and this is held (memorized). At this time, when the output signal of the shift register SR becomes H level, the NOT circuit N. through diode D
, becomes conductive and sets the input of the reset terminal R of the shift register SR to the L level to reset ? Let it run. As mentioned above, shift register SR. When the leakage detection is performed, the shift register SR3 is reset, and the shift register SR. When the leakage detection is activated, the shift register S
R. For example, both shift registers SR. , S.R. Malfunctions such as outputting earth leakage detection signals at the same time do not occur. Then, in the above state, the movable contact aa of the switching circuit 3 is connected from the fixed contact bl4+ bl4 to b ts+ b *s
"When switched, the light emitting diode LD.LD of the display circuit 8
■, Since the positive pole of the DC power supply 2 is connected to the anode of the LDs, the earth leakage detector 1 installed at the boundary point 3l lights up the light emitting diode LD which indicates leakage current detection, and the light emitting diode LD which indicates the direction of the leakage. The earth leakage probe l attached to the boundary point 32 is a light emitting diode LD. and L.D. lights up. At this time, as shown in FIG. 2, the light emitting diode LDt is in the A direction, and the light emitting diode LD. indicates the B direction, which is determined in advance from the leakage direction and the A or B direction above.
The polarity of the current transformer CT of the current detecting unit 10 is set so that the direction indicated by 4
2 is attached to the front side in Fig. 3, so A indicates that the leakage point is on the right side in Fig. 3, and B indicates that the leakage point is on the left side.
It can be seen that it is located in the supply area of the pole transformer 22 between 2 and 2. Note that, for example, only the earth leakage probe l at the boundary point 32 should be moved in the opposite direction from the above (the operation button 42 should be moved to the other side in FIG.
(in the figure, the left and right sides respectively) and the neutral wire 27
When the current detection circuit 4 is installed in
In the diagram, it is indicated that there is a leakage point to the left of the boundary point 32. Therefore, in actual use, the earth leakage detector 1
It doesn't matter which way you install it to the neutral wire 27.
In addition, since the presence or absence of leakage current and the direction of the leakage current are stored in the memory circuit 7, the switching operation of the switching circuit 3 to display the above display must be performed after removing the earth leakage probe l from the distribution line. You can. Next, the movable contact a. of the switching circuit 3. , a, to the fixed contact b I 1 + bR Z, a reset signal is sent from the recovery circuit 9 to the memory concave path 7, so that
When the memory circuit 7 returns to its initial state, the light emitting diode is turned off. Then, when the movable contact al+at is switched to the fixed contact b l l + b@ +, the supply of DC power 2 is stopped. As can be understood from the above operation, if the earth leakage detector l of the present invention is attached to the neutral wire at each boundary point of the low-voltage distribution line in the area where the earth leakage is estimated to occur, the earth leakage can be prevented. If it occurs even temporarily, it will operate to memorize and display the direction of the leakage, so this leakage direction display will indicate the location of the leakage within the supply area of the pole transformer sandwiched between the two probes pointing inward. It turns out that there is. The leakage point is usually in the load or wiring of a customer that receives power from the distribution line in the above power supply area by a drop-in line, so to identify this consumer, it is necessary to detect leakage current from the drop-in line. It's a good thing. (Example) Exploration of electrical leakage points. Next, we will explain the leakage detection of the above service wire. In this case, a lead-in wire is attached to pass through the current transformer CT of the leakage current detection section IO, and no ground voltage is input to the terminals 15a, 15b of the voltage detection section 16. A drop-in wire is usually a stranded wire consisting of two or three insulated wires, and when a leakage occurs on the load side of the drop-in wire, the current flowing through the drop-in wire becomes a faulty current, and the current of this faulty part is transferred to the above-mentioned leakage. If the leakage current is detected by the current detection unit 10 and is equal to or higher than the detection level as described above, the current detection circuit 4 transfers the shift register SR. A current detection signal is sent to shift register SR. The output becomes H level, and the NOT circuit Nh
through the light emitting diode LD. The cathode of LD. is kept at L level, and the light emitting guide LD. lights up, indicating that leakage current has flowed through the service wire to which it is attached. Then, by successively performing the same exploration as described above for the load or wiring connected to this lead-in line and narrowing down the range of presence or absence of earth leakage current, the location of the earth leakage can be investigated (that is, discovered). In the above embodiment, it has been explained that the phase-shifting circuit l1 is formed by a differentiating circuit to advance the phase, but since it is sufficient to compare the relative phase relationship of both voltage and current detection signals, it can be formed by using an integrating circuit. The phase may be delayed, and
The phase shift circuit 11 may be provided not in the current detection circuit 4 but in the voltage detection circuit 5. In addition, in the embodiment, a rectangular wave detection circuit that outputs a pulse signal from a rectangular wave detection signal is provided in the current detection circuit 4, and the phase is compared with the rectangular wave output from the other voltage detection circuit 5. Alternatively, the voltage detection circuit 5 may be provided with a rectangular wave detection circuit that outputs a pulse signal from a rectangular wave detection signal, and the current detection circuit 4 may output a rectangular wave to compare the phases.
At this time, it goes without saying that it is necessary to match the polarity of the current transformer CT so that the leakage direction operation display and the actual leakage direction match. Further, in the above embodiment, a light emitting diode is used to display the leakage detection operation, but the present invention is not limited to this, and other display elements may be used. According to the embodiment, for example, an 8-bit shift register is used in the memory circuit 7, so in the investigation of the leakage direction, the phases of the leakage current and the ground voltage are compared in the phase comparator circuit 6, and the AND circuit A, Or, when the signal is being output from A4, the power of the load that is causing the leakage is turned off, or
Remove the current transformer CT from the neutral gland 27 or remove the voltage detector l.
At the moment when the connecting wires connected to terminals 15a and 15b of 6 are removed, only one of the output signals of the current detection circuit 4 or the voltage detection circuit 5 is cut off first, and for example, when the AND circuit At outputs a pulse. When the rectangular wave signal from the amplifier circuit l7 of the voltage detection circuit 5 is reversed from H level to L level and the phase relationship is momentarily reversed, the pulse signal that had been output from the AND circuit A momentarily changes. Pulses will be sent from the other AND circuit A, but since the output signal is not sent unless 8 pulses are input to the clock terminal CK of the shift register, the instantaneous signal shown above is Even if input, the display will not be caused by an incorrect detection operation. Furthermore, according to this embodiment, the leakage current detection display and the leakage direction display are performed using light emitting diodes LD,,t,ox, which are small and operate with minimal power.
Since LDs are used, conventional display devices (meters)
The volume and power capacity can be reduced compared to earth leakage detectors using In addition, when installing this earth leakage detection IT on the power distribution line, if the movable contacts a1, a of the switching circuit 3 are switched and connected to the fixed contact b tar b 14 position, it will be possible to detect and store the earth leakage. Since the light emitting diode does not light up, there is no battery consumption due to lighting, and by using elements such as complementary Mosyc with low power consumption in each circuit, even if small and compact batteries are used, The earth leakage detector 1 can be continuously attached to the power distribution line for a long time. Further, although a light emitting diode is used in the above embodiment, the present invention is not limited to this, and other display elements may be used. [
[Effects of the Invention] As explained above, the earth leakage detector of the present invention can clearly display the earth leakage direction by using an on/off display instead of an analog display, and can also display the earth leakage direction and detect only the leakage current. Since it can be displayed, highly reliable and efficient leakage detection can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図、第2図は漏電探
査器1の構造についての説明図、第3図は漏電探査器を
適用する単相三線式配電線の説明図、第4図a % h
は漏れ電流検出動作を示すタイムチャート、第5図a 
z kは漏電方向検出動作を示すタイムチャートである
. 1;漏電探査器    4;電流検出回路5;電圧検出
回路   6;位相比較回路8;表示回路    11
;移相同路 l 2 2. 柱上変圧器 4 , 2 5 . 接地線 中性線 特 許 出 願 人 中 部 電 力 株 式 ム 社 愛 知 電 機 株 式 ム 社 第2図 第4図 第8図 ノー $5図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of the structure of the earth leakage detector 1, FIG. 3 is an explanatory diagram of a single-phase three-wire distribution line to which the earth leakage detector is applied, and FIG. Figure 4 a % h
is a time chart showing leakage current detection operation, Fig. 5a
z k is a time chart showing the earth leakage direction detection operation. 1; Earth leakage detector 4; Current detection circuit 5; Voltage detection circuit 6; Phase comparison circuit 8; Display circuit 11
; Phase shift and same path l 2 2. Pole transformer 4, 2 5. Ground wire Neutral wire Patent applicant: Chubu Electric Power Co., Ltd. Mu Co., Ltd. Aichi Electric Co., Ltd. Mu Co., Ltd. Figure 2 Figure 4 Figure 8 Figure No. 5

Claims (1)

【特許請求の範囲】[Claims]  複数の低圧配電用変圧器の接地線を並列に接続した中
性線に流れる漏れ電流を検出して矩形波の電流検出信号
を出力する電流検出回路と、上記中性線の対地電圧を検
出して矩形波の電圧検出信号を出力する電圧検出回路と
、上記両検出信号の位相を比較する位相比較回路とを備
えて、この位相比較回路の出力信号によって漏電方向を
表示する漏電探査器において、上記電流検出回路と電圧
検出回路にはそのいずれか一方に移相回路を設けると共
に、少なくとも上記両検出回路の一方に上記矩形波の検
出信号からパルス信号を出力する矩形波検出回路を設け
、上記パルス信号と他方の検出回路の矩形波の検出信号
とを上記位相比較回路に入力させて漏電方向を表示する
と共に、上記電流検出信号によって漏れ電流の有無を表
示するようにしたことを特徴とする漏電探査器。
A current detection circuit detects the leakage current flowing in a neutral wire connected in parallel with the ground wires of multiple low-voltage distribution transformers and outputs a rectangular wave current detection signal, and a current detection circuit detects the ground voltage of the neutral wire. An earth leakage detector comprising: a voltage detection circuit that outputs a rectangular voltage detection signal; and a phase comparison circuit that compares the phases of both of the detection signals; One of the current detection circuit and the voltage detection circuit is provided with a phase shift circuit, and at least one of the two detection circuits is provided with a rectangular wave detection circuit that outputs a pulse signal from the rectangular wave detection signal. The pulse signal and the rectangular wave detection signal from the other detection circuit are input to the phase comparator circuit to display the leakage direction, and the current detection signal is used to display the presence or absence of leakage current. Earth leakage detector.
JP1055691A 1989-03-08 1989-03-08 Ground fault detector Expired - Fee Related JP2942271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055691A JP2942271B2 (en) 1989-03-08 1989-03-08 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055691A JP2942271B2 (en) 1989-03-08 1989-03-08 Ground fault detector

Publications (2)

Publication Number Publication Date
JPH02234073A true JPH02234073A (en) 1990-09-17
JP2942271B2 JP2942271B2 (en) 1999-08-30

Family

ID=13005925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055691A Expired - Fee Related JP2942271B2 (en) 1989-03-08 1989-03-08 Ground fault detector

Country Status (1)

Country Link
JP (1) JP2942271B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042670A (en) * 2002-11-15 2004-05-20 (주)무한이노베이션 Method and apparatus for detecting electric leakage
JP2016148564A (en) * 2015-02-12 2016-08-18 中国電力株式会社 Current detector
JP2018132474A (en) * 2017-02-17 2018-08-23 日本放送協会 Leakage radio wave detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339579A (en) * 1976-09-24 1978-04-11 Niigata Eng Co Ltd Method of detecting operation of tool
JPS55144721A (en) * 1979-04-30 1980-11-11 Omron Tateisi Electronics Co Grounddfault direction relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339579A (en) * 1976-09-24 1978-04-11 Niigata Eng Co Ltd Method of detecting operation of tool
JPS55144721A (en) * 1979-04-30 1980-11-11 Omron Tateisi Electronics Co Grounddfault direction relay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042670A (en) * 2002-11-15 2004-05-20 (주)무한이노베이션 Method and apparatus for detecting electric leakage
JP2016148564A (en) * 2015-02-12 2016-08-18 中国電力株式会社 Current detector
JP2018132474A (en) * 2017-02-17 2018-08-23 日本放送協会 Leakage radio wave detection device

Also Published As

Publication number Publication date
JP2942271B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
US7057401B2 (en) Electrical wiring inspection system
US8009394B2 (en) Leak current breaker and method
US6954071B2 (en) Pipeline mapping and interrupter therefor
US20170248641A1 (en) Usb data pin impedance detection
CA2968692C (en) Load side voltage sensing for utility meter
EP3506445B1 (en) System for identification of a feeder with high-ohmic earth fault in a distribution network
CN101931209B (en) The equipment of signaling electric fault and method, the unit comprising this equipment and distribution panelboard
CN109142827B (en) Method for preventing interference of dimmer of single-phase electricity stealing prevention intelligent electric meter
JPH02234073A (en) Searching device for electricity leakage
EP1525650A1 (en) Switching unit for switching a connection between a mains and a load
JP4995023B2 (en) DC ground fault line discrimination device and discrimination method
US9836558B2 (en) Electrical system mapping utilizing plug-in modules
CN112180265A (en) Battery tester
CN112834950B (en) Electric leakage detection circuit, electric leakage protection circuit and household appliance
CN105914723B (en) The switching device of residual current circuit breaker
CN211263720U (en) Double-clamp-meter type direct current grounding searching instrument
JPS6046864B2 (en) Signal transmission method
CN115173362B (en) Leakage protection device with self-checking function
EP4235196A1 (en) Switch detection circuit, method and switch detector
CN207082450U (en) A kind of state indicator with nuclear phase function
JP2010048577A (en) System discrimination device
CN115113608A (en) Return pulse width measuring device of high-voltage direct-current transmission converter valve thyristor control unit
JPH01153976A (en) Investigating method for accident point of multiple earth distribution line
JP3408992B2 (en) Low-voltage side ground fault relay
JP2000346900A (en) Failure point locating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees