JP5452972B2 - Wiring connection inspection method and inspection device for integrated watt-hour meter - Google Patents

Wiring connection inspection method and inspection device for integrated watt-hour meter Download PDF

Info

Publication number
JP5452972B2
JP5452972B2 JP2009104682A JP2009104682A JP5452972B2 JP 5452972 B2 JP5452972 B2 JP 5452972B2 JP 2009104682 A JP2009104682 A JP 2009104682A JP 2009104682 A JP2009104682 A JP 2009104682A JP 5452972 B2 JP5452972 B2 JP 5452972B2
Authority
JP
Japan
Prior art keywords
phase
circuit
current
hour meter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009104682A
Other languages
Japanese (ja)
Other versions
JP2010256102A (en
Inventor
弘 池田
Original Assignee
株式会社かわでん
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社かわでん filed Critical 株式会社かわでん
Priority to JP2009104682A priority Critical patent/JP5452972B2/en
Publication of JP2010256102A publication Critical patent/JP2010256102A/en
Application granted granted Critical
Publication of JP5452972B2 publication Critical patent/JP5452972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電力を供給する主回路に接続された負荷の使用電力量を計量するための,積算電力量計の主回路並びに計器用変流器と負荷に対する配線接続が正しくなされているか否かを検査する積算電力量計の配線接続検査方法と検査装置に関する。   Whether or not the wiring connection between the main circuit of the integrating watt-hour meter and the measuring instrument current transformer and the load for measuring the amount of power used by the load connected to the main circuit supplying power is correct. The present invention relates to a wiring connection inspection method and an inspection apparatus for an integrated watt-hour meter.

従来において、斯かる計器用変流器を用いた積算電力量計の配線接続の正誤の検出は例えば次のようになされていた。 図1は、三相三線の配電方式の主回路に計器用変流器CT1とCT3を用いて積算電力量計WHを接続し、負荷の使用電力量を計測する場合の配線接続例である。 この場合において例えば計器用変流器CT1と積算電力量計WHとの接続の正誤を検査するには、一般的には積算電力量計の電流入力部のインピーダンスの小ささから次のように両者を接続している電線の一端を端子から外し、この外した電線の一端とこの電線の他端が接続している端子との間の導通をテスター等で確認する作業を必要としていた。 実際の作業手順を示すと次のとおりである。
(1) 計器用変流器CT1の電源側端子S1と積算電力量計WHの電源側電流端子1Sとを結んでいる電線1の一端を、その積算電力量計WHの端子1Sから外す。
(2) 計器用変流器CT1の負荷側端子L1と積算電力量計WHの負荷側電流端子1Lとを結んでいる電線2の一端を、その計器用変流器CT1の端子L1から外す。
(3) 上記(1)で外した電線1の一端と計器用変流器CT1の端子S1との間の導通をテスター等で検査し確認する。
(4) 上記(2)で外した電線2の一端と積算電力量計WHの端子1Lとの間の導通をテスター等で検査し確認する。
(5) 外した電線1の一端を接続元の積算電力量計WHの端子1Sに戻す。
(6) 外した電線2の一端を接続元の計器用変流器CT1の端子L1に戻す。
また、特に貫通タイプの計器用変流器の場合は、目視あるいは導通検査では計器用変流器の出力電流の流れる方向を検査できない場合があり、この場合には実際に所定の電源、負荷を繋ぎ、所定の電力を投入し、積算電力量計が単位時間内に既定の電力量値を示すか否かを確認する必要があった。
Conventionally, whether the wiring connection of an integrating watt-hour meter using such an instrument current transformer is detected is as follows, for example. FIG. 1 is an example of wiring connection in the case where an integrating watt hour meter WH is connected to a main circuit of a three-phase three-wire distribution system using instrument current transformers CT1 and CT3 to measure the power consumption of a load. In this case, for example, in order to inspect the correctness of the connection between the current transformer CT1 for the meter and the integrating watt hour meter WH, in general, both of them are as follows from the small impedance of the current input part of the integrating watt hour meter. One end of the wire connected to the terminal is removed from the terminal, and a work for confirming the continuity between the one end of the removed wire and the terminal to which the other end of the wire is connected is required. The actual work procedure is as follows.
(1) Remove one end of the electric wire 1 connecting the power supply side terminal S1 of the current transformer CT1 and the power supply side current terminal 1S of the integrated watt hour meter WH from the terminal 1S of the integrated watt hour meter WH.
(2) Remove one end of the electric wire 2 connecting the load side terminal L1 of the current transformer CT1 and the load side current terminal 1L of the integrating watt hour meter WH from the terminal L1 of the current transformer CT1.
(3) Inspect and confirm the continuity between one end of the electric wire 1 removed in (1) above and the terminal S1 of the current transformer CT1.
(4) Conduct continuity between one end of the electric wire 2 removed in (2) above and the terminal 1L of the integrated watt hour meter WH by checking with a tester or the like.
(5) Return one end of the removed electric wire 1 to the terminal 1S of the connecting watt-hour meter WH.
(6) Return one end of the removed electric wire 2 to the terminal L1 of the connecting current transformer CT1.
In particular, in the case of a through-type instrument current transformer, the direction in which the output current of the instrument current transformer flows may not be inspected by visual inspection or continuity inspection. It is necessary to connect and input predetermined power and check whether or not the integrated watt hour meter shows a predetermined power amount value within a unit time.

更にまた、電力量計の主回路に対する誤配線による弊害を防止するように工夫したものとしては、電力量計内に検出した電圧値に基づいて配線の正誤を判定する判断部を設けたもの(特許文献1)や、同じく電力量計内に電圧比較部と位相比較部とを設けて配線の正誤を判定するもの(特許文献2)等があった。
特開2006−71600号公報 特開2006−300729号公報
Furthermore, as a device devised to prevent an adverse effect due to incorrect wiring on the main circuit of the watt-hour meter, a determination unit for determining the correctness of the wiring based on the voltage value detected in the watt-hour meter is provided ( Patent Document 1), and another example in which a voltage comparison unit and a phase comparison unit are provided in the watt hour meter to determine whether the wiring is correct (Patent Document 2).
JP 2006-71600 A JP 2006-300729 A

しかし上記の如き従来の方法や装置においては、配線接続した電線の取り外しに時間や手間を要するのみならず、電線を元の接続へ戻すときに誤配線を起こすおそれがあることや、実際に所定の電源、負荷を連繋し、所定の電力を投入して電力量計の動きを確認する場合には、相応の電源設備や負荷装置を必要とし、それだけ消費電力が大きくなることや、機器破損や感電事故などに繋がる危険性もあり、問題であった。   However, in the conventional method and apparatus as described above, it takes time and labor to remove the wire connected by wiring, and there is a possibility that incorrect wiring may occur when the wire is returned to the original connection. In order to check the movement of the watt-hour meter by connecting the power supply and load of the unit and checking the operation of the watt hour meter, it is necessary to have a corresponding power supply facility and load device. There was also a risk that could lead to an electric shock accident, which was a problem.

また、上記特許文献1ないし特許文献2に記載のものにおいては、配線接続の正誤を検出する検出手段が電力量計内に組み込まれているため、新たに電力量計を取り付ける配線接続作業時における誤配線を防止することはできても、斯かる検出手段が組み込まれていない電力量計で既になされた配線接続の誤配線の検出には役立たず、電力量計のコスト高にも繋がる等の問題点もあった。   Moreover, in the thing of the said patent document 1 thru | or patent document 2, since the detection means which detects the correctness of wiring connection is incorporated in the watt-hour meter, at the time of wiring connection work which attaches a watt-hour meter newly Although it can prevent miswiring, it does not help detect miswiring of wiring connections already made with a watt hour meter that does not incorporate such detection means, leading to higher watt hour meter costs, etc. There was also a problem.

そこで本発明は、斯かる従来技術の抱える諸事情に鑑みなされたもので、検査するために主回路並びに計器用変流器と負荷に対する既になされた積算電力量計の配線接続を一々取り外して行う必要がなくそのままにした状態で、また大掛かりな電源設備や負荷装置の連繋を必要とすることもなく、積算電力量計の配線接続の正誤を安全に、且つ迅速、容易、確実に検査することができるその検査方法と検査装置を提供することを目的とする。   Therefore, the present invention has been made in view of the various circumstances of the prior art, and in order to perform the inspection, the wiring connection of the integrated watt-hour meter already made to the main circuit and the measuring instrument current transformer and the load is removed one by one. To check the correct and incorrect wiring connection of the integrated watt-hour meter safely, quickly, easily, and reliably, without leaving it necessary and without requiring large-scale power supply equipment and load devices to be connected. It is an object of the present invention to provide an inspection method and an inspection apparatus that can perform the above-described process.

本発明は上記目的を達成するために、主として「計量対象回路における主回路並びに計器用変流器と負荷に対する積算電力量計の配線接続を取り外すことなくそのままの状態となし且つ,その計量対象回路における主回路への通常の供給電力を遮断した状態において、この計量対象回路に対し検査装置本体より検査基準となる所定の電圧を印加して検査基準電流を流し、積算電力量計の電圧端子と電流端子より検出される電圧波形と電流波形とを検査装置本体にて作成される基準波形と夫々その位相差と大きさの点で比較することにより、積算電力量計の配線接続の正誤を検査装置本体の制御部で判定し表示する。」との手段を採ったことを特徴とする。
In order to achieve the above-mentioned object, the present invention is mainly configured as follows: “Main circuit in metering circuit and measuring current transformer without changing wiring connection of integrating watt-hour meter to load and circuit for measuring In a state in which the normal power supply to the main circuit is cut off, a predetermined voltage as an inspection reference is applied to the circuit to be measured from the inspection apparatus main body, and an inspection reference current is caused to flow. Inspect the wiring connection of the integrated watt-hour meter by comparing the voltage waveform and current waveform detected from the current terminal with the reference waveform created by the main body of the inspection device in terms of the phase difference and size. It is characterized by adopting the means of “determining and displaying by the control unit of the apparatus main body”.

請求項1と請求項3に係る発明においては、従来と異なり、積算電力量計の計量対象回路並びに計器用変流器と負荷に対する配線接続を一々取り外す時間と煩瑣な手間を必要とすることなくそのままの状態で、また大掛かりな電源設備や負荷装置の連繋を必要とすることもなく、安全且つ迅速、容易、確実に積算電力量計の配線接続の正誤の検査をなすことができる。
また、誤配線の特定を容易、確実になすことができるため、誤配線のときの配線の手直しを迅速、容易、確実になすことができる。
In the inventions according to claim 1 and claim 3, unlike the prior art, there is no need for time and troublesome to remove the measurement target circuit of the integrating watt hour meter, the current transformer for the instrument, and the wiring connection to the load one by one. In this state, it is possible to safely and quickly, easily, and surely check the wiring connection of the integrating watt-hour meter correctly without requiring connection of a large-scale power supply facility or load device.
In addition, since erroneous wiring can be easily and reliably identified, the wiring can be quickly, easily, and reliably corrected at the time of erroneous wiring.

請求項2と請求項4に係る発明においては、単相二線、単相三線、三相三線、三相四線に亘る計量対象回路の各配電方式における積算電力量計の配線接続の正誤の検査を、安全に且つ迅速、容易、確実になすことができる。   In the inventions according to claim 2 and claim 4, whether the wiring connection of the integrating watt hour meter in each distribution system of the circuit to be measured over the single-phase two-wire, single-phase three-wire, three-phase three-wire, three-phase four-wire Inspection can be performed safely, quickly, easily and reliably.

三相三線配電方式の主回路に対し計器用変流器を用いて接続した従来の積算電力量計の配線接続例である。This is a wiring connection example of a conventional integrated watt-hour meter connected to a main circuit of a three-phase three-wire distribution system using an instrument current transformer. 本発明の実施の一例に係る積算電力量計配線接続検査装置のブロック構成図である。It is a block block diagram of the integrated watt-hour meter wiring connection inspection apparatus which concerns on an example of implementation of this invention. 同上積算電力量計配線接続検査装置における操作スイッチと検査結果表示部を示す説明図である。It is explanatory drawing which shows the operation switch and test result display part in an integrated electricity meter wiring connection test | inspection apparatus same as the above. 三相四線配電方式の正常時における各相の電圧波形を示す説明図である。It is explanatory drawing which shows the voltage waveform of each phase at the time of normal of a three-phase four-wire power distribution system. 三相四線配電方式のR相とS相の接続違いを生じた場合の電圧波形を示す説明図である。It is explanatory drawing which shows a voltage waveform at the time of producing the connection difference of R phase and S phase of a three-phase four-wire distribution system. 三相四線配電方式のR相とN相の接続違いを生じた場合の電圧波形を示す説明図である。It is explanatory drawing which shows a voltage waveform at the time of producing the connection difference of R phase and N phase of a three-phase four-wire distribution system. 三相四線および三相三線の配電方式の正常時における各相の電流波形を示す説明図である。It is explanatory drawing which shows the current waveform of each phase at the time of normal of the distribution system of a three-phase four-wire and a three-phase three-wire. 三相四線および三相三線の配電方式のR相の計器用変流器を逆方向接続した場合の電流波形を示す説明図である。It is explanatory drawing which shows the electric current waveform at the time of reversely connecting the R-phase current transformer for a three-phase four-wire and a three-phase three-wire distribution system. 三相四線および三相三線の配電方式のR相とS相の計器用変流器を接続違いした場合の電流波形を示す説明図である。It is explanatory drawing which shows the electric current waveform at the time of connecting the R-phase and S-phase current transformer of a three-phase four-wire and a three-phase three-wire distribution system differently. 三相三線配電方式の正常時における各線間電圧波形を示す説明図である。It is explanatory drawing which shows each line voltage waveform at the time of normal of a three-phase three-wire power distribution system. 三相三線配電方式のR相とS相の接続違いを生じた場合のR-S線間電圧波形を示す説明図である。It is explanatory drawing which shows the voltage waveform between R-S line | wires when the connection difference of R phase and S phase of a three-phase three-wire distribution system arises. 単相三線配電方式の正常時における各相の電圧波形を示す説明図である。It is explanatory drawing which shows the voltage waveform of each phase at the time of normal of a single phase three-wire power distribution system. 単相三線配電方式のR相とN相の接続違いを生じた場合の電圧波形を示す説明図である。It is explanatory drawing which shows the voltage waveform at the time of producing the connection difference of R phase and N phase of a single phase three-wire power distribution system. 単相三線配電方式のR相とT相の接続違いを生じた場合の電圧波形を示す説明図である。It is explanatory drawing which shows the voltage waveform at the time of producing the connection difference of R phase and T phase of a single phase three-wire power distribution system. 単相三線配電方式の正常時における各相の電流波形を示す説明図である。It is explanatory drawing which shows the current waveform of each phase at the time of normal of a single phase three-wire power distribution system. 単相二線配電方式の正常時における各相の電圧波形を示す説明図である。It is explanatory drawing which shows the voltage waveform of each phase at the time of the normal of a single phase two wire power distribution system. 単相二線配電方式の正常時における各相の電流波形を示す説明図である。It is explanatory drawing which shows the current waveform of each phase at the time of normal of a single phase two-wire power distribution system.

以下、本発明の実施の形態を実施例により、図面(図2ないし図17)に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings (FIGS. 2 to 17).

図2は、本発明の実施の一例に係る積算電力量計の配線接続検査装置のブロック構成図であり、図示の例は三相四線配電方式の主回路と負荷に対し計器用変流器(CT1、CT2、CT3)を用いて積算電力量計6(WH)を取り付けた場合におけるその積算電力量計6の配線接続の正誤を取り付けた検査装置本体3により検査する状態を示したものである。   FIG. 2 is a block diagram of a wiring connection inspection device for an integrating watt-hour meter according to an embodiment of the present invention. The illustrated example is a current transformer for an instrument with respect to a main circuit and a load of a three-phase four-wire distribution system. When the integrated watt hour meter 6 (WH) is attached using (CT1, CT2, CT3), it shows the state inspected by the inspection device body 3 to which the wiring connection of the integrated watt hour meter 6 is attached is there.

即ちこの検査装置は、主として、三相四線配電方式の主回路並びに計器用変流器(CT1、CT2、CT3)と負荷に対する積算電力量計6の配線接続を取り外すことなくそのままの状態となし且つ,主回路への通常の供給電力を遮断した状態において(開閉器MBを遮断して)、この計量対象回路(主回路)に対し内蔵する電源回路17と3個の負荷抵抗(1Ω)を介して検査装置本体3より検査基準となる所定の電圧(2Vの交流電圧)を印加して検査基準電流2Aを流し、積算電力量計6の電圧端子と電流端子を検査装置本体3に接続するとともに、その電圧端子と電流端子に流れる電圧波形と電流波形とを検査装置本体3で検出し、その検出した電圧波形と電流波形を検査装置本体3にて作成される基準波形と夫々その位相差と大きさの点で比較することにより、積算電力量計6の配線接続の正誤を検査装置本体の制御部(マイコン)14で判定し表示するようになしたものである。
積算電力量計6の電源側電流端子には、主回路の電源側のR、S、T相へ夫々接続している計器用変流器CT1、CT2、CT3の電源側電流端子が接続されている。また積算電力量計6の各電圧端子には、主回路R、S、T、N相が接続されている。
In other words, this inspection device is mainly in the state without removing the main circuit of the three-phase four-wire distribution system and the measuring current transformer (CT1, CT2, CT3) and the integrated watt-hour meter 6 to the load. And in the state where the normal power supply to the main circuit is cut off (with the switch MB cut off), the built-in power supply circuit 17 and three load resistors (1Ω) are connected to this measurement target circuit (main circuit). Then, a predetermined voltage (2V AC voltage) serving as an inspection standard is applied from the inspection device main body 3 to supply an inspection reference current 2A, and the voltage terminal and the current terminal of the integrated watt-hour meter 6 are connected to the inspection device main body 3. In addition, the voltage waveform and the current waveform flowing in the voltage terminal and the current terminal are detected by the inspection apparatus body 3, and the detected voltage waveform and current waveform are respectively compared with the reference waveform created by the inspection apparatus body 3 and the phase difference thereof. And the magnitude of The control unit of the testing device body correctness of the amount six wiring connections is obtained without such to be displayed determined by (microcomputer) 14.
The power-side current terminal of the integrating watt-hour meter 6 is connected to the power-side current terminals of instrument current transformers CT1, CT2, and CT3 that are connected to the R, S, and T phases on the power supply side of the main circuit, respectively. Yes. Further, the main circuit R, S, T, and N phase are connected to each voltage terminal of the integrating watt-hour meter 6.

検査装置本体3は、計量対象回路(主回路)に所定の検査基準となる電圧を印加し基準電流を流す電源回路(パワー回路)17と3個の負荷抵抗を内蔵し、そしてアナログ−デジタル変換器(A/D変換器)を内蔵し積算電力量計6より検出される電圧波形と電流波形を介してこの積算電力量計6の配線接続の正誤を判断する制御部(マイコン)14とを備えている。 そしてこの制御部(マイコン)14には、電流増幅回路10、CT比切替スイッチ11、回路選択スイッチ(主回路の配電方式の選択)12、および電圧検出回路13が接続されている。 またこの制御部(マイコン)14には、検査開始スイッチ19と検査結果表示部18が接続されているとともに、更に正弦波発生回路15と位相制御回路16とが接続されている。 位相制御回路16は、制御部(マイコン)14に接続しているとともに、正弦波発生回路15と電源回路(パワー回路)17とに接続している。
電源回路(パワー回路)17は、ここから延びるクリップ7a、7b、7c、7dを介して主回路の電源側のR、S、T、N相へ接続している。 検査装置本体3が内蔵している3個の負荷抵抗からはクリップ9a、9b、9c、9dが延びており、この各クリップ9a〜9dは主回路の負荷側のR、S、T、N相へ接続している。
検査装置本体3の電流増幅回路10からはクランプ式の電流センサ5a、5b、5cが延びており、この電流センサ5a、5b、5cは、計器用変流器CT1、CT2、CT3の電源側電流端子と積算電力量計6の電源側電流端子とを接続する各電線に夫々接続されている。 また、検査装置本体3の電圧検出回路13からはクリップ8a、8b、8c、8dが延びており、この8a〜8dは主回路のR、S、T、N相へ接続している積算電力量計6の各電圧端子に夫々接続している。
計器用変流器CT1、CT2、CT3は、積算電力量計6の電源側電流端子に接続して、夫々主回路のR相、S相、T相の電流計測用に用いられている。
以下に検査方法等につき詳しく説明する。
The inspection device main body 3 has a built-in power supply circuit (power circuit) 17 and three load resistors that apply a voltage as a predetermined inspection standard to the circuit to be measured (main circuit) and flow a reference current, and analog-digital conversion A control unit (microcomputer) 14 that has a built-in voltage detector (A / D converter) and judges the correctness of the wiring connection of the integrated watt-hour meter 6 through the voltage waveform and current waveform detected by the integrated watt-hour meter 6. I have. The control unit (microcomputer) 14 is connected to a current amplifier circuit 10, a CT ratio changeover switch 11, a circuit selection switch (selection of the distribution method of the main circuit) 12, and a voltage detection circuit 13. Further, an inspection start switch 19 and an inspection result display unit 18 are connected to the control unit (microcomputer) 14, and a sine wave generation circuit 15 and a phase control circuit 16 are further connected. The phase control circuit 16 is connected to a control unit (microcomputer) 14 and is connected to a sine wave generation circuit 15 and a power supply circuit (power circuit) 17.
The power supply circuit (power circuit) 17 is connected to the R, S, T, and N phases on the power supply side of the main circuit via clips 7a, 7b, 7c, and 7d extending from here. Clips 9a, 9b, 9c, and 9d extend from the three load resistors built in the inspection device body 3, and each of these clips 9a to 9d has R, S, T, and N phases on the load side of the main circuit. Connected to.
Clamp-type current sensors 5a, 5b, and 5c extend from the current amplification circuit 10 of the inspection apparatus body 3, and these current sensors 5a, 5b, and 5c are the power supply side currents of the current transformers CT1, CT2, and CT3 for the instrument. Each terminal is connected to each electric wire connecting the power supply side current terminal of the integrated watt-hour meter 6. Further, clips 8a, 8b, 8c, 8d extend from the voltage detection circuit 13 of the inspection apparatus body 3, and these 8a to 8d are integrated electric energy connected to the R, S, T, and N phases of the main circuit. A total of 6 voltage terminals are connected.
The instrument current transformers CT1, CT2, and CT3 are connected to the power supply side current terminal of the integrating watt-hour meter 6, and are used for measuring the R-phase, S-phase, and T-phase currents of the main circuit, respectively.
The inspection method will be described in detail below.

検査装置本体3の正弦波発生回路15は検査の基本波となる周波数50Hzの正弦波を発生しており、その波形を1つは制御部(マイコン)14が内蔵しているA/D変換器へ、もう1つは位相制御回路16へ送られる。位相制御回路16はマイコン14の指示に従って、単相二線、単相三線、三相三線、三相四線の波形を作り出し、パワー回路17へ送る。 パワー回路17は上記のとおり交流電圧が2Vの電源として働き、検査装置本体3内蔵の負荷抵抗1Ωに接続することによって、負荷電流2Aを供給する。パワー回路17へ位相制御回路16から波形が送られるかどうかは、制御部(マイコン)14の指示による。   The sine wave generation circuit 15 of the inspection device main body 3 generates a sine wave with a frequency of 50 Hz, which is the fundamental wave of the inspection, and one of the waveforms is an A / D converter built in the control unit (microcomputer) 14 And the other is sent to the phase control circuit 16. The phase control circuit 16 generates single-phase two-wire, single-phase three-wire, three-phase three-wire, and three-phase four-wire waveforms in accordance with instructions from the microcomputer 14 and sends them to the power circuit 17. As described above, the power circuit 17 functions as a power source having an AC voltage of 2V, and supplies a load current 2A by being connected to a load resistance 1Ω built in the inspection apparatus body 3. Whether the waveform is sent from the phase control circuit 16 to the power circuit 17 depends on an instruction from the control unit (microcomputer) 14.

検査装置本体3に電源が投入され、マイコン14が初期状態にある時にはパワー回路17は波形を出力していない状態にある。ここで、検査装置本体3の検査開始スイッチ19を押すと、制御部(マイコン)14は位相制御回路16へ、回路選択スイッチ12の位置に対応した波形を出力するように指示を出す。位相制御回路16からの波形はパワー回路17から出力され、主回路に繋がれたクリップ7a〜7dから計器用変流器CT1〜CT3を経て、クリップ9a〜9dを通り、検査装置本体3の3個の負荷抵抗1Ωに流れ込む。この時、積算電力量計6が正常な接続になっていれば、積算電力量計6の電流端子には計器用変流器の変流比に比例した電流波形が加えられ、電圧端子には検査装置本体3のパワー回路17から出力された電圧が加わっている。電流端子に流れている電流が、電流センサ5a〜5cによって検出され、検査装置本体3の電流増幅回路10で、CT比切替スイッチ11に対応した比率に従って増幅され、マイコン14に内蔵されたA/D変換器に入力される。積算電力量計6の電圧端子の電圧波形はクリップ8a〜8dを経て検査装置本体3の電圧検出回路13で検出され、マイコン14のA/D変換器に入力される。これら検出された電流波形、電圧波形と正弦波発生回路15の基準波形とを、マイコン14にて比較することにより、配線の正誤を判定し、正常なら正常表示を検査結果表示部18へ表示し、誤った配線であれば誤りの原因を波形から判断し、その原因を検査結果表示部18へ表示する。   When power is supplied to the inspection apparatus main body 3 and the microcomputer 14 is in the initial state, the power circuit 17 is not outputting a waveform. Here, when the inspection start switch 19 of the inspection apparatus body 3 is pressed, the control unit (microcomputer) 14 instructs the phase control circuit 16 to output a waveform corresponding to the position of the circuit selection switch 12. The waveform from the phase control circuit 16 is output from the power circuit 17, and from the clips 7a to 7d connected to the main circuit, passes through the current transformers CT1 to CT3 for instruments, passes through the clips 9a to 9d, and 3 of the inspection apparatus main body 3 Flows into each load resistance 1Ω. At this time, if the integrating watt-hour meter 6 is in a normal connection, a current waveform proportional to the current transformation ratio of the measuring current transformer is added to the current terminal of the integrating watt-hour meter 6 and the voltage terminal to The voltage output from the power circuit 17 of the inspection apparatus body 3 is applied. The current flowing through the current terminal is detected by the current sensors 5a to 5c, amplified by the current amplification circuit 10 of the inspection apparatus body 3 according to the ratio corresponding to the CT ratio changeover switch 11, and the A / Input to D converter. The voltage waveform at the voltage terminal of the integrating watt-hour meter 6 is detected by the voltage detection circuit 13 of the inspection apparatus main body 3 via the clips 8a to 8d and input to the A / D converter of the microcomputer 14. The microcomputer 14 compares the detected current waveform and voltage waveform with the reference waveform of the sine wave generation circuit 15 to determine whether the wiring is correct. If normal, a normal display is displayed on the inspection result display unit 18. If the wiring is incorrect, the cause of the error is determined from the waveform, and the cause is displayed on the inspection result display unit 18.

次に、配線の正誤の判定方法および判定結果の表示について説明する。図4は三相四線配電方式における正常配線の場合の検査装置本体3の正弦波発生回路15が作り出した基準波と電圧検出回路13が検出した電圧波形である。R、S、T各相とも同一の電圧値で、基準波とN相を基準にしたR相の電圧R-Nが同相であり、S相は基準波より120°、T相は基準波より240°位相差がある。
ここで積算電力量計6の電圧端子の配線のR相とS相を逆に接続した場合を想定する。この場合の各相の波形は図5のようになる。正常な場合に比べて、R相とS相の位相差が逆になり、R相とS相の接続違いを判定する。同様にR相とT相、S相とT相の接続違いを位相差の違いから判定し、その結果をR-Sの場合は図3のLED表示灯20aへ、S-Tの場合は20bへ、T-Rの場合は20cへ点灯する。
Next, a method for determining correctness of wiring and display of determination results will be described. FIG. 4 shows a reference waveform generated by the sine wave generation circuit 15 of the inspection apparatus main body 3 and a voltage waveform detected by the voltage detection circuit 13 in the case of normal wiring in the three-phase four-wire distribution system. The R, S, and T phases have the same voltage value, and the reference phase and the R phase voltage RN based on the N phase are in phase.The S phase is 120 ° from the reference wave, and the T phase is 240 ° from the reference wave. There is a phase difference.
Here, it is assumed that the R phase and the S phase of the wiring of the voltage terminal of the integrating watt-hour meter 6 are connected in reverse. The waveform of each phase in this case is as shown in FIG. Compared to the normal case, the phase difference between the R phase and the S phase is reversed, and the connection difference between the R phase and the S phase is determined. Similarly, the connection difference between R phase and T phase, S phase and T phase is judged from the difference in phase difference, and the result is shown in LED indicator 20a in Fig. 3 for RS, to 20b in ST, and in TR In case, it lights up to 20c.

次に、同配電方式にて積算電力量計6の電圧端子の配線のR相とN相を逆に接続した場合を想定する。この場合の各相の波形は図6のようになる。正常な場合に比べて、基準波とR相の位相差が180°になり、R相とN相の接続違いを判定する。同様にS相とN相、T相とN相の接続違いを位相差の違いから判定し、その結果をR-Nの場合は図3のLED表示灯21aへ、S-Nの場合は21bへ、T-Nの場合は21cへ点灯する。   Next, it is assumed that the R phase and the N phase of the wiring of the voltage terminal of the integrating watt hour meter 6 are connected in reverse by the same distribution method. The waveform of each phase in this case is as shown in FIG. Compared to the normal case, the phase difference between the reference wave and the R phase is 180 °, and the connection difference between the R phase and the N phase is determined. Similarly, the connection difference between the S phase and the N phase, the T phase and the N phase is determined from the difference in the phase difference, and the result is the LED indicator 21a in FIG. 3 in the case of RN, 21b in the case of SN, In case, it lights up to 21c.

次に、同配電方式にて積算電力量計6の電圧端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電圧は現れないことから電圧の大きさから判定し、その結果を図3のLED表示灯22aへ点灯する。S相、T相に関しても同様の判定方法から、その結果をS相の場合は22bへ、T相の場合は22cへ点灯する。N相の接続が外れているかを判定する場合では、R相のみに電圧をかけ、S、T相には出力しないようにし、正常時はR相に適正な電圧が現れるが、N相が外れている場合はS、T相の負荷抵抗とパワー回路17のインピーダンスによって分圧され、正常値の1/2以下の電圧になることで判定し、その結果を22dへ点灯する。   Next, it is assumed that the R-phase connection of the voltage terminal wiring of the integrated watt-hour meter 6 is disconnected in the same distribution method. In this case, since no voltage appears in the R phase, it is determined from the magnitude of the voltage, and the result is turned on to the LED indicator lamp 22a in FIG. From the same determination method for the S phase and the T phase, the result is lit to 22b for the S phase and to 22c for the T phase. When judging whether the N-phase connection is disconnected, apply a voltage only to the R-phase and not output to the S- and T-phases. When normal, an appropriate voltage appears in the R-phase, but the N-phase is disconnected. If the voltage is divided by the load resistance of the S and T phases and the impedance of the power circuit 17, it is determined that the voltage is ½ or less of the normal value, and the result is lit to 22d.

次に、図7は同配電方式における正常配線の場合の基準波と計器用変流器CT1〜CT3に流れる電流を電流センサ5a〜5cで検知し電流増幅回路10にて適宜に増幅された波形である。R、S、T各相とも同一の電流値で、基準波とR相の電流は同相であり、S相は基準波より120°、T相は基準波より240°位相差がある。
ここで計器用変流器CT1からの配線が積算電力量計6の電流端子で電流方向が逆になるような交差して接続された場合を想定する。この場合のR相の波形は図8のようになる。正常な場合に比べて、基準波とR相の位相差が180°になり、R相の電流方向の逆接続を判定する。同様にS相、T相も位相差の違いから判定し、その結果をR相の場合は図3のLED表示灯23aへ、S相の場合は23bへ、T相の場合は23cへ点灯する。
Next, FIG. 7 shows a reference wave in the case of normal wiring in the same distribution system and a waveform that is appropriately amplified by the current amplifier circuit 10 by detecting the current flowing through the current transformers CT1 to CT3 for the current with the current sensors 5a to 5c. It is. The R, S, and T phases have the same current value, and the reference wave and the R phase current are in phase, the S phase is 120 ° from the reference wave, and the T phase is 240 ° from the reference wave.
Here, it is assumed that the wiring from the meter current transformer CT1 is connected in a crossing manner such that the current direction is reversed at the current terminal of the integrating watt-hour meter 6. In this case, the R-phase waveform is as shown in FIG. Compared to the normal case, the phase difference between the reference wave and the R phase is 180 °, and the reverse connection in the current direction of the R phase is determined. Similarly, the S phase and the T phase are also determined from the difference in phase difference, and the result lights up to the LED indicator 23a in FIG. 3 for the R phase, to 23b for the S phase, and to 23c for the T phase. .

次に、同配電方式にて積算電力量計6の電流端子の配線のR相とS相を逆に接続した場合を想定する。この場合の各相の波形は図9のようになる。正常な場合に比べて、R相とS相の位相差が逆になり、R相とS相の相違いを判定する。同様にT相の相違いを位相差の違いから判定し、その結果をR相の場合は図3のLED表示灯25aへ、S相の場合は25bへ、T相の場合は25cへ点灯する。   Next, it is assumed that the R phase and the S phase of the wiring of the current terminal of the integrating watt hour meter 6 are connected in reverse by the same distribution method. The waveform of each phase in this case is as shown in FIG. Compared to the normal case, the phase difference between the R phase and the S phase is reversed, and the difference between the R phase and the S phase is determined. Similarly, the difference in T phase is determined from the difference in phase difference, and the result is lit to LED indicator 25a in Fig. 3 for R phase, 25b for S phase, and 25c for T phase. .

次に、同配電方式にて積算電力量計6の電流端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電流は現れないことから電流の大きさから判定し、その結果を図3のLED表示灯24aへ点灯する。S相、T相に関しても同様の判定方法から、その結果をS相の場合は24bへ、T相の場合は24cへ点灯する。   Next, it is assumed that the R-phase connection of the current terminal wiring of the integrating watt-hour meter 6 is disconnected in the same distribution method. In this case, since no current appears in the R phase, it is determined from the magnitude of the current, and the result is lit on the LED indicator lamp 24a in FIG. From the same determination method for the S phase and the T phase, the result is lit to 24b for the S phase and 24c for the T phase.

三相三線配電方式の場合は図2において計器用変流器はCT1とCT3となり、主回路のN相はなく、検査装置本体3の電圧検出回路13で検出される電圧は図10に示すように、R-S、S-T、T-Rの線間電圧となり、正常配線時の各線間電圧の波形は、基準波よりR-S線間波形は30°、S-T線間波形は150°、T-R線間波形は270°位相差がある。
ここで積算電力量計6の電圧端子の配線のR相とS相を逆に接続した場合を想定する。この場合の基準波と線間電圧R-Sの波形は図11のようになる。正常な場合に比べて、180°位相差が広がり、R相とS相の接続違いを判定する。同様にS相とT相、T相とR相の接続違いを位相差の違いから判定し、その結果をR-Sの場合は図3のLED表示灯20aへ、S-Tの場合は20bへ、T-Rの場合は20cへ点灯する。
In the case of the three-phase three-wire distribution system, the current transformers for the instrument are CT1 and CT3 in FIG. 2, there is no main phase N, and the voltage detected by the voltage detection circuit 13 of the inspection device body 3 is as shown in FIG. In addition, the line voltage of RS, ST, and TR is normal, and the waveform of each line voltage in normal wiring is 30 ° for the RS line, 150 ° for the ST line, and 270 ° for the TR line. There is a phase difference.
Here, it is assumed that the R phase and the S phase of the wiring of the voltage terminal of the integrating watt-hour meter 6 are connected in reverse. The waveforms of the reference wave and the line voltage RS in this case are as shown in FIG. Compared to the normal case, the 180 ° phase difference is widened, and the connection difference between the R phase and the S phase is determined. Similarly, the connection difference between the S phase and the T phase, the T phase and the R phase is determined from the difference in the phase difference, and the result is the LED indicator 20a in Fig. 3 for RS, 20b for ST, and TR In case, it lights up to 20c.

次に、同配電方式にて積算電力量計6の電圧端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電圧は現れないことから電圧の大きさから判定し、その結果を図3のLED表示灯22aへ点灯する。S相、T相に関しても同様の判定方法から、その結果をS相の場合は22bへ、T相の場合は22cへ点灯する。   Next, it is assumed that the R-phase connection of the voltage terminal wiring of the integrated watt-hour meter 6 is disconnected in the same distribution method. In this case, since no voltage appears in the R phase, it is determined from the magnitude of the voltage, and the result is turned on to the LED indicator lamp 22a in FIG. From the same determination method for the S phase and the T phase, the result is lit to 22b for the S phase and to 22c for the T phase.

次に、同配電方式における正常配線の場合の基準波とR、S、T各相の電流波形は三相四線配電方式の図7と同一であることから、図2における計器用変流器CT1、CT3と積算電力量計6との配線の判定および表示は三相四線配電方式のR相とT相に関して同一であるが、S相の電流は直接検出していないことから、S相の電流値と位相差は、R相およびT相の検出値を基に制御部(マイコン)14の演算にて算出している。   Next, the reference wave and the R, S, and T current waveforms for normal wiring in the same distribution method are the same as those in FIG. 7 for the three-phase four-wire distribution method. The wiring judgment and display between CT1 and CT3 and the integrated watt hour meter 6 are the same for the R phase and T phase of the three-phase four-wire distribution system, but the S phase current is not directly detected. The current value and the phase difference are calculated by calculation of the control unit (microcomputer) 14 based on the detected values of the R phase and the T phase.

単相三線配電方式の場合は図2において計器用変流器はCT1とCT3となり、主回路のS相はなく、検査装置本体3の電圧検出回路13で検出される電圧は図12に示すように、R-N、T-Nの線間電圧となり、正常配線時の各線間電圧の波形は、基準波と線間電圧R-Nは同相、線間電圧T-Nは180°位相差がある。
ここで積算電力量計6の電圧端子の配線のR相とN相を逆に接続した場合を想定する。この場合の基準波と線間電圧R-NおよびT-Nの波形は図13のようになる。正常な場合に比べて、R-Nは180°位相差が広がり、T-Nは波高値が2倍になり、R相とN相の接続違いを判定する。同様にT相とN相を逆に接続した場合は、正常な場合に比べて、T-Nは180°位相差が広がり、R-Nは波高値が2倍になり、T相とN相の接続違いを判定し、その結果をR-Nの場合は図3のLED表示灯21aへ、T-Nの場合は21cへ点灯する。
In the case of the single-phase three-wire distribution system, the current transformers for the instrument are CT1 and CT3 in FIG. 2, there is no S phase of the main circuit, and the voltage detected by the voltage detection circuit 13 of the inspection device body 3 is as shown in FIG. In addition, the line voltages of RN and TN are the same, and the waveform of each line voltage during normal wiring has the same phase as the reference wave and the line voltage RN, and the line voltage TN has a phase difference of 180 °.
Here, it is assumed that the R phase and the N phase of the wiring of the voltage terminal of the integrating watt-hour meter 6 are connected in reverse. The waveforms of the reference wave and the line voltages RN and TN in this case are as shown in FIG. Compared to the normal case, RN has a 180 ° phase difference, TN has a double peak value, and determines the connection difference between the R phase and the N phase. Similarly, when T phase and N phase are connected in reverse, TN has a 180 ° phase difference compared to normal, RN has a double peak value, and there is a difference in connection between T phase and N phase. In the case of RN, the result is lit to the LED indicator 21a in FIG. 3, and in the case of TN, it is lit to 21c.

次に、電圧端子の配線のR相とT相を逆に接続した場合を想定する。この場合の基準波と線間電圧R-NおよびT-Nの波形は図14のようになる。正常な場合に比べて、R-Nは180°位相差が広がり、T-Nは同相となって、R相とT相の接続違いを判定し、その結果を図3のLED表示灯20cへ点灯する。
次に、同配電方式にて積算電力量計6の電圧端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電圧は現れないことから電圧の大きさから判定し、その結果を図3のLED表示灯22aへ点灯する。T相に関しても同様の判定方法から、T相の場合は22cへ点灯する。N相の接続が外れているかを判定する場合では、R相のみに電圧をかけ、T相には出力しないようにし、正常時はR相に適正な電圧が現れるが、N相が外れている場合はT相の負荷抵抗とパワー回路17のインピーダンスによって分圧され、正常値の1/2以下の電圧になることで判定し、その結果を22dへ点灯する。
Next, it is assumed that the R phase and T phase of the voltage terminal wiring are connected in reverse. The waveforms of the reference wave and the line voltages RN and TN in this case are as shown in FIG. Compared to the normal case, RN has a 180 ° phase difference, TN has the same phase, and the connection difference between the R phase and the T phase is determined, and the result is lit on the LED indicator 20c in FIG.
Next, it is assumed that the R-phase connection of the voltage terminal wiring of the integrated watt-hour meter 6 is disconnected in the same distribution method. In this case, since no voltage appears in the R phase, it is determined from the magnitude of the voltage, and the result is turned on to the LED indicator lamp 22a in FIG. For the T phase, the same determination method is used. When judging whether the N-phase connection is disconnected, apply a voltage only to the R-phase and not output it to the T-phase. Under normal conditions, an appropriate voltage appears in the R-phase, but the N-phase is disconnected. In this case, the voltage is divided by the load resistance of the T phase and the impedance of the power circuit 17, and is determined to be a voltage that is 1/2 or less of the normal value, and the result is lit to 22d.

次に、図15は同配電方式における正常配線の場合の基準波と計器用変流器CT1、CT3に流れる電流を電流センサ5a、5cで検知し電流増幅回路10にて適宜に増幅された波形である。R、T各相とも同一の電流値で、基準波とR相の電流は同相であり、T相は基準波より180°位相差がある。
ここで計器用変流器CT1からの配線が積算電力量計6の電流端子で電流方向が逆になるような交差して接続された場合を想定する。この場合には正常な場合に比べて、基準波とR相の位相差が180°になり、R相の電流方向の逆接続を判定する。 同様にT相も位相差の違いから判定し、R、T相ともに逆方向接続した場合は、R相とT相を取り違えて配線した場合と同様な判定結果がでるため、これを避けるために主回路にR相、T相別々に単独で電圧をかけ判定する。電圧をかけた相に正常な大きさの電流が現れ、位相差が180°異なるなら逆方向接続になり、他の相に電流が現れた場合は相違いとなる。逆方向接続の結果をR相の場合は図3のLED表示灯23aへ、T相の場合は23cへ点灯する。相違いの結果をR相の場合は図3のLED表示灯25aへ、T相の場合は25cへ点灯する。
Next, FIG. 15 shows a reference wave in the case of normal wiring in the same distribution system and a waveform that is detected by the current sensors 5a and 5c and the current amplifying circuit 10 appropriately amplifying the current flowing through the current transformers CT1 and CT3. It is. The R and T phases have the same current value, the reference wave and the R phase current are in phase, and the T phase has a 180 ° phase difference from the reference wave.
Here, it is assumed that the wiring from the meter current transformer CT1 is connected in a crossing manner such that the current direction is reversed at the current terminal of the integrating watt-hour meter 6. In this case, compared with a normal case, the phase difference between the reference wave and the R phase is 180 °, and reverse connection in the current direction of the R phase is determined. Similarly, the T phase is also judged from the difference in phase difference, and if both the R and T phases are connected in the reverse direction, the same judgment result will be obtained as when the R phase and the T phase are mistakenly wired. Judgment is made by applying voltage to the main circuit separately for the R and T phases. When a normal current appears in the phase to which the voltage is applied and the phase difference is 180 ° different, the connection is reversed, and when current appears in the other phase, the current is different. When the result of reverse connection is R phase, the LED indicator lamp 23a in FIG. The result of the difference is lit to the LED indicator 25a in FIG. 3 for the R phase and to 25c for the T phase.

次に、同配電方式にて積算電力量計6の電流端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電流は現れないことから電流の大きさから判定し、その結果を図3のLED表示灯24aへ点灯する。T相に関しても同様の判定方法から、T相の場合は24cへ点灯する。   Next, it is assumed that the R-phase connection of the current terminal wiring of the integrating watt-hour meter 6 is disconnected in the same distribution method. In this case, since no current appears in the R phase, it is determined from the magnitude of the current, and the result is lit on the LED indicator lamp 24a in FIG. For the T phase, the same determination method is used.

単相二線配電方式は図2において計器用変流器はCT1となり、主回路のR相、N相のみで、検査装置本体3の電圧検出回路13で検出される電圧は図16に示すように、R-N、線間電圧となり、正常配線時の各線間電圧の波形は、基準波と線間電圧R-Nは同相である。
ここで積算電力量計6の電圧端子の配線のR相とN相を逆に接続した場合を想定する。この場合の基準波と線間電圧R-Nの波形は、正常な場合に比べて180°位相差が広がり、接続違いを判定する。その結果を図3のLED表示灯21aへ点灯する。
In the single-phase two-wire distribution system, the current transformer for instrumentation is CT1 in Fig. 2, and only the R phase and N phase of the main circuit, the voltage detected by the voltage detection circuit 13 of the inspection device body 3 is as shown in Fig. 16 Furthermore, RN is a line voltage, and the waveform of each line voltage during normal wiring is in phase with the reference wave and the line voltage RN.
Here, it is assumed that the R phase and the N phase of the wiring of the voltage terminal of the integrating watt-hour meter 6 are connected in reverse. In this case, the reference wave and the waveform of the line voltage RN have a 180 ° phase difference wider than that in the normal case, and a connection difference is determined. The result is turned on to the LED indicator lamp 21a in FIG.

次に、同配電方式にて積算電力量計6の電圧端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電圧は現れないことから電圧の大きさから判定し、N相の接続が外れている場合も同様な結果となるため判別がつかない。従って、その結果を図3のLED表示灯22a、22d両方へ点灯する。   Next, it is assumed that the R-phase connection of the voltage terminal wiring of the integrated watt-hour meter 6 is disconnected in the same distribution method. Since no voltage appears in the R phase in this case, the determination is made based on the magnitude of the voltage, and even when the N phase is disconnected, the same result is obtained and the determination cannot be made. Accordingly, the result is lit on both the LED indicator lights 22a and 22d in FIG.

次に、図17は同配電方式における正常配線の場合の基準波と計器用変流器CT1に流れる電流を電流センサ5aで検知し電流増幅回路10にて適宜に増幅された波形である。基準波とR相の電流は同相である。
ここで計器用変流器CT1からの配線が積算電力量計6の電流端子で電流方向が逆になるような交差して接続された場合を想定する。正常な場合に比べて、基準波とR相の位相差が180°になり、R相の電流方向の逆接続を判定する。逆方向接続の結果を図3のLED表示灯23aへ点灯する。
Next, FIG. 17 is a waveform obtained by detecting the reference wave and the current flowing through the instrument current transformer CT1 in the case of normal wiring in the same distribution system with the current sensor 5a and appropriately amplifying them with the current amplifier circuit 10. The reference wave and the R phase current are in phase.
Here, it is assumed that the wiring from the meter current transformer CT1 is connected in a crossing manner such that the current direction is reversed at the current terminal of the integrating watt-hour meter 6. Compared to the normal case, the phase difference between the reference wave and the R phase is 180 °, and the reverse connection in the current direction of the R phase is determined. The result of the reverse connection is turned on to the LED indicator lamp 23a in FIG.

次に、同配電方式にて積算電力量計6の電流端子の配線のR相の接続が外れている場合を想定する。この場合のR相に電流は現れないことから電流の大きさから判定し、その結果を図3のLED表示灯24aへ点灯する。
各配電方式において、検査装置本体3の電圧検出回路13で検出された電圧波形および電流増幅回路10で検出された電流波形が正常である場合は、図3の正常を示すLED表示灯27を点灯する。
正常な状態でなく、前記誤配線を示す条件を満足しない場合、図3のその他の異常を示すLED表示灯26を点灯する。
Next, it is assumed that the R-phase connection of the current terminal wiring of the integrating watt-hour meter 6 is disconnected in the same distribution method. In this case, since no current appears in the R phase, it is determined from the magnitude of the current, and the result is lit on the LED indicator lamp 24a in FIG.
In each power distribution method, when the voltage waveform detected by the voltage detection circuit 13 of the inspection device body 3 and the current waveform detected by the current amplification circuit 10 are normal, the LED indicator lamp 27 indicating normality in FIG. 3 is lit. To do.
If it is not in a normal state and does not satisfy the condition indicating the erroneous wiring, the LED indicator lamp 26 indicating other abnormality in FIG. 3 is turned on.

CT1、CT2、CT3 計器用変流器
WH 積算電力量計
MB 開閉器(ブレーカ)
S1、S3 計器用変流器の電源側端子
L1、L3 計器用変流器の負荷側端子
P1、P2、P3 積算電力量計の電圧端子
1S、3S 積算電力量計の電源側電流端子
1L、3L 積算電力量計の負荷側電流端子
R、S、T、N 交流電源の各相
1、2 電線
3 検査装置本体
5a〜5c クランプ式電流センサ
6 積算電力量計
7a〜7d 電源側クリップ
8a〜8d 電圧検出用クリップ
9a〜9d 負荷側クリップ
10 電流増幅回路
11 CT比切替スイッチ
12 回路選択スイッチ
13 電圧検出回路
14 制御部(マイコン)
15 正弦波発生回路
16 位相制御回路
17 電源回路(パワー回路)
18 検査結果表示部
19 検査開始スイッチ
20a〜20c、21a〜21c、22a〜22d、23a〜23c、24a〜24c、25a〜25c、26、27
LED
CT1, CT2, CT3 Current transformer for instrument
WH energy meter
MB Switch (breaker)
S1, S3 Power supply terminal of current transformer for instrument
L1, L3 Load side terminal of current transformer for instrument
P1, P2, P3 Integrated watt-hour meter voltage terminal
1S, 3S Energy meter power supply side current terminal
Load side current terminal of 1L, 3L energy meter
R, S, T, N AC power supply phases
1, 2 wire
3 Inspection equipment
5a to 5c Clamp current sensor
6 Energy meter
7a to 7d Power supply side clip
8a to 8d Voltage detection clip
9a to 9d Load side clip
10 Current amplifier circuit
11 CT ratio selector switch
12 Circuit selection switch
13 Voltage detection circuit
14 Control unit (microcomputer)
15 Sine wave generator
16 Phase control circuit
17 Power circuit
18 Inspection result display
19 Inspection start switch
20a-20c, 21a-21c, 22a-22d, 23a-23c, 24a-24c, 25a-25c, 26, 27
led

Claims (4)

計量対象回路における主回路並びに計器用変流器と負荷に対する積算電力量計の配線接続を取り外すことなくそのままの状態となし且つ,その計量対象回路における主回路への通常の供給電力を遮断した状態において、この計量対象回路に対し検査装置本体よりその内蔵する電源回路と負荷抵抗を介して検査基準となる所定の電圧を印加して検査基準電流を流し、積算電力量計の電圧端子と電流端子を検査装置本体に接続するとともに、その電圧端子と電流端子に流れる電圧波形と電流波形とを検査装置本体で検出し、その検出した電圧波形と電流波形を検査装置本体にて作成される基準波形と夫々その位相差と大きさの点で比較することにより、積算電力量計の配線接続の正誤を検査装置本体の制御部で判定し表示することを特徴とする積算電力量計の配線接続検査方法。 A state in which the main wattmeter in the measurement target circuit and the measuring current transformer and the integrated watt-hour meter are not disconnected from the load, and the normal power supply to the main circuit in the measurement target circuit is cut off. In this case, a predetermined reference voltage is applied to the circuit to be measured from the main body of the inspection device via the built-in power supply circuit and the load resistance to cause the inspection reference current to flow, and the voltage terminal and current terminal of the integrated watt-hour meter Is connected to the inspection device main body, the voltage waveform and the current waveform flowing through the voltage terminal and current terminal are detected by the inspection device main body, and the detected voltage waveform and current waveform are created by the inspection device main body. The product is characterized in that the correctness / incorrectness of the wiring connection of the integrating watt-hour meter is determined and displayed by the control unit of the inspection apparatus main body by comparing the phase difference and the magnitude of each. Wiring connection inspection method of the power meter. 請求項1記載の積算電力量計の配線接続検査方法において、検査装置本体に更に、計量対象回路における主回路として単相二線、単相三線、三相三線、三相四線のいずれかの配電方式を選択する回路選択スイッチを備え、検査装置本体にてその回路選択スイッチにより選択された計量対象回路における主回路に対応する基準波形を作成し、その基準波形と検出された積算電力量計の電圧端子と電流端子に流れる電圧波形と電流波形とを夫々位相差と大きさの点で比較することにより、計量対象回路における主回路の配電方式に応じた積算電力量計の配線接続の正誤を検査装置本体の制御部で判定し表示することを特徴とする積算電力量計の配線接続検査方法。 In the wiring connection inspection method of the integrated watt-hour meter according to claim 1, any one of a single-phase two-wire, a single-phase three-wire, a three-phase three-wire, and a three-phase four-wire as a main circuit in the measurement target circuit A circuit selection switch for selecting a power distribution method is provided, and a reference waveform corresponding to the main circuit in the measurement target circuit selected by the circuit selection switch is created in the inspection apparatus main body, and the reference waveform and the detected integrated watt-hour meter By comparing the voltage waveform and current waveform flowing in the voltage terminal and current terminal in terms of phase difference and magnitude, respectively, the correct and incorrect wiring connection of the integrated watt hour meter according to the distribution method of the main circuit in the circuit to be measured A wiring connection inspection method for an integrated watt-hour meter, characterized in that the control unit of the inspection apparatus main body determines and displays this. 計量対象回路における主回路並びに計器用変流器と負荷に対する積算電力量計の配線接続を取り外すことなくそのままの状態となし且つ,その計量対象回路における主回路への通常の供給電力を遮断した状態において、この計量対象回路に対し検査装置本体よりその内蔵する電源回路と負荷抵抗を介して検査基準となる所定の電圧を印加して検査基準電流を流し、積算電力量計の電圧端子と電流端子を検査装置本体に接続するとともに、その電圧端子と電流端子に流れる電圧波形と電流波形とを検査装置本体で検出し、その検出した電圧波形と電流波形を検査装置本体にて作成される基準波形と夫々その位相差と大きさの点で比較することにより、積算電力量計の配線接続の正誤を検査装置本体の制御部で判定し表示することを特徴とする積算電力量計の配線接続検査装置。 A state in which the main wattmeter in the measurement target circuit and the measuring current transformer and the integrated watt-hour meter are not disconnected from the load, and the normal power supply to the main circuit in the measurement target circuit is cut off. In this case, a predetermined reference voltage is applied to the circuit to be measured from the main body of the inspection device via the built-in power supply circuit and the load resistance to cause the inspection reference current to flow, and the voltage terminal and current terminal of the integrated watt-hour meter Is connected to the inspection device main body, the voltage waveform and the current waveform flowing through the voltage terminal and current terminal are detected by the inspection device main body, and the detected voltage waveform and current waveform are created by the inspection device main body. The product is characterized in that the correctness / incorrectness of the wiring connection of the integrating watt-hour meter is determined and displayed by the control unit of the inspection apparatus main body by comparing the phase difference and the magnitude of each. Wiring connection inspection device for a power meter. 請求項3記載の積算電力量計の配線接続検査装置において、検査装置本体に更に、計量対象回路における主回路として単相二線、単相三線、三相三線、三相四線のいずれかの配電方式を選択する回路選択スイッチを備え、検査装置本体にてその回路選択スイッチにより選択された計量対象回路における主回路に対応する基準波形を作成し、その基準波形と検出された積算電力量計の電圧端子と電流端子に流れる電圧波形と電流波形とを夫々位相差と大きさの点で比較することにより、計量対象回路における主回路の配電方式に応じた積算電力量計の配線接続の正誤を検査装置本体の制御部で判定し表示することを特徴とする積算電力量計の配線接続検査装置。 4. The integrated watt-hour meter wiring connection inspection device according to claim 3, wherein the inspection device main body further includes any one of a single-phase two-wire, a single-phase three-wire, a three-phase three-wire, and a three-phase four-wire as a main circuit in the measurement target circuit. A circuit selection switch for selecting a power distribution method is provided, and a reference waveform corresponding to the main circuit in the measurement target circuit selected by the circuit selection switch is created in the inspection apparatus main body, and the reference waveform and the detected integrated watt-hour meter By comparing the voltage waveform and current waveform flowing in the voltage terminal and current terminal in terms of phase difference and magnitude, respectively, the correct and incorrect wiring connection of the integrated watt hour meter according to the distribution method of the main circuit in the circuit to be measured A wiring connection inspection device for an integrated watt-hour meter, characterized in that the control unit of the inspection device main body determines and displays this.
JP2009104682A 2009-04-23 2009-04-23 Wiring connection inspection method and inspection device for integrated watt-hour meter Active JP5452972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104682A JP5452972B2 (en) 2009-04-23 2009-04-23 Wiring connection inspection method and inspection device for integrated watt-hour meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104682A JP5452972B2 (en) 2009-04-23 2009-04-23 Wiring connection inspection method and inspection device for integrated watt-hour meter

Publications (2)

Publication Number Publication Date
JP2010256102A JP2010256102A (en) 2010-11-11
JP5452972B2 true JP5452972B2 (en) 2014-03-26

Family

ID=43317197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104682A Active JP5452972B2 (en) 2009-04-23 2009-04-23 Wiring connection inspection method and inspection device for integrated watt-hour meter

Country Status (1)

Country Link
JP (1) JP5452972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2957919B1 (en) * 2013-02-14 2017-10-18 Mitsubishi Electric Corporation Determining device, determining method, and program
JP2021131329A (en) 2020-02-20 2021-09-09 日立金属株式会社 Method and device for inspecting multicore cable

Also Published As

Publication number Publication date
JP2010256102A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US7791351B2 (en) Method for detecting electrical ground faults
KR101300789B1 (en) Instrument and method to obtain ratio error of current transformer for watt-hour-meter
US20100131215A1 (en) Insulation monitoring system & insulation detecting method for electric power supply system
CN107710008B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
JP5743296B1 (en) Leakage location exploration method and apparatus
CN107636481B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
KR20180015566A (en) Leakage current measuring method and leakage current measuring apparatus
JP2011200024A (en) Leakage detector of low voltage power distribution system
JP5105591B2 (en) Cable connection checker
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter
JP2009069065A (en) Device for measuring effective leakage current
KR100915243B1 (en) Test terminal board for watt-hour meter
JP5636698B2 (en) DC accident point inspection device
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
CN106932663B (en) Measuring instrument of frequency conversion system
JP5101334B2 (en) Leakage current measuring device
JP6568573B2 (en) Distribution line inspection system
JP4318497B2 (en) Watt meter
JP3732864B2 (en) System protection device test equipment
JP2023105867A (en) Insulation monitoring device, insulation monitoring device performance test system, insulation monitoring device performance test method, and insulation monitoring device performance test program
KR101829615B1 (en) Auxiliary Device for Inspecting Power Supply
JPH05312878A (en) Inspection jig for wiring condition of power socket with grounding pole
JP2014010077A (en) Testing device for insulation monitoring device, insulation monitoring device and testing method for insulation monitoring device
KR20240046452A (en) Multi-measurement system survey capable of Watt-Hour Meter error and MOF ratio error simutaneously

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5452972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250