JPS63265516A - Ground-fault detector for three-phase ac circuit - Google Patents

Ground-fault detector for three-phase ac circuit

Info

Publication number
JPS63265516A
JPS63265516A JP62097378A JP9737887A JPS63265516A JP S63265516 A JPS63265516 A JP S63265516A JP 62097378 A JP62097378 A JP 62097378A JP 9737887 A JP9737887 A JP 9737887A JP S63265516 A JPS63265516 A JP S63265516A
Authority
JP
Japan
Prior art keywords
circuit
voltage
detection
ground fault
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62097378A
Other languages
Japanese (ja)
Other versions
JPH07123329B2 (en
Inventor
Yoshio Furukawa
古川 義夫
Sadahiko Niwa
丹羽 貞彦
Yasuhiro Yasaka
八坂 保弘
Osamu Nagura
理 名倉
Eiji Haraguchi
原口 英二
Hiroto Nakagawa
博人 中川
Yasuteru Ono
大野 泰照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP62097378A priority Critical patent/JPH07123329B2/en
Publication of JPS63265516A publication Critical patent/JPS63265516A/en
Publication of JPH07123329B2 publication Critical patent/JPH07123329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable an apparatus to operate even at 0-several Hz by providing said apparatus with a first comparator for comparing a double end voltage of ground-fault detection resistance with its set point and with a second comparator for comparing the absolute value of a terminal voltage or its hourly variation of said ground-fault detection resistance with the set point thereof. CONSTITUTION:In a first detection circuit, a terminal voltage of detection resistance r is sampled by a sample and hold circuit 9, and its absolute value ¦B¦ is taken by an absolute value circuit 12 and further compared with the set point of said voltage by a comparison circuit 14. In a second detection circuit, the difference voltage between a sampled voltage A and a sampled value B of the first detection circuit is computed by a differential amplifier 10, its absolute value ¦A-B¦ is obtained by an absolute value circuit 11, and further said absolute value ¦A-B¦ is compared with the set point of said difference voltage by a comparator 13. Then, a ground fault is detected by said first and second detection circuits.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、三相界磁巻線を励磁するサイクロコンバータ
などにより低周波三相交流で励磁される三相交流回路の
地絡検出装置に関する。 〔従来の技術〕 従来、三相交流回路の地絡検出法としては、C株)重石
電機カタログ第7版1450頁に記載されたものが知ら
れている。上記公知例の原理を第4図に示し、以下説明
する。 この例は三相誘導電動機の固定子回路などに使用される
ものである0回路構成としては、三相星形結線された静
電容量C1その中性点NとアースRに地絡時に流れる零
相電流による電圧降下を検出する抵抗r、およびそれよ
れも電源側に設けられた零相変流器CTより成る。 いま、第4図において、三相誘導電動機固定子側で地絡
が生ずると、この地絡点Sと三相星形結線の静電容量中
性点N間を通して零相電流iozが流れ、この零相電流
iozによって検出抵抗rの両端に電圧降下が生ずる。 この電圧降下と整定値を比較器CMPにより比較して負
荷側の地絡を検出することができる。 また、電源上流側で地絡が生じた場合その地絡点と三相
星形結線静電量中容中性点Nとアース間の検出抵抗rを
通して零相電流が流れるが、この場合は零相変流器CT
にも地絡による零相電流iogが流れることになり、こ
の雨音(iozとi ox)を比較器CMP路で判別す
ることにより、負荷側と電源側のいずれの側で地絡を生
じたのかを判別することができる。 〔発明が解決しようとする問題点〕 上記従来の地絡検出装置が有する問題点は、低周波数領
域(O〜数Hz )で作動する三相交流回路における地
絡事故の検出ができないという点にある。 すなわち、上記従来の地絡検出装置は、静電容量Cと零
相変流器CTという比較的高い周波数でしか所定の特性
が得られない回路構成であり、0〜数Hzの低周波三相
交流回路の地絡検出には適さないようである。 なお、このような低周波数の電力が作用する例としては
1例えば、三相巻線形回転子を用いた可変速水車発電機
があり、その二次回路は常に交流励磁され、その周波数
がO〜数Hz間で変化する。 したがって、従来の水車発電機に用いられる地絡検出器
のように、一方向性の検出回路を設け、地絡時の電流増
加の現象をとらえるのみでは適用することができない。 そこで、本発明はOHzの三相交流(すなわち。 極性が異なる三相直流状態)と、数Hz (すなわち、
静電容量や零相変流器が作動しないような低周波領域)
が流れる三相交流回路においても地絡の検出を同時に共
通の回路構成で行いうる三相交流回路の地絡検出装置を
提供することを目的とする。 〔問題点を解決するための手段〕 上記問題点を解決し1本発明の目的を達成するために1
本発明は、三相交流回路の中性点とアースとの間に直列
接続された地絡検出用直流電源および地絡検出抵抗と、
前記地絡検出抵抗の両端電圧の整定値とを比較する第1
の比較器と、前記地絡検出抵抗の端子電圧またはその時
間的変化の絶対値と整定値とを比較する第2の比較器と
、を備えたことを特徴とするものである。 〔作用〕 上記本発明の構成によれば、三相交流回路の中性点およ
びその付近で地絡が生じた場合、この地絡による直流電
流が地絡検出用直流電源により地絡検出抵抗に流れる。 この直流電流によって地籍検出抵抗の両端に電圧が生じ
るので、この端子電圧の絶対値は第1の比較器において
整定値と比較され、端子電圧が整定値を超えた事をもっ
て地籍の発生が検出される。 一方、三相交流回路の電源側およびその付近で地絡が生
じた場合、三相交流回路の相電圧と検出用直流電圧とが
重畳される形となり、検出抵抗に流れる電流(直流+交
流)による電圧は地絡の発生前後において時間的変化が
生ずる。この端子電圧自体またはその時間的変化の絶対
値は第2の比較器において整定値と比較され、同様にし
て地絡の発生が検出される。
[Industrial Application Field] The present invention relates to a ground fault detection device for a three-phase AC circuit excited by low-frequency three-phase AC using a cycloconverter or the like that excites a three-phase field winding. [Prior Art] Conventionally, as a method for detecting a ground fault in a three-phase AC circuit, the method described in the Catalog of Juishi Electric Co., Ltd., 7th edition, page 1450 is known. The principle of the above-mentioned known example is shown in FIG. 4 and will be explained below. This example is used in the stator circuit of a three-phase induction motor.The zero circuit configuration includes a three-phase star-connected capacitance C1 whose neutral point N and earth R have a zero current flowing during a ground fault. It consists of a resistor r for detecting a voltage drop due to phase current, and a zero-phase current transformer CT, which is also provided on the power supply side. Now, in Fig. 4, when a ground fault occurs on the stator side of the three-phase induction motor, a zero-sequence current ioz flows between this ground fault point S and the capacitance neutral point N of the three-phase star connection, and this A voltage drop occurs across the detection resistor r due to the zero-sequence current ioz. A ground fault on the load side can be detected by comparing this voltage drop and the set value using a comparator CMP. Additionally, when a ground fault occurs on the upstream side of the power supply, a zero-sequence current flows through the detection resistor r between the ground fault point, the three-phase star-connected capacitance neutral point N, and the ground. current transformer CT
A zero-sequence current iog will flow due to a ground fault, and by distinguishing this rain sound (ioz and iox) using a comparator CMP path, it can be determined whether a ground fault has occurred on either the load side or the power supply side. It is possible to determine whether [Problems to be Solved by the Invention] The problem with the conventional ground fault detection device described above is that it cannot detect ground faults in three-phase AC circuits that operate in the low frequency range (0 to several Hz). be. In other words, the conventional ground fault detection device described above has a circuit configuration that can only obtain specified characteristics at a relatively high frequency, including a capacitance C and a zero-phase current transformer CT. It seems that it is not suitable for detecting ground faults in AC circuits. An example of such low-frequency power acting is a variable-speed water turbine generator using a three-phase wound rotor, whose secondary circuit is always excited with alternating current, and whose frequency ranges from O to It varies between several Hz. Therefore, unlike the ground fault detector used in conventional water turbine generators, it is not possible to apply this method by simply providing a unidirectional detection circuit and detecting the phenomenon of current increase at the time of a ground fault. Therefore, the present invention uses OHz three-phase AC (i.e. three-phase DC state with different polarities) and several Hz (i.e.
low frequency region where capacitance and zero-phase current transformers do not operate)
It is an object of the present invention to provide a ground fault detection device for a three-phase AC circuit that can simultaneously detect ground faults with a common circuit configuration even in a three-phase AC circuit where current flows. [Means for solving the problems] In order to solve the above problems and achieve the object of the present invention, 1.
The present invention includes a ground fault detection DC power supply and a ground fault detection resistor connected in series between the neutral point of a three-phase AC circuit and the ground;
A first step that compares the voltage across the ground fault detection resistor with a set value.
and a second comparator that compares the terminal voltage of the ground fault detection resistor or the absolute value of its temporal change with a set value. [Operation] According to the configuration of the present invention, when a ground fault occurs at or near the neutral point of a three-phase AC circuit, the DC current due to the ground fault is transferred to the ground fault detection resistor by the ground fault detection DC power supply. flows. This DC current generates a voltage across the cadastral detection resistor, so the absolute value of this terminal voltage is compared with a set value in the first comparator, and when the terminal voltage exceeds the set value, the occurrence of a cadastral is detected. Ru. On the other hand, if a ground fault occurs on or near the power supply side of a three-phase AC circuit, the phase voltage of the three-phase AC circuit and the detection DC voltage will be superimposed, and the current flowing through the detection resistor (DC + AC) There is a temporal change in the voltage before and after the occurrence of a ground fault. This terminal voltage itself or the absolute value of its temporal change is compared with a set value in a second comparator, and the occurrence of a ground fault is detected in the same manner.

【実施例】【Example】

次に、本発明の実施例を図面に基づいて説明する。 第1図に本発明に係る地絡検出装置の実施例を示す、こ
の第1図において、1は地絡検出の対象となる三相交流
回路を示し1例えば三相誘導電動機の固定子側巻線等に
相当する。三相交流回路1の中性点Nとアースとの間に
は、制限抵抗2.地籍検出用直流電源(以下、検出用電
源と略称する、)3.が地絡検出用抵抗(以下、検出抵
抗と略称する。)4.が直列に接続されている。検出抵
抗4には計器用アレスタ5が並列に接続されている。 制限抵抗2は三相交流回路lの中性点Nで地絡を生じた
時、および三相交流回路1の電源側ラインでの地絡発生
時に検出回路に流れる電流を検出に必要な範囲に制限し
、・当該口H1を保護するものである。 検出用電源3は三相交流回路1の中性点Nは。 中性点Nの付近の地絡を検出するための直流電源である
。 検出用抵抗4は地絡時に検出回路に流れる電流に比例し
た検出用電圧をその両端に発生させる抵抗である。 計器用アレスタ5は被検出回路に不測の高電圧が発生し
たとき、それを抑制して検出器に耐電圧値以上の高電圧
が印加されないように保護するものである。 検出抵抗4の高電位側はローパスフィルタ16および光
アイソレータ6を介して検出回路に接続されている。ロ
ーパスフィルタ16は三相交流回路1側からの高調波成
分や高周波ノイズをフィルタリングして検出回路への侵
入を阻止し、検出回路の誤動作を防止するためのもので
ある。光アイソレータ6は三相交流回路1側と検出回路
とを電気的に絶縁することにより不測の高電圧の侵入を
防止するためのものである。 検出回路は、地絡によって発生した検出電圧が整定値(
例えば、l0V)を超える場合に動作する第1の検出回
路と、検出電圧が整定値より低い場合に動作する第2の
検出回路と2系統からなる。 第1の検出回路は、光アイソレータ6からの検出電圧を
所定のサンプリング時間でサンプルホールドするサンプ
ルホールド回路9と、そのサンプリングされた電圧の絶
対値IB+をとる絶対値回路12と、その絶対値を整定
値と比較する比較器14とからなる。 第2の検出回路は、同様に光アイソレータ6かの検出電
圧を所定のサンプルホールド時間でサンプルホールドす
るサンプルホールド回路8と、そのサンプリングされた
電圧Aと第1の検出回路のサンプリング値Bとの差電圧
を算出する差動アンプ10と、その差電圧の絶対値IA
−Blを求める絶対値回路11と、その差電圧の絶対値
IA−Blを整定値と比較する比較器13とからなる。 なお、各サンプルホールド回路8.9のサンプリング時
間はクロック信号発生器7からのクロック信号に基づい
て設定される。15は各検出回路からの出力信号を保持
するための保持回路である。 次に、動作を説明する。まず、第1図において、検出抵
抗rの面端電圧(すなわち、検出電圧)Vxは。 Vx=VX r/  (R,+R+ r)      
 −(1)ここに、■は検出用電源3の電圧、R1は三
相交流回路1の対地間絶縁抵抗、Rは制限抵抗である。 (1)式において、絶縁抵抗R1は三相交流回路の状態
(すなわち、地絡の発生の有無)により数にΩ〜数数1
00ロΩ変化する。一方、検出用電源3の電圧Vは数1
00v程度が限度である。 これは、三相交流回路1の対地間電圧に検出用電圧Vが
重畳されることになるため、高い値にすると三相交流回
路1の絶縁耐力を上げなければならなくなるからである
。また、検出精度を確保するため、地絡発生時に検出抵
抗4に流れる電流は50mA程度は必要である。 これらの条件から制限抵抗2と検出抵抗4の抵抗値の和
を求めると、検出用電源3の電圧を500Vと仮定すれ
ば (R+r)=5oO150xlO−8 =10X10’ 10にΩ程度となる。 さらに、光アイソレータ6に取り込むため検出抵抗4で
1/10程度に分圧するとすれば検出抵抗4の抵抗値r
は1にΩとなる。 これらの条件を(1)式に代入すると、三相交流回路1
の絶縁抵抗R1が100MΩと高いとき(すなわち、地
絡発生なしのとき)の検出電圧Vxは。 100X10’+10X10’ す5X10−” であり、約5 m V程度である。これに対して絶縁抵
抗R1が10にΩと低いとき(すなわち、地絡発生時)
の検出電圧Vχは 100X10a+10X10’ =25 であり、25vに変化することになる。 このように、検出電圧Vxは絶縁抵抗R1の変化に伴い
変動する。したがって、この検出電圧Vxの絶対値1V
xlを監視することにより、絶縁抵抗R1の変化を監視
(すなわち、地絡の発生を監視)することができる。 地絡が発生した場合の検出電圧Vxは、三相交流回路1
の相電圧Vαが重畳されるため1次の式となる。 Vx= (V+V(1)’/ (R+r)     −
(2)ここで。 Va=VaXsin (ωXt) である。 第2図に比較的電圧が高く周波数が3Hzの場合の検出
電圧Vxを、第3図に比較的電圧が低く周波数が0.6
Hz  の場合の検出電圧Vxの波形をそれぞ九示す。 検出電圧Vxの絶対値で地絡検出をおこなった場合、例
えば整定値を10vとすると、第2図の場合は地絡事故
発生後1サンプルホ一ルド時間内に検出電圧VWが整定
値を越えるため、ただちに検出可能である。 しかし、第3Elの場合1例えば時刻を息以降のように
地絡により発生した電圧が整定値10V以下となる場合
は長い時間にわたって地絡検出が不可能となることがあ
る。この場合、整定値を下げれば不感帯は短かくなるが
、前述の絶縁抵抗R。 の監視条件からむやみに整定値を下げることはできない
。 そこで、一定時間毎に検出電圧Vxをサンプルホールド
し、一定時間後の電圧変化を監視することにより絶対値
のみを監視した場合に比べ次に述べるメリットが生ずる
。 すなわち、地絡発生以前では検出電圧Vxは絶縁抵抗P
、の変化により変動するがサンプルホールド時間を短く
(例えば50m5θC)すればサンプルホールド時間の
前後で絶縁抵抗R1が大きく変化することはないため、
検出電圧Vxの電圧変化は弁0といえる。 一方、地絡事故発生時点で検出電圧Vxは(1)式から
(2)式に変わるため、電圧変動が発生するとともにそ
の後も電圧は変動する。よって、検出電圧Vχの時間変
化は常に発生する。 したがって、検出電圧Vxの電圧変化は地絡事故前は〜
0であり、整定値レベルは絶縁抵抗R1の値に関係なく
低くできるため、第3図の時刻tz以降に地絡が発生し
てもサンプルホールド時間後には地絡を検出することが
可能となる。 以上をまとめると第1図の回路においてIB+は絶縁抵
抗の関係から整定値をあまり低く整定することができな
いため、検出困難な場合、すなわち不感帯が大きくなる
。一方、1A−Blは正常時においては40であり、整
定値はIB+に比べ低くすることが可能であり、1B1
で検出困難な不感帯においても1サンプルホ一ルド時間
で検出することが可能となる。 以上の実施例において、次の効果を得ることができる。 (1)lOHz以下の三相交流回路のいかなる位置にお
ける地絡も、整定値以内の不感帯以外で1サイクル以内
に検出できる。 (2)上記により低周波三相励磁回路を持つ各種交流回
転電機の地絡が検出できるので、1腺地絡を検出して2
線地絡を未然に防止し、地絡点間を通して大電流が流れ
る場合に生ずる被害を防止できる。 (3)本検出装置は被検出回路と直流結合されており、
検出電源3の直流電圧により、被検出機が停止時にその
回路の絶縁抵抗測定も併用でき。 それにより1線地絡も未然防止の手段が可能。 (4)  (1)〜(3)により被検出回路、即ち、当
該電気品の絶縁を最適化できるので、経済性の高い絶縁
システムと良好な冷却を備えた電気品が得られる。 〔発明の効果〕 以上に述べたように1本発明によれば、低周波の交流電
圧が作用する三相交流回路における地絡事故を確実に検
出することができる。
Next, embodiments of the present invention will be described based on the drawings. FIG. 1 shows an embodiment of the ground fault detection device according to the present invention. In FIG. 1, 1 indicates a three-phase AC circuit to be detected for a ground fault. Corresponds to lines, etc. A limiting resistor 2. is connected between the neutral point N of the three-phase AC circuit 1 and the ground. DC power supply for cadastral detection (hereinafter abbreviated as detection power supply) 3. is a ground fault detection resistor (hereinafter abbreviated as detection resistor)4. are connected in series. An instrument arrester 5 is connected to the detection resistor 4 in parallel. The limiting resistor 2 limits the current flowing through the detection circuit to the range necessary for detection when a ground fault occurs at the neutral point N of the three-phase AC circuit l and when a ground fault occurs on the power supply side line of the three-phase AC circuit 1.・Protects the mouth H1. The detection power supply 3 has a neutral point N of the three-phase AC circuit 1. This is a DC power supply for detecting ground faults near the neutral point N. The detection resistor 4 is a resistor that generates a detection voltage across it that is proportional to the current flowing through the detection circuit at the time of a ground fault. The instrument arrester 5 suppresses unexpected high voltage generated in the circuit to be detected and protects the detector from being applied with a high voltage exceeding the withstand voltage value. The high potential side of the detection resistor 4 is connected to a detection circuit via a low pass filter 16 and an optical isolator 6. The low-pass filter 16 is for filtering harmonic components and high-frequency noise from the three-phase AC circuit 1 side, preventing them from entering the detection circuit, and preventing malfunction of the detection circuit. The optical isolator 6 is for preventing unexpected high voltage from entering by electrically insulating the three-phase AC circuit 1 side and the detection circuit. The detection circuit detects the detection voltage generated by a ground fault at a set value (
For example, it consists of two systems: a first detection circuit that operates when the detected voltage exceeds 10 V) and a second detection circuit that operates when the detected voltage is lower than a set value. The first detection circuit includes a sample and hold circuit 9 that samples and holds the detected voltage from the optical isolator 6 at a predetermined sampling time, an absolute value circuit 12 that takes the absolute value IB+ of the sampled voltage, and an absolute value circuit 12 that takes the absolute value IB+ of the sampled voltage. It consists of a comparator 14 for comparing with a set value. The second detection circuit includes a sample and hold circuit 8 that similarly samples and holds the detected voltage of the optical isolator 6 for a predetermined sample and hold time, and a sampled voltage A and a sampled value B of the first detection circuit. A differential amplifier 10 that calculates a voltage difference and an absolute value IA of the voltage difference
It consists of an absolute value circuit 11 that calculates -Bl, and a comparator 13 that compares the absolute value IA-Bl of the voltage difference with a set value. Note that the sampling time of each sample-and-hold circuit 8.9 is set based on a clock signal from the clock signal generator 7. 15 is a holding circuit for holding output signals from each detection circuit. Next, the operation will be explained. First, in FIG. 1, the surface edge voltage (i.e., detection voltage) Vx of the detection resistor r is. Vx=VX r/ (R, +R+ r)
-(1) Here, ■ is the voltage of the detection power supply 3, R1 is the insulation resistance to ground of the three-phase AC circuit 1, and R is the limiting resistance. In equation (1), the insulation resistance R1 varies from Ω to several 1 depending on the state of the three-phase AC circuit (i.e., whether or not a ground fault has occurred).
Changes by 00Ω. On the other hand, the voltage V of the detection power supply 3 is expressed by the number 1
The limit is about 00v. This is because the detection voltage V is superimposed on the voltage to ground of the three-phase AC circuit 1, so if the detection voltage V is set to a high value, the dielectric strength of the three-phase AC circuit 1 must be increased. Further, in order to ensure detection accuracy, the current flowing through the detection resistor 4 when a ground fault occurs needs to be about 50 mA. If the sum of the resistance values of the limiting resistor 2 and the detecting resistor 4 is determined from these conditions, assuming that the voltage of the detecting power supply 3 is 500 V, it becomes (R+r)=5oO150xlO-8=10X10' about 10Ω. Furthermore, if the voltage is divided to about 1/10 by the detection resistor 4 to be taken into the optical isolator 6, the resistance value r of the detection resistor 4 is
becomes Ω to 1. Substituting these conditions into equation (1), three-phase AC circuit 1
The detected voltage Vx is when the insulation resistance R1 is as high as 100 MΩ (that is, when no ground fault occurs). 100 x 10'+10
The detected voltage Vχ is 100X10a+10X10'=25, which means that it changes to 25V. In this way, the detection voltage Vx fluctuates as the insulation resistance R1 changes. Therefore, the absolute value of this detection voltage Vx is 1V.
By monitoring xl, changes in insulation resistance R1 can be monitored (that is, occurrence of a ground fault can be monitored). The detected voltage Vx when a ground fault occurs is the three-phase AC circuit 1
Since the phase voltage Vα is superimposed, the following equation is obtained. Vx= (V+V(1)'/ (R+r) −
(2) Here. Va=VaXsin (ωXt). Figure 2 shows the detected voltage Vx when the voltage is relatively high and the frequency is 3Hz, and Figure 3 shows the detected voltage Vx when the voltage is relatively low and the frequency is 0.6.
9 shows the waveforms of the detection voltage Vx in the case of Hz. When a ground fault is detected using the absolute value of the detection voltage Vx, for example, if the set value is 10V, in the case of Figure 2, the detected voltage VW exceeds the set value within one sample hold time after the ground fault occurs. Therefore, it can be detected immediately. However, in the case of the third El, if the voltage generated by the ground fault is below the set value of 10V, for example after the time has elapsed, it may become impossible to detect the ground fault for a long time. In this case, if the setting value is lowered, the dead zone will be shortened, but the insulation resistance R mentioned above. The setting value cannot be lowered unnecessarily based on the monitoring conditions. Therefore, by sampling and holding the detected voltage Vx at fixed time intervals and monitoring voltage changes after a fixed time, the following advantages arise compared to the case where only the absolute value is monitored. In other words, before the ground fault occurs, the detected voltage Vx is equal to the insulation resistance P
, but if the sample hold time is shortened (for example, 50m5θC), the insulation resistance R1 will not change significantly before and after the sample hold time.
A voltage change in the detected voltage Vx can be said to be valve 0. On the other hand, since the detected voltage Vx changes from equation (1) to equation (2) at the time when a ground fault occurs, voltage fluctuation occurs and the voltage continues to fluctuate thereafter. Therefore, the detection voltage Vχ always changes over time. Therefore, the voltage change of the detection voltage Vx is ~
0, and the set value level can be lowered regardless of the value of the insulation resistance R1, so even if a ground fault occurs after time tz in Figure 3, it is possible to detect the ground fault after the sample hold time. . To summarize the above, in the circuit shown in FIG. 1, the setting value of IB+ cannot be set very low due to insulation resistance, and therefore detection is difficult, that is, the dead zone becomes large. On the other hand, 1A-Bl is 40 under normal conditions, and the setting value can be lower than that of IB+.
Even in the dead zone, which is difficult to detect, it is possible to detect with one sample hold time. In the above embodiment, the following effects can be obtained. (1) A ground fault at any position in a three-phase AC circuit of 1OHz or less can be detected within one cycle except in the dead zone within the set value. (2) As described above, it is possible to detect ground faults in various AC rotating electric machines with low-frequency three-phase excitation circuits, so it is possible to detect ground faults in one gland and two
It is possible to prevent line ground faults and prevent damage caused when a large current flows between ground fault points. (3) This detection device is DC coupled to the circuit to be detected,
The DC voltage of the detection power supply 3 can also be used to measure the insulation resistance of the circuit when the detected device is stopped. This makes it possible to prevent single-wire ground faults. (4) Since the insulation of the circuit to be detected, that is, the electrical product concerned can be optimized by (1) to (3), an electrical product with a highly economical insulation system and good cooling can be obtained. [Effects of the Invention] As described above, according to the present invention, a ground fault in a three-phase AC circuit to which a low-frequency AC voltage acts can be reliably detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は比
較的高電圧、高周波の場合の検出電圧変化を示す説明図
、第3図は比較的低電圧、低周波の場合の検出電圧の変
化を示す説明図、第4図は従来の検出装置の例を示す回
路図である。 1・・・三相交流回路、2・・・制限抵抗、3・・・検
出用電源、4・・・検出抵抗、5・・・計器用アレスタ
、6・・・光アイソレータ、7・・・クロック信号発生
器、8・・・サンプルホールド回路、9・・・サンプル
ホールド回路。 10・・・差動アンプ、11・・・絶対値回路、12・
・・絶対値回路、13・・・比較器、14・・・比較器
、15・・・保持回路、16・・・ローパスフィルタ。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing detection voltage changes in the case of relatively high voltage and high frequency, and Fig. 3 is a detection diagram in the case of relatively low voltage and low frequency. An explanatory diagram showing changes in voltage, FIG. 4 is a circuit diagram showing an example of a conventional detection device. DESCRIPTION OF SYMBOLS 1...Three-phase AC circuit, 2...Limiting resistor, 3...Power supply for detection, 4...Detection resistor, 5...Arrester for instrumentation, 6...Optical isolator, 7... Clock signal generator, 8... sample hold circuit, 9... sample hold circuit. 10... Differential amplifier, 11... Absolute value circuit, 12.
...Absolute value circuit, 13...Comparator, 14...Comparator, 15...Holding circuit, 16...Low pass filter.

Claims (1)

【特許請求の範囲】[Claims] 1、三相交流回路の中性点とアースとの間に直列接続さ
れた地絡検出用直流電源および地絡検出抵抗と、前記地
絡検出抵抗の両端電圧の絶対値と整定値とを比較する第
1の比較器と、前記地絡検出抵抗の端子電圧又はその時
間的変化の絶対値と整定値とを比較する第2の比較器と
、を備えたことを特徴とする三相交流回路の地絡検出装
置。
1. Compare the DC power supply for ground fault detection and the ground fault detection resistor connected in series between the neutral point of the three-phase AC circuit and the earth, and the absolute value and setting value of the voltage across the ground fault detection resistor. and a second comparator that compares the terminal voltage of the ground fault detection resistor or the absolute value of its temporal change with a set value. Ground fault detection device.
JP62097378A 1987-04-22 1987-04-22 Three-phase AC exciter Expired - Fee Related JPH07123329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097378A JPH07123329B2 (en) 1987-04-22 1987-04-22 Three-phase AC exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097378A JPH07123329B2 (en) 1987-04-22 1987-04-22 Three-phase AC exciter

Publications (2)

Publication Number Publication Date
JPS63265516A true JPS63265516A (en) 1988-11-02
JPH07123329B2 JPH07123329B2 (en) 1995-12-25

Family

ID=14190848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097378A Expired - Fee Related JPH07123329B2 (en) 1987-04-22 1987-04-22 Three-phase AC exciter

Country Status (1)

Country Link
JP (1) JPH07123329B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244467A (en) * 2007-03-28 2011-11-16 株式会社日立制作所 Power conversion equipment and power conversion method
JP2012039711A (en) * 2010-08-05 2012-02-23 Mitsubishi Electric Corp Ground fault detector of double-fed synchronous machine
WO2013153596A1 (en) * 2012-04-09 2013-10-17 東芝三菱電機産業システム株式会社 Ground fault detecting circuit and power conversion device using same
JP2015175625A (en) * 2014-03-13 2015-10-05 三工機器株式会社 Flaw detection device for stator coil
JP2016189689A (en) * 2015-03-30 2016-11-04 東洋電機製造株式会社 Motor drive device
CN107767083A (en) * 2017-11-16 2018-03-06 哈尔滨理工大学 A kind of grid power transmission quality evaluating method judged based on division arithmetic
CN109358310A (en) * 2018-12-03 2019-02-19 烟台东方威思顿电气有限公司 Three-phase and four-line electric energy meter line detector off zero and detection method
JP2020177009A (en) * 2019-04-19 2020-10-29 株式会社ケーヒン Ground fault detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826524A (en) * 1981-08-07 1983-02-17 三菱電機株式会社 Ground detector for ac generator
JPS5890180A (en) * 1981-11-26 1983-05-28 Meidensha Electric Mfg Co Ltd Detecting circuit for microvariation rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826524A (en) * 1981-08-07 1983-02-17 三菱電機株式会社 Ground detector for ac generator
JPS5890180A (en) * 1981-11-26 1983-05-28 Meidensha Electric Mfg Co Ltd Detecting circuit for microvariation rate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244467A (en) * 2007-03-28 2011-11-16 株式会社日立制作所 Power conversion equipment and power conversion method
JP2012039711A (en) * 2010-08-05 2012-02-23 Mitsubishi Electric Corp Ground fault detector of double-fed synchronous machine
WO2013153596A1 (en) * 2012-04-09 2013-10-17 東芝三菱電機産業システム株式会社 Ground fault detecting circuit and power conversion device using same
JPWO2013153596A1 (en) * 2012-04-09 2015-12-17 東芝三菱電機産業システム株式会社 Ground fault detection circuit and power converter using the same
US9606163B2 (en) 2012-04-09 2017-03-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ground fault detecting circuit and power converting device including the same
JP2015175625A (en) * 2014-03-13 2015-10-05 三工機器株式会社 Flaw detection device for stator coil
JP2016189689A (en) * 2015-03-30 2016-11-04 東洋電機製造株式会社 Motor drive device
CN107767083A (en) * 2017-11-16 2018-03-06 哈尔滨理工大学 A kind of grid power transmission quality evaluating method judged based on division arithmetic
CN107767083B (en) * 2017-11-16 2019-06-25 哈尔滨理工大学 A kind of grid power transmission quality evaluating method based on division arithmetic judgement
CN109358310A (en) * 2018-12-03 2019-02-19 烟台东方威思顿电气有限公司 Three-phase and four-line electric energy meter line detector off zero and detection method
CN109358310B (en) * 2018-12-03 2024-03-22 烟台东方威思顿电气有限公司 Device and method for detecting broken zero line of three-phase four-wire electric energy meter
JP2020177009A (en) * 2019-04-19 2020-10-29 株式会社ケーヒン Ground fault detection device

Also Published As

Publication number Publication date
JPH07123329B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
FI115488B (en) Method and apparatus for detecting a breaking earth fault in a power distribution network
JP3704532B2 (en) Method and apparatus for determining a ground fault on a conductor of an electric machine
US9625519B2 (en) Drive failure protection
KR101272130B1 (en) Method of and device for insulation monitoring
JP3763852B2 (en) Method and circuit for monitoring insulation and fault current in AC power supply
EP1669767A1 (en) System and method of locating ground fault in electrical power distribution system
KR100216639B1 (en) Ground fault detecting apparatus and method
WO2013004285A1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US5612601A (en) Method for assessing motor insulation on operating motors
JP5578573B2 (en) DC circuit insulation resistance measuring device, capacitance measuring device, insulation resistance measuring method and capacitance measuring method
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
US5586043A (en) Method and apparatus for monitoring differentials between signals
US10819261B1 (en) Security improvements for electric power generator protection
JPH03206976A (en) Diagnosis of insulation
Anuchin et al. Insulation monitoring system for electric drives in TN networks
JP2014142230A (en) High voltage insulation monitoring method and high voltage insulation monitoring device
JP3009323B2 (en) Power cable insulation diagnostic device
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
JPH08168166A (en) Ground fault detector and detection method
JP3246309B2 (en) Deterioration detection device for zinc oxide arrester
JP2590232B2 (en) Diagnosis method for electrical equipment insulation
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system
JPH0330837B2 (en)
RU2196999C2 (en) Procedure testing insulation resistance and protection of dc network against fault to ground in one point
JPH06237522A (en) Protective device of series capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees