JP6373019B2 - Simulated power supply device and normal weighing confirmation device - Google Patents

Simulated power supply device and normal weighing confirmation device Download PDF

Info

Publication number
JP6373019B2
JP6373019B2 JP2014044169A JP2014044169A JP6373019B2 JP 6373019 B2 JP6373019 B2 JP 6373019B2 JP 2014044169 A JP2014044169 A JP 2014044169A JP 2014044169 A JP2014044169 A JP 2014044169A JP 6373019 B2 JP6373019 B2 JP 6373019B2
Authority
JP
Japan
Prior art keywords
terminal
meter
test
power
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014044169A
Other languages
Japanese (ja)
Other versions
JP2015169526A (en
Inventor
京二 矢野
京二 矢野
茂雄 中井
茂雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2014044169A priority Critical patent/JP6373019B2/en
Publication of JP2015169526A publication Critical patent/JP2015169526A/en
Application granted granted Critical
Publication of JP6373019B2 publication Critical patent/JP6373019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧・特別高圧機器である電気計器のうち電力量計(以下、単に「計器」と称す)に対する誤結線又は計器の故障の有無を確認することができる正常計量確認装置及びそれに使用する模擬電力供給装置に関する。   The present invention relates to a normal metering confirmation device capable of confirming whether there is an erroneous connection to a watt hour meter (hereinafter simply referred to as “meter”) or a malfunction of a meter among electric meters which are high-voltage / extra-high-voltage devices, and the use thereof The present invention relates to a simulated power supply apparatus.

従来、計器の設置工事を完了した後に、施工者がテスターやクランプ等を用いて、チェック表に基づき配線確認等を行ない、その後、電力会社の立会検査により施工者の配線ミス等がないかの確認を目視で実施している。
しかしながら、テストスイッチに内蔵された短絡バーの取外しの忘れ等による外部から施工状況が見えない場合や、順潮流計測用計器(売電用計器)に逆潮流計測用計器(買電用計器)を併設した際にのみ発生する同色配線を確実に区別して結線する場合などにおいて、誤結線を見落としてしまうことがある。さらに配線色が同色でなくても作業者の勘違い等によるヒューマンエラーにより発生する誤結線もある。
また、需要家の受電室に電力計(又は電力量計)が設置されており、需要家の負荷が可動状態時の場合には、需要家の電力計(又は電力量計)と電力会社の電力量計との計量値を比較することで、誤結線や計器の故障の有無は、ある程度判定できる。
しかしながら、計器の新設工事の際には、需要家の負荷が稼動していない場合が多く、需要家の負荷の稼動後に、別途、正常計量(計器故障の有無)を確認する必要があった。
特に、電力計(又は電力量計)が設置されていない需要家については、正常計量(計器故障の有無)の確認が困難であった。
Conventionally, after completing the installation work of the instrument, the installer uses a tester, a clamp, etc. to check the wiring based on the check table, and then there is no wiring mistake etc. of the installer by the witness inspection of the power company Confirmation is carried out visually.
However, if the installation status cannot be seen from the outside due to forgetting to remove the shorting bar built in the test switch, or the reverse power flow measuring instrument (electric power purchase instrument) is added to the forward power measuring instrument (electric power selling instrument). When the same color wiring generated only when it is installed side by side is reliably distinguished and connected, an erroneous connection may be overlooked. Further, even if the wiring color is not the same color, there is an erroneous connection that occurs due to a human error due to an operator's misunderstanding or the like.
In addition, a wattmeter (or watt-hour meter) is installed in the customer's power receiving room, and when the customer's load is in a movable state, the watt-hour meter (or watt-hour meter) of the customer and the power company By comparing the measured value with the watt hour meter, it is possible to determine to some extent whether there is a misconnection or a failure of the meter.
However, when a new instrument is installed, the customer's load is often not in operation, and after the customer's load has been activated, it has been necessary to separately check normal weighing (whether or not the instrument has failed).
In particular, it has been difficult to confirm normal weighing (presence or absence of instrument failure) for customers who do not have a power meter (or watt-hour meter) installed.

これに対し、従来の三相電力測定器は、配電線1〜3の線路電圧を1側電圧変換回路及び3側電圧変換回路により変換した電圧デジタル値と、配電線1の1側の負荷電流及び配電線3の3側の負荷電流を各々、1側電流変換回路及び3側電流変換回路により変換した電流デジタル値と、乗算回路により算出した線路電圧と負荷電流の積である電力値とをCPUにより、正相順接続、逆相順接続又は誤結線接続を判別させ、判定結果を表示回路により表示する(例えば、特許文献1)。   On the other hand, the conventional three-phase power measuring device has a digital voltage value obtained by converting the line voltages of the distribution lines 1 to 3 by the 1 side voltage conversion circuit and the 3 side voltage conversion circuit, and the load current on the 1 side of the distribution line 1. And the current digital value obtained by converting the load current on the 3 side of the distribution line 3 by the 1 side current conversion circuit and the 3 side current conversion circuit, and the power value that is the product of the line voltage and the load current calculated by the multiplication circuit. The CPU discriminates normal phase forward connection, reverse phase forward connection, or erroneous connection, and displays the determination result on a display circuit (for example, Patent Document 1).

また、従来の電力量計用結線判定装置は、電力量計に供給される電圧及び電流の位相差を接続部を介して検出し、この位相差が規定値以内である場合に、判定部により、結線が正しいと判定する(例えば、特許文献2)。   In addition, the conventional watt-hour meter connection determination device detects the phase difference between the voltage and current supplied to the watt-hour meter via the connection unit, and when the phase difference is within a specified value, the determination unit It is determined that the connection is correct (for example, Patent Document 2).

また、従来の電力量計検査装置は、種々の測定機器が内蔵された本体部と、この本体部に固定的に設置された複数の端子からなる測定端子部と、本体部に取り付けられた表示部と、を備える。本体部は、電圧測定手段、相回転検出手段と、測定対象の電力量計を動作させるための電気負荷とを有する。測定端子部は、測定対象の電力量計に接続され、電力量計の端子群の配列とピッチが合致されている。表示部は、検査結果を表示する。表示部が見えるように本体部を持って測定端子部を測定対象となる電力量計の端子群に接触させることにより、一義的に検査結果が表示部に表示される(例えば、特許文献3)。   In addition, the conventional watt-hour meter inspection device includes a main body portion in which various measuring devices are incorporated, a measurement terminal portion composed of a plurality of terminals fixedly installed on the main body portion, and a display attached to the main body portion. A section. The main body includes voltage measuring means, phase rotation detecting means, and an electric load for operating the watt-hour meter to be measured. The measurement terminal unit is connected to the watt-hour meter to be measured, and the arrangement and pitch of the terminal group of the watt-hour meter are matched. The display unit displays the inspection result. By holding the main body part so that the display part can be seen and bringing the measurement terminal part into contact with the terminal group of the watt hour meter to be measured, the inspection result is uniquely displayed on the display part (for example, Patent Document 3). .

特開2001−124806号公報JP 2001-124806 A 特開平10−162299号公報JP-A-10-162299 特開2007−292581号公報JP 2007-225881 A

しかしながら、従来の三相電力測定器及び電力量計用結線判定装置は、結線状態の正否を判定できるのであるが、需要家の負荷が稼動していない場合の判定ができず、さらに電力量計の故障の判定ができないという課題がある。
また、従来の電力量計検査装置は、電力量計の動作確認はできるのであるが、低圧計器を対象にしており、高圧・特別高圧用の計器には応用できず、計器の故障の判定(誤差大時等)はできないという課題がある。
However, the conventional three-phase power measuring device and the watt-hour meter connection determination device can determine the correctness of the connection state, but cannot determine when the customer's load is not operating, and the watt-hour meter There is a problem that it is not possible to determine the failure of the device.
In addition, the conventional watt-hour meter inspection device can confirm the operation of the watt-hour meter, but it is intended for low-pressure meters and cannot be applied to high-voltage / extra-high-voltage meters. There is a problem that it cannot be performed.

この発明は、上述のような課題を解決するためになされたもので、需要家の負荷が稼動していない場合でも、電力量計で計量させることができる模擬電力供給装置を提供すると共に、当該模擬電力供給装置と電力量計誤差測定器又は参考計器とを組み合わせることで、需要家新設時の負荷がまだ稼動していない状態でも計器故障や計量装置の誤結線を判定することができる正常計量確認装置を提供するものである。   The present invention has been made to solve the above-described problems, and provides a simulated power supply device that can be metered with a watt hour meter even when a consumer's load is not in operation. Normal weighing that can determine instrument failure and incorrect connection of measuring device even when the load at the time of new installation of the customer is not yet in operation by combining the simulated power supply device and the watt-hour meter error measuring device or reference meter A confirmation device is provided.

この発明に係る模擬電力供給装置においては、電力量計及び計器用変圧変流器間に接続されるテストスイッチに嵌合し、当該テストスイッチの開放状態でテストスイッチの電力量計側の端子及び計器用変圧変流器側の端子に介装されるテストプラグと、降圧型の変圧器で形成され、当該変圧器の一次側がテストプラグの電力量計側及び計器用変圧変流器側の電圧端子に接続され、変圧器の二次側がテストプラグの電力量計側の電流端子に接続される模擬負荷回路と、を備える。   In the simulated power supply apparatus according to the present invention, the test switch is connected to the test switch connected between the watt-hour meter and the instrument transformer current transformer, and the terminal on the watt-hour side of the test switch in the open state of the test switch and It is formed of a test plug and a step-down transformer that are inserted into the terminals on the instrument transformer current transformer side, and the primary side of the transformer is the voltage on the watt hour meter side and the instrument transformer current transformer side of the test plug. A simulated load circuit connected to the terminal and having a secondary side of the transformer connected to a current terminal on the watt hour side of the test plug.

この発明に係る正常計量確認装置においては、模擬電力供給装置と、電力量計に供給される電流を測定し、電力量計に印加される電圧を測定して、電力量を算出すると共に、当該電力量の算出値と電力量計の計量値との誤差を算出する電力量計誤差測定器と、電力量計誤差測定器が算出した誤差に基づき、電力量計及びテストスイッチ間の配線の誤結線又は電力量計の故障の有無を判断する第1の判定手段と、を備える。   In the normal metering confirmation device according to the present invention, the simulated power supply device and the current supplied to the watt hour meter are measured, the voltage applied to the watt hour meter is measured, the power amount is calculated, Based on the error calculated by the energy meter error measuring instrument that calculates the error between the calculated value of the energy and the measured value of the energy meter, the wiring error between the energy meter and the test switch First determination means for determining the presence or absence of a failure of the connection or the watt-hour meter.

この発明に係る模擬電力供給装置においては、需要家の負荷が稼動していない場合にも、電力量計の電流回路に負荷電流を供給することができ、電力量計で計量させることができる。   In the simulated power supply apparatus according to the present invention, even when the customer's load is not in operation, the load current can be supplied to the current circuit of the watt hour meter and can be measured by the watt hour meter.

この発明に係る正常計量確認装置においては、需要家の負荷が稼動していない場合でも、模擬電力供給装置により電力量計で計量させることができ、誤結線又は計器の故障の有無を確認することができる。   In the normal weighing confirmation device according to the present invention, even if the customer's load is not in operation, the simulated power supply device can be used to measure with a watt hour meter, and whether or not there is a misconnection or instrument failure is confirmed. Can do.

(a)は第1の実施形態及び第3の実施形態に係る正常計量確認装置の現場での使用概要を説明するための説明図であり、(b)は図1(a)に示す電力計誤差測定器の接続ケーブルを説明するための説明図である。(A) is explanatory drawing for demonstrating the use outline | summary in the field of the normal measurement confirmation apparatus which concerns on 1st Embodiment and 3rd Embodiment, (b) is the wattmeter shown to Fig.1 (a) It is explanatory drawing for demonstrating the connection cable of an error measuring device. 売電用計器及び買電用計器に対する正常な結線を示す結線図である。It is a connection diagram which shows the normal connection with respect to the meter for electric power selling, and the meter for electric power purchase. 第1の実施形態に係る模擬電力供給装置の結線を示す結線図である。It is a connection diagram which shows the connection of the simulation electric power supply apparatus which concerns on 1st Embodiment. (a)は図1(a)に示すテストプラグの概略構成を示す平面図であり、(b)は図1(a)に示すテストプラグの概略構成を示す背面図であり、(c)は図1(a)に示すテストプラグの概略構成を示す側面図であり、(d)は図1(a)に示すテストプラグの柄を引き下げた状態の概略構成を示す側面図である。(A) is a top view which shows schematic structure of the test plug shown to Fig.1 (a), (b) is a rear view which shows schematic structure of the test plug shown to Fig.1 (a), (c) is It is a side view which shows schematic structure of the test plug shown to Fig.1 (a), (d) is a side view which shows schematic structure of the state which pulled down the pattern of the test plug shown to Fig.1 (a). 第2の実施形態に係る正常計量確認装置の概略構成及び結線を示す概略構成図である。It is a schematic block diagram which shows schematic structure and connection of the normal measurement confirmation apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る正常計量確認装置の概略構成及び結線を示す概略構成図である。It is a schematic block diagram which shows schematic structure and connection of the normal measurement confirmation apparatus which concerns on 3rd Embodiment. (a)は有効電力計の接続状態を正常側に切り替えた場合の計測値を説明するためのフェーザ図であり、(b)は有効電力計の接続状態を異常側に切り替えた場合の計測値を説明するためのフェーザ図である。(A) is a phasor diagram for explaining a measured value when the connection state of the active wattmeter is switched to the normal side, and (b) is a measured value when the connection state of the active wattmeter is switched to the abnormal side. It is a phasor figure for demonstrating.

(本発明の第1の実施形態)
正常計量確認装置10を説明するにあたり、正常計量確認装置10の確認対象である計器20(売電用計器21、買電用計器22)の結線図について、図1及び図2を用いて説明する。
売電用計器21は、図1(a)に示すように、高圧・特高用計器函100の内部に設置され、電源側から配電線路200で配電される高電圧を低電圧に変成する計器用変圧器(Potential Transformer:以下、「PT」と称す)と大電流を小電流に変成する変流器(Current Transformer:以下、「CT」と称す)とからなる計器用変圧変流器(Voltage and Current Transformer:以下、「VCT」と称す)を介して、需要家の負荷300の使用電力量を計量する。
また、買電用計器22は、高圧・特高用計器函100の内部に設置され、VCTに接続されており、特定規模電気事業者(power producer and supplier:PPS)等の需要家から電力会社に販売するための電力量を計量する。
(First embodiment of the present invention)
In describing the normal weighing confirmation device 10, a connection diagram of the meter 20 (the power-selling meter 21 and the power-purchasing meter 22) that is a confirmation target of the normal weighing confirmation device 10 will be described with reference to FIGS. 1 and 2. .
As shown in FIG. 1 (a), a power selling meter 21 is installed inside a high voltage / extra high voltage meter box 100, and converts the high voltage distributed from the power source side through the distribution line 200 to a low voltage. Voltage transformer (Voltage) consisting of a transformer (Potential Transformer: hereinafter referred to as “PT”) and a current transformer (Current Transformer: hereinafter referred to as “CT”) that transforms a large current into a small current and Current Transformer: hereinafter referred to as “VCT”), the amount of power used by the load 300 of the consumer is measured.
In addition, the meter for purchasing electricity 22 is installed inside the high-voltage / extra-high-voltage meter box 100 and connected to the VCT. From a consumer such as a power producer and supplier (PPS) to a power company Measure the amount of power to sell to.

売電用計器21、買電用計器22及びVCT間は、図2に示すように、計器20(売電用計器21、買電用計器22)の交換作業を行う場合に、需要家を停電させず施工するために必要なテストスイッチ30を介して接続されている。
なお、以下の説明においては、VCTに直接接続されるテストスイッチ30を「テストSW1」と称し、売電用計器21に直接接続されるテストスイッチ30を「テストSW2」と称し、買電用計器22に直接接続されるテストスイッチ30を「テストSW3」と称す。
As shown in FIG. 2, between the power sale meter 21, the power purchase meter 22, and the VCT, when a replacement operation of the meter 20 (the power sale meter 21, the power purchase meter 22) is performed, the customer is interrupted. It connects via the test switch 30 required in order to construct without doing.
In the following description, the test switch 30 directly connected to the VCT is referred to as “test SW1”, and the test switch 30 directly connected to the power selling instrument 21 is referred to as “test SW2”. The test switch 30 directly connected to 22 is referred to as “test SW3”.

VCTは、二次側端子として、電流端子である1S端子、1L端子、3S端子及び3L端子と、電圧端子であるP1端子、P2端子及びP3端子と、を備え、PTがP1端子、P2端子及びP3端子に接続され、CTが1S端子、3S端子及び3L端子に接続され、1L端子、3L端子及びP2端子が接地されている。
計器20(売電用計器21、買電用計器22)は、VCTと同様に、電流端子である1S端子、1L端子、3S端子及び3L端子と、電圧端子であるP1端子、P2端子及びP3端子と、を備える。
The VCT has a 1S terminal, a 1L terminal, a 3S terminal, and a 3L terminal that are current terminals as secondary terminals, and a P1, P2, and P3 terminals that are voltage terminals, and a PT is a P1 terminal and a P2 terminal. And CT are connected to the 1S terminal, 3S terminal and 3L terminal, and the 1L terminal, 3L terminal and P2 terminal are grounded.
The meter 20 (the meter 21 for power sale, the meter 22 for electric power purchase) is the 1S terminal which is a current terminal, 1L terminal, 3S terminal and 3L terminal, and the P1 terminal which is a voltage terminal, P2 terminal and P3 similarly to VCT. A terminal.

テストスイッチ30(テストSW1、テストSW2、テストSW3)は、後述するテストプラグ11を挿抜可能な機構であり、計器20側に接続される計器側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)とVCT側に接続されるVCT側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)とが挿入口の上面及び下面に相対向して配設される。
また、テストスイッチ30(テストSW1、テストSW2、テストSW3)は、通常(テストプラグ11の未挿入)時に、計器側端子及びVCT側端子が電気的に接続されており、テストプラグ11の挿入(ロック解除)により、計器側端子及びVCT側端子が電気的に切り離されることになる。
The test switch 30 (test SW1, test SW2, test SW3) is a mechanism in which a test plug 11 described later can be inserted and removed, and an instrument side terminal (1S terminal, P1 terminal, P3 terminal, 3S terminal) connected to the instrument 20 side. 3L terminal, P2 terminal, 1L terminal) and VCT side terminals (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) connected to the VCT side are the upper and lower surfaces of the insertion slot. Are arranged opposite to each other.
The test switch 30 (test SW1, test SW2, test SW3) is electrically connected to the instrument side terminal and the VCT side terminal during normal operation (when the test plug 11 is not inserted). By releasing the lock, the instrument side terminal and the VCT side terminal are electrically disconnected.

また、テストSW1には、VCT側3L端子及び1L端子間に短絡バー31を取り付けているが、テストSW2及びテストSW3には、VCT側3L端子及び1L端子間の短絡バー31を取り外している。なお、この短絡バー31は、テストスイッチ30に内蔵されており、テストSW2及びテストSW3の短絡バー31の外し忘れが、誤結線の要因の1つである。   Further, the shorting bar 31 is attached between the VCT side 3L terminal and the 1L terminal in the test SW1, but the shorting bar 31 between the VCT side 3L terminal and the 1L terminal is removed from the test SW2 and the test SW3. The short-circuit bar 31 is built in the test switch 30, and forgetting to remove the short-circuit bar 31 of the test SW2 and the test SW3 is one of the causes of erroneous connection.

VCT及びテストSW1間は、VCTの二次側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子)の各端子とテストSW1のVCT側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子)の各端子とをそれぞれ対応させて、6芯ケーブル(電圧3芯、電流3芯)で接続されている。
また、売電用計器21及びテストSW2間は、売電用計器21の端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)の各端子とテストSW2の計器側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)の各端子とをそれぞれ対応させて、7本の電線で接続されている。
また、買電用計器22及びテストSW3間は、買電用計器22の端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)の各端子とテストSW3の計器側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)の各端子とをそれぞれ対応させて、7本の電線で接続されている。
Between the VCT and the test SW1, the secondary terminals (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal) of the VCT and the VCT side terminals (1S terminal, P1 terminal, P3) of the test SW1 are connected. Terminals, 3S terminals, 3L terminals, P2 terminals) are associated with each other, and are connected by 6-core cables (voltage 3-core, current 3-core).
Between the power sale meter 21 and the test SW2, the terminals of the power sale meter 21 (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) and the test SW2 meter The terminals of the side terminals (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) are associated with each other and are connected by seven wires.
In addition, between the meter 22 for power purchase and the test SW3, the terminals of the meter for power purchase 22 (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) and the meter of the test SW3 The terminals of the side terminals (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) are associated with each other and are connected by seven wires.

さらに、テストSW1、テストSW2及びテストSW3間は、テストSW1の計器側1S端子とテストSW2のVCT側1S端子とを対応させ、テストSW1の計器側P1端子とテストSW2のVCT側P1端子とテストSW3のVCT側P1端子とを対応させ、テストSW1の計器側P3端子とテストSW2のVCT側P3端子とテストSW3のVCT側P3端子とを対応させ、テストSW1の計器側3S端子とテストSW2のVCT側3S端子とを対応させ、テストSW1の計器側3L端子とテストSW3のVCT側3S端子とを対応させ、テストSW1の計器側P2端子とテストSW2のVCT側P2端子とテストSW3のVCT側P2端子とを対応させ、テストSW1の計器側1L端子とテストSW2のVCT側1S端子とを対応させ、テストSW2のVCT側3L端子とテストSW3のVCT側3L端子とを対応させ、テストSW2のVCT側1L端子とテストSW3のVCT側1L端子とを対応させて、電線で接続されている。   Furthermore, between the test SW1, the test SW2, and the test SW3, the instrument side 1S terminal of the test SW1 is associated with the VCT side 1S terminal of the test SW2, and the test side P1 terminal of the test SW1 and the VCT side P1 terminal of the test SW2 are tested. The VCT side P1 terminal of SW3 is made to correspond, the instrument side P3 terminal of test SW1, the VCT side P3 terminal of test SW2, and the VCT side P3 terminal of test SW3 are made to correspond, and the instrument side 3S terminal of test SW1 and test SW2 The VCT side 3S terminal is associated, the test SW1 instrument side 3L terminal and the test SW3 VCT side 3S terminal are associated, the test SW1 instrument side P2 terminal, the test SW2 VCT side P2 terminal, and the test SW3 VCT side The P2 terminal is made to correspond, and the instrument side 1L terminal of the test SW1 is made to correspond to the VCT side 1S terminal of the test SW2. And a VCT side 3L terminal of VCT side 3L terminals and test SW3 test SW2 is associated, and a VCT side 1L terminal of VCT side 1L terminals and test SW3 test SW2 to correspond, are connected by wires.

なお、各端子間の電線は、端子の種類毎に色を分けているのであるが、テストSW2のVCT側3L端子及びテストSW3のVCT側3L端子間の電線、テストSW2のVCT側1L端子及びテストSW3のVCT側1L端子間の電線は、同色のために、1L端子と3L端子とを間違えて接続する可能性があり、誤結線の要因の1つである。   In addition, although the electric wire between each terminal has classified the color according to the kind of terminal, the electric wire between the VCT side 3L terminal of test SW2, the VCT side 3L terminal of test SW3, the VCT side 1L terminal of test SW2, and Since the electric wire between the 1L terminals on the VCT side of the test SW3 is the same color, there is a possibility that the 1L terminal and the 3L terminal are mistakenly connected, which is one of the causes of erroneous connection.

つぎに、本実施形態に係る正常計量確認装置10について、説明する。
正常計量確認装置10は、図1(a)に示すように、大別すると、模擬電力供給装置(虚負荷供給装置)101と、電力量計誤差測定器102と、第1の判定手段103と、を備える。
Below, the normal measurement confirmation apparatus 10 which concerns on this embodiment is demonstrated.
As shown in FIG. 1A, the normal weighing confirmation device 10 is roughly divided into a simulated power supply device (imaginary load supply device) 101, a watt-hour meter error measuring device 102, and a first determination unit 103. .

模擬電力供給装置101は、図3に示すように、計器20及びVCT間に接続されるテストスイッチ30(テストSW1)に嵌合し、当該テストSW1の開放状態でテストSW1の計器側端子及びVCT側端子に介装されるテストプラグ11と、降圧型の変圧器(transformer:以下、「Tr」称す)で形成され、当該Trの一次側がテストSW1の計器20側及びVCT側の電圧端子(P1端子、P2端子、P3端子)に接続され、Trの二次側がテストSW1の計器20側の電流端子(1S端子、3S端子、3L端子、1L端子)に接続される模擬負荷回路12と、テストSW1及びTr間に接続され、売電用計器21に電力量を計量させる順潮流と買電用計器22に電力量を計量させる逆潮流とを切り換える切換手段13と、を備える。   As shown in FIG. 3, the simulated power supply apparatus 101 is fitted to a test switch 30 (test SW1) connected between the instrument 20 and the VCT, and the test-side terminal of the test SW1 and the VCT are connected when the test SW1 is open. A test plug 11 interposed in the side terminal and a step-down transformer (hereinafter referred to as “Tr”) are formed, and the primary side of the Tr is the voltage terminal (P1 on the instrument 20 side and the VCT side of the test SW1. Terminal, P2 terminal, P3 terminal), and the simulated load circuit 12 in which the secondary side of Tr is connected to the current terminal (1S terminal, 3S terminal, 3L terminal, 1L terminal) on the meter 20 side of the test SW1, and the test Switching means 13 is connected between SW1 and Tr, and switches between a forward flow for metering the amount of power by power selling meter 21 and a reverse power flow for metering the amount of power by power purchase meter 22.

テストプラグ11は、図4(a)に示すように、計器側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)がテストスイッチ30(テストSW1)の計器20側の各端子に対応する位置に配設される。また、テストプラグ11の計器側端子の各端子は、図3に示すように、模擬電力供給装置101の計器側端子台101aの各端子にそれぞれ対応して接続され、3L端子及び1L端子間が短絡している。
また、テストプラグ11は、図4(b)に示すように、VCT側端子(1S端子、P1端子、P3端子、3S端子、3L端子、P2端子、1L端子)がテストスイッチ30(テストSW1)のVCT側の各端子に対応する位置に配設される。また、テストプラグ11のVCT側端子の各端子は、図3に示すように、模擬電力供給装置101のVCT側端子台101bの各端子にそれぞれ対応して接続され、1S端子及び1L端子間並びに3S端子及び3L端子間が短絡している。
また、テストプラグ11は、図4(c)に示すように、柄の収納時に上面及び下面の端子間が導通状態であるが、図4(d)に示すように、柄の引下げ時に上面及び下面の端子間が非導通状態になる。
As shown in FIG. 4 (a), the test plug 11 is an instrument whose terminal on the instrument side (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) is a test switch 30 (test SW1). It is arranged at a position corresponding to each terminal on the 20 side. Moreover, each terminal of the instrument side terminal of the test plug 11 is connected corresponding to each terminal of the instrument side terminal block 101a of the simulated power supply apparatus 101, as shown in FIG. 3, and between the 3L terminal and the 1L terminal. Short circuit.
Further, as shown in FIG. 4B, the test plug 11 has a VCT side terminal (1S terminal, P1 terminal, P3 terminal, 3S terminal, 3L terminal, P2 terminal, 1L terminal) as a test switch 30 (test SW1). Are arranged at positions corresponding to the respective terminals on the VCT side. Further, as shown in FIG. 3, the terminals of the VCT side terminals of the test plug 11 are respectively connected to the terminals of the VCT side terminal block 101b of the simulated power supply apparatus 101, and are connected between the 1S terminal and the 1L terminal, The 3S terminal and the 3L terminal are short-circuited.
Further, as shown in FIG. 4 (c), the test plug 11 is in a conductive state between the terminals on the upper surface and the lower surface when the handle is accommodated. However, as shown in FIG. The terminals on the lower surface become non-conductive.

本実施形態に係る切換手段13は、図3に示すように、第1端子A、第2端子B、第3端子C、第4端子D、第5端子E及び第6端子Fからなる6つの端子を有し、当該第3端子C及び第6端子F間を短絡させ、当該第4端子D及び第5端子E間を短絡させたトグルスイッチであり、2つのトグルスイッチからなる。
なお、以下の説明においては、第1端子Aがテストプラグ11の計器側1S端子に接続され、第2端子Bがテストプラグ11の計器側1L端子に接続されるトグルスイッチを「第1トグルSW13a」と称し、第1端子Aがテストプラグ11の計器側3L端子に接続され、第2端子Bがテストプラグ11の計器側3S端子に接続されるトグルスイッチを「第2トグルSW13b」と称す。
As shown in FIG. 3, the switching means 13 according to the present embodiment includes six terminals including a first terminal A, a second terminal B, a third terminal C, a fourth terminal D, a fifth terminal E, and a sixth terminal F. A toggle switch having a terminal, short-circuited between the third terminal C and the sixth terminal F, and short-circuited between the fourth terminal D and the fifth terminal E, and includes two toggle switches.
In the following description, a toggle switch in which the first terminal A is connected to the instrument side 1S terminal of the test plug 11 and the second terminal B is connected to the instrument side 1L terminal of the test plug 11 is referred to as “first toggle SW 13a. The toggle switch in which the first terminal A is connected to the instrument side 3L terminal of the test plug 11 and the second terminal B is connected to the instrument side 3S terminal of the test plug 11 is referred to as “second toggle SW 13b”.

本実施形態に係る模擬負荷回路12は、図3に示すように、110Vの一次電圧を4.4V程度の二次電圧に降圧する絶縁Trであり、2つのTrからなる。
なお、以下の説明においては、二次側の第1端子P1が第1トグルSW13aの第5端子Eに接続され、二次側の第2端子P2が第1トグルSW13bの第6端子Fに接続されるTrを「第1Tr12a」と称し、二次側の第1端子P2が、第2トグルSW13bの第5端子Eに接続され、二次側の第2端子P3が第2トグルSW13bの第6端子Fに接続されるTrを「第2Tr12b」と称す。
As shown in FIG. 3, the simulated load circuit 12 according to the present embodiment is an insulating Tr that steps down a primary voltage of 110 V to a secondary voltage of about 4.4 V, and includes two Trs.
In the following description, the first terminal P1 on the secondary side is connected to the fifth terminal E of the first toggle SW 13a, and the second terminal P2 on the secondary side is connected to the sixth terminal F of the first toggle SW 13b. Tr is referred to as a “first Tr 12a”, the first terminal P2 on the secondary side is connected to the fifth terminal E of the second toggle SW 13b, and the second terminal P3 on the secondary side is the sixth of the second toggle SW 13b. The Tr connected to the terminal F is referred to as “second Tr 12b”.

また、第1Tr12aの一次側の第2端子P2及び第2Tr12bの一次側の第1端子P2には、計器20(売電用計器21、買電用計器22)の電流回路に力率がほぼ1で5A以下の電流を流すために、固定抵抗(定格抵抗値:200Ω、定格電力:8W)及び可変抵抗(定格抵抗値:〜300Ω、定格電力:12W)からなる可変抵抗Rがそれぞれ接続されているが、第1Tr12a及び第2Tr12bの一次側に可変抵抗Rを配設する代わりに、第1Tr12aの二次側の第2端子P2及び第2Tr12bの二次側の第1端子P2に可変抵抗をそれぞれ接続してもよい。   In addition, the second power terminal P2 on the primary side of the first Tr 12a and the first terminal P2 on the primary side of the second Tr 12b have a power factor of approximately 1 in the current circuit of the meter 20 (the power sale meter 21 and the power purchase meter 22). In order to flow a current of 5 A or less, a variable resistor R consisting of a fixed resistor (rated resistance value: 200Ω, rated power: 8W) and a variable resistor (rated resistance value: ~ 300Ω, rated power: 12W) is connected. However, instead of providing the variable resistor R on the primary side of the first Tr 12a and the second Tr 12b, variable resistors R are respectively provided to the second terminal P2 on the secondary side of the first Tr 12a and the first terminal P2 on the secondary side of the second Tr 12b. You may connect.

テストプラグ11及び第1Tr12a間は、テストプラグ11のVCT側P1端子とテストプラグ11の計器側P1端子と第1Tr12aの一次側の第1端子P1とを対応させ、テストプラグ11のVCT側P2端子とテストプラグ11の計器側P2端子と第1Tr12aの一次側の第2端子P2と第2Tr12bの一次側の第1端子P2とを対応させ、テストプラグ11のVCT側P3端子とテストプラグ11の計器側P3端子と第2Tr12bの一次側の第2端子P3とを対応させて、リード線で接続されている。   Between the test plug 11 and the first Tr 12a, the VCT side P1 terminal of the test plug 11, the instrument side P1 terminal of the test plug 11, and the first terminal P1 on the primary side of the first Tr 12a are associated with each other, and the VCT side P2 terminal of the test plug 11 And the instrument side P2 terminal of the test plug 11, the second terminal P2 on the primary side of the first Tr 12a, and the first terminal P2 on the primary side of the second Tr 12b, and the instrument of the VCT side P3 terminal of the test plug 11 and the test plug 11 The side P3 terminal and the second terminal P3 on the primary side of the second Tr 12b are associated with each other and connected by lead wires.

なお、本実施形態に係る模擬負荷回路12及び切換手段13は、図示しない筐体に内包されており、第1Tr12aの二次側の第1端子P1と第1トグルSW13aの第5端子Eとの接続は、外部端子1S,1Lを経由して接続され、第2Tr12bの二次側の第2端子P3と第2トグルSW13bの第6端子Fとの接続は、外部端子3S,3Lを経由して接続される。
また、外部端子P1は、テストプラグ11のVCT側P1端子とテストプラグ11の計器側P1端子と第1Tr12aの一次側の第2端子P1と第2Tr12bの一次側の第1端子P1とを接続するリード線に接続される。
同様に、外部端子P2は、テストプラグ11のVCT側P2端子とテストプラグ11の計器側P2端子と第1Tr12aの一次側の第2端子P2と第2Tr12bの一次側の第1端子P2とを接続するリード線に接続される。
同様に、外部端子P3は、テストプラグ11のVCT側P3端子とテストプラグ11の計器側P3端子と第2Tr12bの一次側の第2端子P3とを接続するリード線に接続される。
Note that the simulated load circuit 12 and the switching means 13 according to the present embodiment are included in a housing (not shown), and are formed between the first terminal P1 on the secondary side of the first Tr 12a and the fifth terminal E of the first toggle SW 13a. The connection is made via the external terminals 1S and 1L, and the connection between the second terminal P3 on the secondary side of the second Tr 12b and the sixth terminal F of the second toggle SW 13b is made via the external terminals 3S and 3L. Connected.
The external terminal P1 connects the VCT side P1 terminal of the test plug 11, the instrument side P1 terminal of the test plug 11, the primary second terminal P1 of the first Tr 12a, and the primary terminal 1 of the second Tr 12b. Connected to the lead wire.
Similarly, the external terminal P2 connects the VCT side P2 terminal of the test plug 11, the instrument side P2 terminal of the test plug 11, the second terminal P2 on the primary side of the first Tr 12a, and the first terminal P2 on the primary side of the second Tr 12b. Connected to the lead wire.
Similarly, the external terminal P3 is connected to a lead wire that connects the VCT side P3 terminal of the test plug 11, the instrument side P3 terminal of the test plug 11, and the second terminal P3 on the primary side of the second Tr 12b.

トグルスイッチ(第1トグルSW13a、第2トグルSW13b)は、スイッチレバーが中立(垂直)の場合に第1端子A及び第2端子B間が開放状態であり、スイッチレバーを下側に倒すと、第1端子A及び第5端子E間が接続状態となり、第2端子B及び第6端子F間が接続状態となることで、順潮流側の結線になる。
これに対し、トグルスイッチ(第1トグルSW13a、第2トグルSW13b)のスイッチレバーを上側に倒すと、第1端子A及び第3端子C間が接続状態となり、第2端子B及び第4端子D間が接続状態となり、第3端子C及び第6端子F間の配線と第4端子D及び第5端子E間の配線との交差により、逆潮流側の結線になる。
When the switch lever is neutral (vertical), the toggle switch (first toggle SW 13a, second toggle SW 13b) is in an open state between the first terminal A and the second terminal B, and when the switch lever is tilted downward, The connection between the first terminal A and the fifth terminal E is connected, and the connection between the second terminal B and the sixth terminal F is connected.
On the other hand, when the switch lever of the toggle switch (first toggle SW 13a, second toggle SW 13b) is tilted upward, the first terminal A and the third terminal C are connected, and the second terminal B and the fourth terminal D are connected. The connection between the third terminal C and the sixth terminal F and the wiring between the fourth terminal D and the fifth terminal E result in a reverse power flow side connection.

電力量計誤差測定器102は、JEMIC(日本電気計器検定所)等で校正された既存の誤差試験装置であり、計器20に供給される電流を測定し、計器20に印加される電圧を測定して、電力量を算出すると共に、当該電力量の算出値又は当該算出値に対応するパルス信号のパルス数と計器20の計量値又は当該計量値に対応するパルス信号のパルス数との誤差を算出する。
また、本実施形態に係る電力量計誤差測定器102は、テストSW1の計器側P1端子、計器側P2端子及び計器側P3端子に電圧ケーブル102aを接続して、計器20に印加される電圧を測定する。
なお、電力量計誤差測定器102は、模擬電力供給装置101の外部端子P1、P2及びP3に電圧ケーブル102aを接続して、計器20に印加される電圧を測定してもよい。
また、電力量計誤差測定器102は、テストSW1の計器側1S端子及びテストSW2のVCT側1S端子間のリード線と、テストSW1の計器側3S端子及びテストSW2のVCT側3S端子間のリード線とに電流ケーブル102bのCTをクランプして、計器20に供給される電流を測定する。
なお、電力量計誤差測定器102は、模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線とに電流ケーブル102bのCTをクランプして、計器20に供給される電流を測定してもよい。
The watt-hour meter error measuring device 102 is an existing error test device calibrated by JEMIC (Nippon Electric Meters Laboratory), etc., measures the current supplied to the meter 20, and measures the voltage applied to the meter 20. Then, the power amount is calculated, and an error between the calculated value of the power amount or the number of pulses of the pulse signal corresponding to the calculated value and the measured value of the meter 20 or the number of pulses of the pulse signal corresponding to the measured value is calculated. calculate.
Further, the watt-hour error measuring instrument 102 according to the present embodiment connects the voltage cable 102a to the instrument side P1 terminal, the instrument side P2 terminal, and the instrument side P3 terminal of the test SW1, and the voltage applied to the instrument 20 is determined. taking measurement.
The watt-hour meter error measuring device 102 may measure the voltage applied to the meter 20 by connecting the voltage cable 102a to the external terminals P1, P2 and P3 of the simulated power supply apparatus 101.
Also, the watt-hour error measuring instrument 102 is a lead wire between the meter side 1S terminal of the test SW1 and the VCT side 1S terminal of the test SW2, and a lead wire between the meter side 3S terminal of the test SW1 and the VCT side 3S terminal of the test SW2. The CT of the current cable 102b is clamped to the line, and the current supplied to the meter 20 is measured.
The watt-hour error measuring instrument 102 clamps the CT of the current cable 102b between the lead wire between the external terminals 1S and 1L and the lead wire between the external terminals 3S and 3L of the simulated power supply apparatus 101, and the meter 20 May be measured.

また、本実施形態に係る電力量計誤差測定器102は、図1(b)に示すように、売電用計器21又は買電用計器22のイヤホンジャック21a,22aに接続されたパルスケーブル102d及びパルス分周器102cを介して接続され、売電用計器21又は買電用計器22から出力されるパルス信号がパルス分周器102cにより分周されて入力される。   In addition, as shown in FIG. 1B, the watt-hour error measuring instrument 102 according to this embodiment is a pulse cable 102d connected to the earphone jacks 21a and 22a of the power selling instrument 21 or the power purchasing instrument 22. The pulse signal output from the power sale meter 21 or the power purchase meter 22 is divided by the pulse frequency divider 102c and input.

第1の判定手段103は、電力量計誤差測定器102が算出した誤差に基づき、計器20及びテストスイッチ30間の配線の誤結線又は計器20の故障の有無を判断する。
特に、第1の判定手段103は、予め記憶された誤差の閾値(例えば、3%)に基づき、電力量計誤差測定器102が算出した誤差が閾値以下(計量法で規定された3%以内の誤差)の場合に、「誤結線無し(正常な結線)」及び「計器20の故障無し」と判定し、電力量計誤差測定器102が算出した誤差が閾値を超過した場合に、「誤結線有り」又は「計器20の故障有り」と判定する。
The first determination unit 103 determines whether there is a misconnection in the wiring between the meter 20 and the test switch 30 or the failure of the meter 20 based on the error calculated by the watt-hour meter error measuring device 102.
In particular, the first determination unit 103 determines that the error calculated by the watt-hour error measuring device 102 is equal to or less than the threshold (within 3% defined by the measurement method) based on a threshold value of error stored in advance (for example, 3%). If the error calculated by the watt-hour error measuring instrument 102 exceeds the threshold value, it is determined that there is an “incorrect error”. It is determined that “there is a connection” or “the instrument 20 is faulty”.

つぎに、本実施形態に係る正常計量確認装置10の使用方法について説明する。
まず、売電用計器21についての誤結線又は故障を確認する
作業者は、電力量計誤差測定器102の電圧ケーブル102aをテストSW1の計器側P1端子、計器側P2端子及び計器側P3端子に接続し、電力量計誤差測定器102の電流ケーブル102bのCTをテストSW1の計器側1S端子及びテストSW2のVCT側1S端子間のリード線と、テストSW1の計器側3S端子及びテストSW2のVCT側3S端子間のリード線とにクランプし、電力量計誤差測定器102に接続されたパルス分周器102cのパルスケーブル102dを売電用計器21のイヤホンジャック21aに接続する。
なお、作業者は、電力量計誤差測定器102の電圧ケーブル102aを模擬電力供給装置101の外部端子P1、P2及びP3に接続し、電力量計誤差測定器102の電流ケーブル102bのCTを模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線とにクランプしてもよい。
Below, the usage method of the normal measurement confirmation apparatus 10 which concerns on this embodiment is demonstrated.
First, an operator who confirms an erroneous connection or failure of the power selling meter 21 connects the voltage cable 102a of the watt-hour meter error measuring device 102 to the meter side P1 terminal, the meter side P2 terminal and the meter side P3 terminal of the test SW1. Connect the CT of the current cable 102b of the watt-hour error measuring instrument 102 to the lead wire between the instrument side 1S terminal of the test SW1 and the VCT side 1S terminal of the test SW2, and the VCT of the instrument side 3S terminal of the test SW1 and the test SW2. The pulse cable 102d of the pulse frequency divider 102c connected to the wattmeter error measuring instrument 102 is connected to the earphone jack 21a of the power selling instrument 21 by clamping to the lead wire between the side 3S terminals.
The operator connects the voltage cable 102a of the watt-hour error measuring device 102 to the external terminals P1, P2, and P3 of the simulated power supply device 101 to simulate the CT of the current cable 102b of the watt-hour error measuring device 102. The power supply device 101 may be clamped to the lead wire between the external terminals 1S and 1L and the lead wire between the external terminals 3S and 3L.

そして、作業者は、柄が収納状態(上面及び下面の端子間が導通状態)のテストプラグ11をテストSW1に接続する。この時点で、計器20(売電用計器21、買電用計器22)に電圧110Vが課電されており、VCTのCT回路は計器20の電流回路と正常計量確認装置10の内部回路とで二重の閉回路となっている。   Then, the operator connects the test plug 11 in which the handle is stored (the conductive state is between the upper and lower terminals) to the test SW1. At this time, the voltage of 110V is applied to the meter 20 (the meter 21 for power sale, the meter 22 for power purchase), and the CT circuit of the VCT is composed of the current circuit of the meter 20 and the internal circuit of the normal weighing confirmation device 10. It is a double closed circuit.

そして、作業者は、テストプラグ11の柄を引き下げる(上面及び下面の端子間が非導通状態)。この時点で、テストSW1の一次側と二次側の回路が分離され、VCTのCT回路は正常計量確認装置10の内部回路のみでの閉回路となる。
また、作業者は、模擬電力供給装置101の第1トグルSW13a及び第2トグルSW13bのスイッチレバーを下側(順潮流側)に倒し、第1トグルSW13a並びに第2トグルSW13bの第1端子A及び第5端子E間を接続状態とし、第1トグルSW13a並びに第2トグルSW13bの第2端子B及び第6端子F間を接続状態とする。
Then, the operator pulls down the handle of the test plug 11 (the upper and lower terminals are in a non-conductive state). At this point, the primary side and secondary side circuits of the test SW1 are separated, and the CT circuit of the VCT becomes a closed circuit including only the internal circuit of the normal weighing confirmation device 10.
In addition, the operator tilts the switch levers of the first toggle SW 13a and the second toggle SW 13b of the simulated power supply apparatus 101 downward (forward power flow side), and the first terminals A and the first toggle SW 13a and the second toggle SW 13b. The connection between the fifth terminals E is set, and the connection between the second terminal B and the sixth terminal F of the first toggle SW 13a and the second toggle SW 13b is set.

これにより、VCTのPT(P1端子、P2端子)からテストSW1(VCT側P1端子、VCT側P2端子)及びテストプラグ11(VCT側P1端子、VCT側P2端子)を介して模擬電力供給装置101の第1Tr12aの一次側(第1端子P1、第2端子P2)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第1Tr12aの二次側の第1端子P1から外部端子(1S、1L)及び第1トグルSW13a(第5端子E、第1端子A)を介してテストプラグ11の計器側1S端子に向かって5A以下の電流が流れ、テストSW1の計器側1S端子からテストSW2(VCT側1S端子、計器側1S端子)を介して売電用計器21の1S端子に5A以下の電流が流れることになる。
同様に、VCTのPT(P2端子、P3端子)からテストSW1(VCT側P2端子、VCT側P3端子)及びテストプラグ11(VCT側P2端子、VCT側P3端子)を介して模擬電力供給装置101の第2Tr12bの一次側(第1端子P2、第2端子P3)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第2Tr12bの二次側の第2端子P3から外部端子(3S、3L)及び第2トグルSW13b(第6端子F、第2端子B)を介してテストプラグ11の計器側3S端子に向かって5A以下の電流が流れ、テストSW1の計器側3S端子からテストSW2(VCT側3S端子、計器側の3S端子)を介して売電用計器21の3S端子に5A以下の電流が流れることになる。
Thus, the simulated power supply apparatus 101 from the PT (P1 terminal, P2 terminal) of the VCT through the test SW1 (VCT side P1 terminal, VCT side P2 terminal) and the test plug 11 (VCT side P1 terminal, VCT side P2 terminal). The voltage of 110V applied to the primary side (first terminal P1, second terminal P2) of the first Tr 12a is stepped down to about 4.4V on the secondary side and is externally supplied from the first terminal P1 on the secondary side of the first Tr 12a. A current of 5 A or less flows toward the instrument side 1S terminal of the test plug 11 via the terminals (1S, 1L) and the first toggle SW 13a (fifth terminal E, first terminal A), and the instrument side 1S terminal of the test SW1 Current flows through the test SW2 (VCT side 1S terminal, meter side 1S terminal) to the 1S terminal of the meter 21 for power sale.
Similarly, the simulated power supply apparatus 101 from the VCT PT (P2 terminal, P3 terminal) to the test SW1 (VCT side P2 terminal, VCT side P3 terminal) and the test plug 11 (VCT side P2 terminal, VCT side P3 terminal). The voltage of 110V applied to the primary side (first terminal P2, second terminal P3) of the second Tr 12b of the second Tr 12b is stepped down to about 4.4V on the secondary side, and externally from the second terminal P3 on the secondary side of the second Tr 12b. A current of 5 A or less flows toward the instrument side 3S terminal of the test plug 11 via the terminals (3S, 3L) and the second toggle SW 13b (sixth terminal F, second terminal B), and the instrument side 3S terminal of the test SW1 Current flows through the test SW 2 (VCT side 3S terminal, meter side 3S terminal) to the 3S terminal of the power sale meter 21.

なお、買電用計器22には、売電用計器21の1L端子からテストSW2(計器側1L端子、VCT側1L端子)及びテストSW3(VCT側1L端子、計器側1L端子)を介して買電用計器22の1L端子に電流が流れ、売電用計器21の3L端子からテストSW2(計器側3L端子、VCT側3L端子)及びテストSW3(VCT側3L端子、計器側3L端子)を介して買電用計器22の3L端子に電流が流れることになるが、買電用計器22にとって逆潮流となるために、買電用計器22は電力量を計量しない。   Note that the power purchase meter 22 is purchased from the 1L terminal of the power sale meter 21 via the test SW2 (the meter side 1L terminal, the VCT side 1L terminal) and the test SW3 (the VCT side 1L terminal, the meter side 1L terminal). A current flows to the 1L terminal of the electric meter 22, and from the 3L terminal of the electric power meter 21 through the test SW2 (the meter side 3L terminal, the VCT side 3L terminal) and the test SW3 (the VCT side 3L terminal, the meter side 3L terminal). Thus, a current flows through the 3L terminal of the power purchase meter 22, but the power purchase meter 22 does not measure the amount of electric power because the power flow is reversed for the power purchase meter 22.

また、VCTのPT(P1端子、P2端子、P3端子)から、テストSW1(VCT側P1端子、VCT側P2端子、VCT側P3端子)、テストプラグ11(VCT側P1端子、VCT側P2端子、VCT側P3端子)、テストSW1(計器側P1端子、計器側P2端子、計器側P3端子)及びテストSW2(P1端子、P2端子、P3端子)を介して、売電用計器21のP1端子、P2端子及びP3端子に電圧が印加される。   Also, from the VCT PT (P1, P2, and P3 terminals) to the test SW1 (the VCT side P1, the VCT side P2, and the VCT side P3 terminals), the test plug 11 (the VCT side P1 terminal, the VCT side P2 terminal, VCT side P3 terminal), test SW1 (instrument side P1 terminal, instrument side P2 terminal, instrument side P3 terminal) and test SW2 (P1 terminal, P2 terminal, P3 terminal), the P1 terminal of the power sale meter 21; A voltage is applied to the P2 terminal and the P3 terminal.

そして、売電用計器21は、1S端子及び3S端子に供給される電流並びにP1端子、P2端子及びP3端子に印加される電圧に基づき、模擬電力供給装置101による電力量を計量し、当該計量に基づくパルス信号を発信する。   And the meter 21 for electric power sale measures the electric energy by the simulation electric power supply apparatus 101 based on the electric current supplied to 1S terminal and 3S terminal, and the voltage applied to P1 terminal, P2 terminal, and P3 terminal, The said measurement A pulse signal based on is transmitted.

電力量計誤差測定器102は、パルスケーブル102dを介してパルス分周器102cにより分周された売電用計器21からのパルス信号を受信する。
また、電力量計誤差測定器102は、電圧ケーブル102a並びにテストSW1の計器側P1端子、計器側P2端子及び計器側P3端子を介して、売電用計器21に印加される電圧を測定し、CT付電流ケーブル102bとテストSW1の計器側1S端子及びテストSW2のVCT側1S端子間のリード線並びにテストSW1の計器側3S端子及びテストSW2のVCT側3S端子間のリード線とを介して、売電用計器21に流れる電流を測定して、電力量を算出する。
なお、電力量計誤差測定器102の電圧ケーブル102aを模擬電力供給装置101の外部端子P1、P2及びP3に接続した場合には、電力量計誤差測定器102が、電圧ケーブル102a並びに模擬電力供給装置101の外部端子P1、P2及びP3を介して、買電用計器22に印加される電圧を測定する。
また、電力量計誤差測定器102の電流ケーブル102bのCTを模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線とにクランプした場合には、電力量計誤差測定器102が、CT付電流ケーブル102b並びに模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線を介して、買電用計器22に流れる電流を測定する。
そして、電力量計誤差測定器102は、買電用計器22に印加される電圧と買電用計器22に流れる電流とに基づき、電力量を算出する。
The watt-hour meter error measuring instrument 102 receives the pulse signal from the power selling meter 21 that has been frequency-divided by the pulse frequency divider 102c via the pulse cable 102d.
In addition, the watt-hour meter error measuring instrument 102 measures the voltage applied to the power selling instrument 21 via the voltage cable 102a and the instrument side P1 terminal, the instrument side P2 terminal and the instrument side P3 terminal of the test SW1, Via the current cable 102b with CT and the lead wire between the meter side 1S terminal of the test SW1 and the VCT side 1S terminal of the test SW2, and the lead wire between the meter side 3S terminal of the test SW1 and the VCT side 3S terminal of the test SW2, The amount of electric power is calculated by measuring the current flowing through the power sale meter 21.
When the voltage cable 102a of the watt-hour error measuring device 102 is connected to the external terminals P1, P2, and P3 of the simulated power supply apparatus 101, the watt-hour error measuring device 102 is connected to the voltage cable 102a and the simulated power supply. The voltage applied to the power purchase meter 22 is measured via the external terminals P1, P2 and P3 of the device 101.
Further, when the CT of the current cable 102b of the watt-hour error measuring device 102 is clamped to the lead wire between the external terminals 1S and 1L and the lead wire between the external terminals 3S and 3L of the simulated power supply apparatus 101, the power The meter error measuring instrument 102 flows to the meter 22 for power purchase through the CT-attached current cable 102b, the lead wire between the external terminals 1S and 1L of the simulated power supply apparatus 101, and the lead wire between the external terminals 3S and 3L. Measure the current.
Then, the watt-hour meter error measuring device 102 calculates the amount of power based on the voltage applied to the power purchase meter 22 and the current flowing through the power purchase meter 22.

そして、電力量計誤差測定器102は、売電用計器21から受信した分周後のパルス信号による売電用計器21の計量値と電力量計誤差測定器102自体による電力量の算出値との誤差を算出し、算出した誤差を第1の判定手段103に出力する。   Then, the watt-hour meter error measuring device 102 has a measured value of the power-selling meter 21 based on the divided pulse signal received from the power-selling meter 21 and a calculated value of the power amount by the watt-hour meter error measuring device 102 itself. And the calculated error is output to the first determination unit 103.

第1の判定手段103は、電力量計誤差測定器102が算出した誤差が閾値(例えば、3%)以下の場合に、売電用計器21についての「誤結線無し(正常な結線)」及び「売電用計器21の故障無し」と判定し、電力量計誤差測定器102が算出した誤差が閾値を超過した場合に、売電用計器21についての「誤結線有り」又は「売電用計器21の故障有り」と判定する。
なお、第1の判定手段103が売電用計器21についての「誤結線有り」又は「売電用計器21の故障有り」と判定した場合には、作業者が再度の配線確認(短絡バー31の外し忘れ、テストSW2並びにテストSW3のVCT側1L端子及び3L端子の入れ替わり、等)を行ない、誤結線がなければ、売電用計器21の故障と判断する。
When the error calculated by the watt-hour meter error measuring instrument 102 is equal to or less than a threshold value (for example, 3%), the first determination unit 103 performs “no incorrect connection (normal connection)” and When it is determined that there is no failure in the power selling meter 21 and the error calculated by the watt-hour meter error measuring instrument 102 exceeds the threshold value, “there is a misconnection” or “for power selling” It is determined that the instrument 21 has a failure.
When the first determination unit 103 determines that “there is an erroneous connection” or “the failure exists in the power sale meter 21” for the power sale meter 21, the operator confirms the wiring again (short-circuit bar 31. For example, the test SW2 and the test SW3 are switched between the VCT side 1L terminal and the 3L terminal, and so on.

つぎに、買電用計器22についての誤結線又は故障を確認する
作業者は、電力量計誤差測定器102の電圧ケーブル102aをテストSW1の計器側P1端子、計器側P2端子及び計器側P3端子に接続したままで、テストSW1の計器側1S端子及びテストSW2のVCT側1S端子間のリード線と、テストSW1の計器側3S端子及びテストSW2のVCT側3S端子間のリード線に対する電力量計誤差測定器102の電流ケーブル102bにおけるCTの向きを反転する。
また、作業者は、電力量計誤差測定器102に接続されたパルス分周器102cのパルスケーブル102dを買電用計器22のイヤホンジャック22aに接続する。
なお、電力量計誤差測定器102の電圧ケーブル102aを模擬電力供給装置101の外部端子P1、P2及びP3に接続し、電力量計誤差測定器102の電流ケーブル102bのCTを模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線とにクランプした場合は、CTを反転せずにそのままの状態とする。
Next, the operator confirms the erroneous connection or failure of the meter 22 for power purchase. The operator connects the voltage cable 102a of the watt-hour meter error measuring instrument 102 to the instrument side P1 terminal, the instrument side P2 terminal, and the instrument side P3 terminal of the test SW1. The watt-hour meter for the lead wire between the meter side 1S terminal of the test SW1 and the VCT side 1S terminal of the test SW2 and the lead wire between the meter side 3S terminal of the test SW1 and the VCT side 3S terminal of the test SW2 The direction of CT in the current cable 102b of the error measuring device 102 is reversed.
Further, the operator connects the pulse cable 102 d of the pulse frequency divider 102 c connected to the watt-hour error measuring instrument 102 to the earphone jack 22 a of the power purchase instrument 22.
The voltage cable 102a of the watt-hour error measuring device 102 is connected to the external terminals P1, P2, and P3 of the simulated power supply device 101, and the CT of the current cable 102b of the watt-hour error measuring device 102 is connected to the simulated power supply device 101. When the lead wire between the external terminals 1S and 1L and the lead wire between the external terminals 3S and 3L are clamped, the CT is left as it is without being inverted.

そして、作業者は、模擬電力供給装置101の第1トグルSW13a及び第2トグルSW13bのスイッチレバーを上側(逆潮流側)に倒し、第1トグルSW13a並びに第2トグルSW13bの第1端子A及び第3端子C間を接続状態とし、第1トグルSW13a並びに第2トグルSW13bの第2端子B及び第4端子D間を接続状態とする。   Then, the operator tilts the switch levers of the first toggle SW 13a and the second toggle SW 13b of the simulated power supply apparatus 101 upward (reverse power flow side), and the first terminal A and the second toggle SW 13b of the first toggle SW 13a and the second toggle SW 13b. The connection between the three terminals C is set, and the connection between the second terminal B and the fourth terminal D of the first toggle SW 13a and the second toggle SW 13b is set.

これにより、VCTのPT(P1端子、P2端子)からテストSW1(VCT側P1端子、VCT側P2端子)及びテストプラグ11(VCT側P1端子、VCT側P2端子)を介して模擬電力供給装置101の第1Tr12aの一次側(第1端子P1、第2端子P2)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第1Tr12aの二次側の第1端子P1から外部端子(1L、1S)及び第1トグルSW13a(第3端子E、第4端子D、第2端子B)を介してテストプラグ11の計器側1L端子に向かって5A以下の電流が流れ、テストSW1の計器側1L端子からテストSW3(VCT側1S端子、計器側1S端子)を介して買電用計器22の1S端子に5A以下の電流が流れることになる。
同様に、VCTのPT(P2端子、P3端子)からテストSW1(VCT側P2端子、VCT側P3端子)及びテストプラグ11(VCT側P2端子、VCT側P3端子)を介して模擬電力供給装置101の第2Tr12bの一次側(第1端子P2、第2端子P3)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第2Tr12bの二次側の第2端子P3から外部端子(3L、3S)及び第2トグルSW13b(第6端子F、第3端子C、第1端子A)を介してテストプラグ11の計器側3L端子に向かって5A以下の電流が流れ、テストSW1の計器側3L端子からテストSW3(VCT側3S端子、計器側の3S端子)を介して買電用計器22の3S端子に5A以下の電流が流れることになる。
Thus, the simulated power supply apparatus 101 from the PT (P1 terminal, P2 terminal) of the VCT through the test SW1 (VCT side P1 terminal, VCT side P2 terminal) and the test plug 11 (VCT side P1 terminal, VCT side P2 terminal). The voltage of 110V applied to the primary side (first terminal P1, second terminal P2) of the first Tr 12a is stepped down to about 4.4V on the secondary side and is externally supplied from the first terminal P1 on the secondary side of the first Tr 12a. A current of 5 A or less flows through the terminal (1L, 1S) and the first toggle SW 13a (third terminal E, fourth terminal D, second terminal B) toward the instrument side 1L terminal of the test plug 11, and the test SW1 Current of 5 A or less flows from the 1 L terminal on the meter side to the 1 S terminal of the meter 22 for power purchase via the test SW 3 (1 S terminal on the VCT side, 1 S terminal on the meter side).
Similarly, the simulated power supply apparatus 101 from the VCT PT (P2 terminal, P3 terminal) to the test SW1 (VCT side P2 terminal, VCT side P3 terminal) and the test plug 11 (VCT side P2 terminal, VCT side P3 terminal). The voltage of 110V applied to the primary side (first terminal P2, second terminal P3) of the second Tr 12b of the second Tr 12b is stepped down to about 4.4V on the secondary side, and externally from the second terminal P3 on the secondary side of the second Tr 12b. A current of 5 A or less flows through the terminals (3L, 3S) and the second toggle SW 13b (sixth terminal F, third terminal C, first terminal A) toward the instrument side 3L terminal of the test plug 11, and the test SW1 The current of 5 A or less flows from the 3L terminal of the meter to the 3S terminal of the meter 22 for power purchase via the test SW3 (3S terminal on the VCT side, 3S terminal on the meter side).

なお、売電用計器21には、買電用計器22の1L端子からテストSW3(計器側1L端子、VCT側1L端子)及びテストSW2(VCT側1L端子、計器側1L端子)を介して売電用計器21の1L端子に電流が流れ、売電用計器21の3L端子からテストSW3(計器側3L端子、VCT側3L端子)及びテストSW2(VCT側3L端子、計器側3L端子)を介して売電用計器21の3L端子に電流が流れることになるが、売電用計器21にとって逆潮流となるために、売電用計器21は電力量を計量しない。   In addition, it sells to the meter 21 for electric power sales from the 1L terminal of the meter 22 for electricity purchase through the test SW3 (1L terminal on the instrument side, 1L terminal on the VCT side) and the test SW2 (1L terminal on the VCT side, 1L terminal on the instrument side). A current flows to the 1L terminal of the electric meter 21 and passes through the test SW3 (the meter side 3L terminal, the VCT side 3L terminal) and the test SW2 (the VCT side 3L terminal, the meter side 3L terminal) from the 3L terminal of the power sale meter 21 Thus, a current flows through the 3L terminal of the power selling meter 21, but the power selling meter 21 does not measure the amount of power because the power selling meter 21 has a reverse power flow.

また、VCTのPT(P1端子、P2端子、P3端子)から、テストSW1(VCT側P1端子、VCT側P2端子、VCT側P3端子)、テストプラグ11(VCT側P1端子、VCT側P2端子、VCT側P3端子)、テストSW1(計器側P1端子、計器側P2端子、計器側P3端子)及びテストSW3(P1端子、P2端子、P3端子)を介して、買電用計器22のP1端子、P2端子及びP3端子に電圧が印加される。   Also, from the VCT PT (P1, P2, and P3 terminals) to the test SW1 (the VCT side P1, the VCT side P2, and the VCT side P3 terminals), the test plug 11 (the VCT side P1 terminal, the VCT side P2 terminal, Via the VCT side P3 terminal), the test SW1 (instrument side P1 terminal, the instrument side P2 terminal, the instrument side P3 terminal) and the test SW3 (P1 terminal, P2 terminal, P3 terminal), A voltage is applied to the P2 terminal and the P3 terminal.

そして、買電用計器22は、1S端子及び3S端子に供給される電流並びにP1端子、P2端子及びP3端子に印加される電圧に基づき、模擬電力供給装置101による電力量を計量し、当該計量に基づくパルス信号を発信する。   And the meter 22 for electricity purchase measures the electric energy by the simulation electric power supply apparatus 101 based on the electric current supplied to 1S terminal and 3S terminal, and the voltage applied to P1 terminal, P2 terminal, and P3 terminal, The said measurement A pulse signal based on is transmitted.

電力量計誤差測定器102は、パルスケーブル102dを介してパルス分周器102cにより分周された買電用計器22からのパルス信号を受信する。
また、電力量計誤差測定器102は、電圧ケーブル102a並びにテストSW1の計器側P1端子、計器側P2端子及び計器側P3端子を介して、買電用計器22に印加される電圧を測定し、CT付電流ケーブル102bとテストSW1の計器側1S端子及びテストSW2のVCT側1S端子間のリード線並びにテストSW1の計器側3S端子及びテストSW2のVCT側3S端子間のリード線とを介して、買電用計器22に流れる電流を測定して、電力量を算出する。
なお、電力量計誤差測定器102の電圧ケーブル102aを模擬電力供給装置101の外部端子P1、P2及びP3に接続した場合には、電力量計誤差測定器102が、電圧ケーブル102a並びに模擬電力供給装置101の外部端子P1、P2及びP3を介して、買電用計器22に印加される電圧を測定する。
また、電力量計誤差測定器102の電流ケーブル102bのCTを模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線とにクランプした場合には、電力量計誤差測定器102が、CT付電流ケーブル102b並びに模擬電力供給装置101の外部端子1S及び1L間のリード線と外部端子3S及び3L間のリード線を介して、買電用計器22に流れる電流を測定する。
そして、電力量計誤差測定器102は、買電用計器22に印加される電圧と買電用計器22に流れる電流とに基づき、電力量を算出する。
The watt-hour meter error measuring instrument 102 receives the pulse signal from the power purchase meter 22 divided by the pulse frequency divider 102c via the pulse cable 102d.
Further, the watt-hour meter error measuring instrument 102 measures the voltage applied to the power purchase meter 22 via the voltage cable 102a and the meter side P1 terminal, the meter side P2 terminal and the meter side P3 terminal of the test SW1, Via the current cable 102b with CT and the lead wire between the meter side 1S terminal of the test SW1 and the VCT side 1S terminal of the test SW2, and the lead wire between the meter side 3S terminal of the test SW1 and the VCT side 3S terminal of the test SW2, The amount of electric power is calculated by measuring the current flowing through the power purchase meter 22.
When the voltage cable 102a of the watt-hour error measuring device 102 is connected to the external terminals P1, P2, and P3 of the simulated power supply apparatus 101, the watt-hour error measuring device 102 is connected to the voltage cable 102a and the simulated power supply. The voltage applied to the power purchase meter 22 is measured via the external terminals P1, P2 and P3 of the device 101.
Further, when the CT of the current cable 102b of the watt-hour error measuring device 102 is clamped to the lead wire between the external terminals 1S and 1L and the lead wire between the external terminals 3S and 3L of the simulated power supply apparatus 101, the power The meter error measuring instrument 102 flows to the meter 22 for power purchase through the CT-attached current cable 102b, the lead wire between the external terminals 1S and 1L of the simulated power supply apparatus 101, and the lead wire between the external terminals 3S and 3L. Measure the current.
Then, the watt-hour meter error measuring device 102 calculates the amount of power based on the voltage applied to the power purchase meter 22 and the current flowing through the power purchase meter 22.

そして、電力量計誤差測定器102は、買電用計器22から受信した分周後のパルス信号による買電用計器22の計量値と電力量計誤差測定器102自体による電力量の算出値との誤差を算出し、算出した誤差を第1の判定手段103に出力する。   Then, the watt-hour meter error measuring device 102 has a measured value of the power-purchasing meter 22 based on the pulse signal after frequency division received from the power-purchasing meter 22 and a calculated value of the power amount by the watt-hour meter error measuring device 102 itself. And the calculated error is output to the first determination unit 103.

第1の判定手段103は、電力量計誤差測定器102が算出した誤差が閾値(例えば、3%)以下の場合に、買電用計器22についての「誤結線無し(正常な結線)」及び「買電用計器22の故障無し」と判定し、電力量計誤差測定器102が算出した誤差が閾値を超過した場合に、買電用計器22についての「誤結線有り」又は「買電用計器22の故障有り」と判定する。
なお、第1の判定手段103が買電用計器22についての「誤結線有り」又は「買電用計器22の故障有り」と判定した場合には、作業者が再度の配線確認を行ない、誤結線がなければ、買電用計器22の故障と判断する。
When the error calculated by the watt-hour meter error measuring instrument 102 is equal to or less than a threshold value (for example, 3%), the first determination unit 103 performs “no erroneous connection (normal connection)” and When it is determined that there is no failure in the meter for power purchase 22 and the error calculated by the watt-hour meter error measuring instrument 102 exceeds the threshold, “there is a misconnection” or “for power purchase” It is determined that the instrument 22 has a failure.
When the first determination unit 103 determines that “there is an incorrect connection” or “there is a failure in the power purchase meter 22” for the power purchase meter 22, the operator checks the wiring again and makes a mistake. If there is no connection, it is determined that the meter for power purchase 22 has failed.

以上のように、本実施形態に係る模擬電力供給装置101においては、需要家の負荷300の稼動(実潮流)がない場合であっても、VCT電圧を絶縁Tr(第1Tr12a、第2Tr12b)で降圧し、計器20(売電用計器21、買電用計器22)の電流回路に実負荷相当の虚負荷電流を直接供給することができ、電力量計として高圧・特高用の模擬負荷を用いた場合と同様な計量を実現することができると共に、装置の小型軽量化を図ることができるという作用効果を奏する。
また、本実施形態に係る模擬電力供給装置101においては、VCTの三相電圧をそのまま使用して三相電圧及び電流を生成(電圧はそのまま使用)しているため、単相電源を使用して三相電圧及び電流を生成している市販の虚偽負荷試験装置と比較して、回路構成が単純であり、低コストであるという作用効果を奏する。
As described above, in the simulated power supply apparatus 101 according to the present embodiment, the VCT voltage is insulated by Tr (first Tr12a, second Tr12b) even when there is no operation (actual power flow) of the customer's load 300. The voltage can be stepped down, and the imaginary load current equivalent to the actual load can be directly supplied to the current circuit of the meter 20 (the meter 21 for power sale, the meter 22 for power purchase). It is possible to achieve the same weighing as when used, and to achieve the effect of reducing the size and weight of the apparatus.
Further, in the simulated power supply apparatus 101 according to the present embodiment, the three-phase voltage and current are generated using the three-phase voltage of the VCT as it is (the voltage is used as it is), so a single-phase power source is used. Compared with a commercially available false load testing device that generates a three-phase voltage and current, the circuit configuration is simple and the cost is reduced.

特に、模擬電力供給装置101を備えた正常計量確認装置10においては、計器20の計量値と電力量計誤差測定器102の算出値との誤差に基づき、計器20の正常計量(結線)又は計器20の故障の有無を判定することができるという作用効果を奏する。   In particular, in the normal metering confirmation device 10 provided with the simulated power supply device 101, based on the error between the metered value of the meter 20 and the calculated value of the watt-hour meter error measuring device 102, the normal metering (connection) of the meter 20 or the meter There exists an effect that the presence or absence of 20 failures can be determined.

また、本実施形態に係る正常計量確認装置10(模擬電力供給装置101)は、テストスイッチ30(テストSW1)に嵌合するテストプラグ11を使用することにより、VCT及び計器20間の既設の配線に対して接続作業が簡易であり、VCT及び計器20間の既設の配線に対して確実に結線することができるという作用効果を奏する。   In addition, the normal measurement confirmation device 10 (simulated power supply device 101) according to the present embodiment uses the test plug 11 fitted to the test switch 30 (test SW1), so that the existing wiring between the VCT and the meter 20 is used. The connection work is simple, and there is an effect that the existing wiring between the VCT and the meter 20 can be reliably connected.

ここで、一つのVCTに対して売電用計器21及び買電用計器22を設定している場合の各計器20の計量は、順潮流時には、売電用計器21が計量し、買電用計器22が無計量となり、逆潮流時には、売電用計器21が無計量となり、買電用計器22が計量する。
これに対し、本実施形態に係る正常計量確認装置10(模擬電力供給装置101)は、トグルスイッチ(第1トグルSW13a、第2トグルSW13b)を用いた結線により、順潮流又は逆潮流をスイッチ一つで切り替えることができ、計器20の正常計量(正常結線)又は計器20の故障の有無の判定を効率的かつ確実に行なうことができるという作用効果を奏する。
Here, when the power sale meter 21 and the power purchase meter 22 are set for one VCT, each meter 20 is weighed by the power sale meter 21 at the time of normal tide, The meter 22 becomes non-weighing, and at the time of reverse power flow, the meter for selling electricity 21 becomes unweighed and the meter for buying electricity 22 measures.
On the other hand, the normal measurement confirmation device 10 (simulated power supply device 101) according to the present embodiment switches the forward flow or the reverse flow by a connection using a toggle switch (first toggle SW 13a, second toggle SW 13b). Thus, there is an effect that the meter 20 can perform normal weighing (normal connection) or the meter 20 can be determined efficiently and reliably.

(本発明の第2の実施形態)
図5は第2の実施形態に係る正常計量確認装置の概略構成及び結線を示す概略構成図である。図5において、図1乃至図4と同じ符号は、同一又は相当部分を示し、その説明を省略する。
(Second embodiment of the present invention)
FIG. 5 is a schematic configuration diagram showing a schematic configuration and connection of a normal weighing confirmation device according to the second embodiment. 5, the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding parts, and the description thereof is omitted.

本実施形態に係る正常計量確認装置10は、図5に示すように、電力量計誤差測定器102の代わりに、Tr(第1Tr12a、第2Tr12b)及びテストプラグ11間に接続され、計器20(売電用計器21、買電用計器22)と異なる他の計器である参考計器40を備え、パルス分周器102cの代わりに、計器20の計量値又は当該計量値に対応するパルス信号及び参考計器40の計量値又は当該計量値に対応するパルス信号に基づき、当該計器20及び参考計器40の計量値又はパルス数の誤差を検出する検出手段104を備え、第1の判定手段103の代わりに、検出手段104が検出した計量値又はパルス数の誤差に基づき、計器20及びテストスイッチ30間の配線の誤結線又は計器20の故障の有無を判断する第2の判定手段105を備える。   As shown in FIG. 5, the normal metering confirmation device 10 according to the present embodiment is connected between the Tr (first Tr 12a, second Tr 12b) and the test plug 11 instead of the watt-hour error measuring instrument 102, and the meter 20 ( Reference meter 40, which is another meter different from meter 21 for power sale and meter 22) for power purchase, is provided instead of pulse divider 102c, the measured value of meter 20 or a pulse signal corresponding to the measured value and reference Based on the measurement value of the meter 40 or a pulse signal corresponding to the measurement value, the detection unit 104 detects an error in the measurement value or the number of pulses of the meter 20 and the reference meter 40, and instead of the first determination unit 103. Second determination for determining the presence or absence of wiring misconnection or failure of the meter 20 based on the measurement value or the error in the number of pulses detected by the detecting means 104 It provided with a stage 105.

参考計器40は、計器20(売電用計器21、買電用計器22)と同種類の電力量計であり、電流端子である1S端子、1L端子、3S端子及び3L端子を備え、電圧端子であるP1端子、P2端子及びP3端子を備えている。
参考計器40の電流端子は、1S端子が第1Tr12aの二次側の第1端子P1に接続され、1L端子が第1トグルSW13aの第5端子Eに接続され、3S端子が第2Tr12bの二次側の第2端子P3に接続され、3L端子が第2トグルSW13bの第6端子Fに接続される。
参考計器40の電圧端子は、P1端子がテストプラグ11のP1端子(計器側、VCT側)及び第1Tr12aの一次側の第1端子P1間の配線に接続され、P2端子がテストプラグ11のP2端子(計器側、VCT側)並びに第1Tr12aの一次側の第2端子P2及び第2Tr12bの一次側の第1端子P2間の配線に接続され、P3端子がテストプラグ11のP3端子(計器側、VCT側)及び第2Tr12bの一次側の第2端子P3間の配線に接続される。
The reference meter 40 is a watt hour meter of the same type as the meter 20 (the meter 21 for power sale, the meter 22 for power purchase), and includes a 1S terminal, a 1L terminal, a 3S terminal, and a 3L terminal as current terminals, and a voltage terminal. P1 terminal, P2 terminal, and P3 terminal.
As for the current terminal of the reference meter 40, the 1S terminal is connected to the first terminal P1 on the secondary side of the first Tr 12a, the 1L terminal is connected to the fifth terminal E of the first toggle SW 13a, and the 3S terminal is the secondary of the second Tr 12b. And the 3L terminal is connected to the sixth terminal F of the second toggle SW 13b.
The voltage terminal of the reference meter 40 is connected to the wiring between the P1 terminal of the test plug 11 (the meter side and the VCT side) and the first terminal P1 on the primary side of the first Tr 12a, and the P2 terminal is P2 of the test plug 11. Terminal (instrument side, VCT side) and the wiring between the first terminal P2 on the primary side of the first Tr 12a and the first terminal P2 on the primary side of the second Tr 12b, and the P3 terminal is connected to the P3 terminal (instrument side, VCT side) and a wiring between the second terminal P3 on the primary side of the second Tr 12b.

検出手段104は、計器20(売電用計器21、買電用計器22)から出力されるパルス信号に基づきパルス数をカウントする第1パルスカウンター104aと、参考計器40から出力されるパルス信号に基づきパルス数をカウントする第2パルスカウンター104bと、第1パルスカウンター104a及び第2パルスカウンター104bから出力されるパルス数の差を検出する検出部104cと、を備える。   The detection means 104 includes a first pulse counter 104a that counts the number of pulses based on the pulse signal output from the meter 20 (the power sale meter 21 and the power purchase meter 22), and the pulse signal output from the reference meter 40. A second pulse counter 104b that counts the number of pulses based on the first pulse counter 104a, and a detection unit 104c that detects a difference in the number of pulses output from the first pulse counter 104a and the second pulse counter 104b.

第2の判定手段105は、予め記憶されたパルス数の差(参考計器40の計量値に対する計器20の計量値の誤差)の閾値に基づき、検出手段104が検出したパルス数の差が閾値以下の場合に、「誤結線無し(正常な結線)」及び「計器20の故障無し」と判定し、検出手段104が検出したパルス数の差が閾値を超過した場合に、「誤結線有り」又は「計器20の故障有り」と判定する。   The second determination unit 105 determines that the difference in the number of pulses detected by the detection unit 104 is equal to or less than the threshold value based on a threshold value of a difference in the number of pulses stored in advance (an error in the measurement value of the meter 20 with respect to the measurement value of the reference meter 40). In the case of "No erroneous connection (normal connection)" and "No failure of the meter 20", and when the difference in the number of pulses detected by the detecting means 104 exceeds the threshold value, It is determined that “the instrument 20 has a failure”.

なお、本実施形態に係る正常計量確認装置10は、JEMIC等で校正された電力量計誤差測定器102の代わりに、参考計器40を使用しているため、参考計器40の計量値に3%の誤差を含む可能性がある。
このため、本実施形態に係るパルス数の差の閾値は、計量法で規定された3%以内を基準にした3%を第1の閾値とし、計量法の規定3%と参考計器40の誤差3%とを考慮した6%を第2の閾値として設定している。
In addition, since the normal measurement confirmation device 10 according to the present embodiment uses the reference meter 40 instead of the watt-hour error measuring device 102 calibrated by JEMIC or the like, the measurement value of the reference meter 40 is 3%. May contain errors.
For this reason, the threshold value for the difference in the number of pulses according to the present embodiment is 3% based on 3% defined by the measurement method as a first threshold, and the error of the reference instrument 40 is 3% defined by the measurement method. 6% considering 3% is set as the second threshold.

つぎに、本実施形態に係る正常計量確認装置10の使用方法について説明する。
まず、売電用計器21についての誤結線又は故障を確認する。
作業者は、検出手段104の第1パルスカウンター104aのパルスケーブル104dを売電用計器21のイヤホンジャック21aに接続し、検出手段104の第2パルスカウンター104bのパルスケーブル104dを参考計器40のイヤホンジャック40aに接続する。
Below, the usage method of the normal measurement confirmation apparatus 10 which concerns on this embodiment is demonstrated.
First, an incorrect connection or failure of the power sale meter 21 is confirmed.
The operator connects the pulse cable 104d of the first pulse counter 104a of the detection means 104 to the earphone jack 21a of the power sale meter 21, and connects the pulse cable 104d of the second pulse counter 104b of the detection means 104 to the earphone of the reference meter 40. Connect to jack 40a.

そして、作業者は、柄が収納状態(上面及び下面の端子間が導通状態)のテストプラグ11をテストSW1に接続する。この時点で、計器20(売電用計器21、買電用計器22)に電圧110Vが課電されている。   Then, the operator connects the test plug 11 in which the handle is stored (the conductive state is between the upper and lower terminals) to the test SW1. At this time, a voltage of 110 V is applied to the meter 20 (the meter 21 for power sale, the meter 22 for power purchase).

そして、作業者は、テストプラグ11の柄を引き下げる(上面及び下面の端子間が非導通状態)。この時点で、テストSW1の一次側と二次側の回路が分離され、VCTのCT回路が閉回路となる。
また、作業者は、模擬電力供給装置101の第1トグルSW13a及び第2トグルSW13bのスイッチレバーを下側(順潮流側)に倒し、第1トグルSW13a並びに第2トグルSW13bの第1端子A及び第5端子E間を接続状態とし、第1トグルSW13a並びに第2トグルSW13bの第2端子B及び第6端子F間を接続状態とする。
Then, the operator pulls down the handle of the test plug 11 (the upper and lower terminals are in a non-conductive state). At this time, the primary and secondary circuits of the test SW1 are separated, and the CT circuit of the VCT becomes a closed circuit.
In addition, the operator tilts the switch levers of the first toggle SW 13a and the second toggle SW 13b of the simulated power supply apparatus 101 downward (forward power flow side), and the first terminals A and the first toggle SW 13a and the second toggle SW 13b. The connection between the fifth terminals E is set, and the connection between the second terminal B and the sixth terminal F of the first toggle SW 13a and the second toggle SW 13b is set.

これにより、VCTのPT(P1端子、P2端子)からテストSW1(VCT側P1端子、VCT側P2端子)及びテストプラグ11(VCT側P1端子、VCT側P2端子)を介して模擬電力供給装置101の第1Tr12aの一次側(第1端子P1、第2端子P2)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第1Tr12aの二次側の第1端子P1から参考計器40の1S端子に5A以下の電流が流れ、参考計器40(1S端子、1L端子)及び第1トグルSW13a(第5端子E、第1端子A)を介してテストプラグ11の計器側1S端子に向かって5A以下の電流が流れ、テストSW1の計器側1S端子からテストSW2(VCT側1S端子、計器側1S端子)を介して売電用計器21の1S端子に5A以下の電流が流れることになる。
同様に、VCTのPT(P2端子、P3端子)からテストSW1(VCT側P2端子、VCT側P3端子)及びテストプラグ11(VCT側P2端子、VCT側P3端子)を介して模擬電力供給装置101の第2Tr12bの一次側(第1端子P2、第2端子P3)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第2Tr12bの二次側の第2端子P3から参考計器40の3S端子に5A以下の電流が流れ、参考計器40(3S端子、3L端子)及び第2トグルSW13b(第6端子F、第2端子B)を介してテストプラグ11の計器側3S端子に向かって5A以下の電流が流れ、テストSW1の計器側3S端子からテストSW2(VCT側3S端子、計器側の3S端子)を介して売電用計器21の3S端子に5A以下の電流が流れることになる。
Thus, the simulated power supply apparatus 101 from the PT (P1 terminal, P2 terminal) of the VCT through the test SW1 (VCT side P1 terminal, VCT side P2 terminal) and the test plug 11 (VCT side P1 terminal, VCT side P2 terminal). 110V applied to the primary side (first terminal P1, second terminal P2) of the first Tr 12a is stepped down to about 4.4V on the secondary side, and is referenced from the first terminal P1 on the secondary side of the first Tr 12a. A current of 5 A or less flows through the 1S terminal of the meter 40, and the meter side 1S terminal of the test plug 11 via the reference meter 40 (1S terminal, 1L terminal) and the first toggle SW 13a (fifth terminal E, first terminal A). Current of 5A or less flows toward the terminal, and 5A or less flows from the 1S terminal of the test SW1 to the 1S terminal of the power sale meter 21 via the test SW2 (VCT side 1S terminal, instrument side 1S terminal). So that current flows.
Similarly, the simulated power supply apparatus 101 from the VCT PT (P2 terminal, P3 terminal) to the test SW1 (VCT side P2 terminal, VCT side P3 terminal) and the test plug 11 (VCT side P2 terminal, VCT side P3 terminal). The voltage of 110V applied to the primary side (first terminal P2, second terminal P3) of the second Tr 12b of the second Tr 12b is stepped down to about 4.4V on the secondary side and is referenced from the second terminal P3 on the secondary side of the second Tr 12b. A current of 5 A or less flows through the 3S terminal of the meter 40, and the meter side 3S terminal of the test plug 11 via the reference meter 40 (3S terminal, 3L terminal) and the second toggle SW 13b (sixth terminal F, second terminal B) The current of 5 A or less flows toward the terminal, and from the meter side 3S terminal of the test SW 1 to the 3S terminal of the power sale meter 21 via the test SW 2 (VCT side 3S terminal, meter side 3S terminal) Flow will be flowing.

なお、買電用計器22には、売電用計器21の1L端子からテストSW2(計器側1L端子、VCT側1L端子)及びテストSW3(VCT側1L端子、計器側1L端子)を介して買電用計器22の1L端子に電流が流れ、売電用計器21の3L端子からテストSW2(計器側3L端子、VCT側3L端子)及びテストSW3(VCT側3L端子、計器側3L端子)を介して買電用計器22の3L端子に電流が流れることになるが、買電用計器22にとって逆潮流となるために、買電用計器22は電力量を計量しない。   Note that the power purchase meter 22 is purchased from the 1L terminal of the power sale meter 21 via the test SW2 (the meter side 1L terminal, the VCT side 1L terminal) and the test SW3 (the VCT side 1L terminal, the meter side 1L terminal). A current flows to the 1L terminal of the electric meter 22, and from the 3L terminal of the electric power meter 21 through the test SW2 (the meter side 3L terminal, the VCT side 3L terminal) and the test SW3 (the VCT side 3L terminal, the meter side 3L terminal). Thus, a current flows through the 3L terminal of the power purchase meter 22, but the power purchase meter 22 does not measure the amount of electric power because the power flow is reversed for the power purchase meter 22.

また、VCTのPT(P1端子、P2端子、P3端子)から、テストSW1(VCT側P1端子、VCT側P2端子、VCT側P3端子)及びテストプラグ11(VCT側P1端子、VCT側P2端子、VCT側P3端子)を介して、参考計器40のP1端子、P2端子及びP3端子に電圧が印加され、さらにテストSW1(計器側P1端子、計器側P2端子、計器側P3端子)及びテストSW2(P1端子、P2端子、P3端子)を介して、売電用計器21のP1端子、P2端子及びP3端子に電圧が印加される。   Further, from the PT (P1 terminal, P2 terminal, P3 terminal) of the VCT, the test SW1 (VCT side P1 terminal, VCT side P2 terminal, VCT side P3 terminal) and the test plug 11 (VCT side P1 terminal, VCT side P2 terminal, A voltage is applied to the P1, P2 and P3 terminals of the reference instrument 40 via the VCT side P3 terminal), and a test SW1 (instrument side P1, terminal P2 terminal, instrument side P3 terminal) and test SW2 ( A voltage is applied to the P1 terminal, the P2 terminal, and the P3 terminal of the power sale meter 21 via the P1 terminal, the P2 terminal, and the P3 terminal.

そして、参考計器40は、1S端子及び3S端子に供給される電流並びにP1端子、P2端子及びP3端子に印加される電圧に基づき、模擬電力供給装置101による電力量を計量し、当該計量に基づくパルス信号を発信する。
また、売電用計器21は、1S端子及び3S端子に供給される電流並びにP1端子、P2端子及びP3端子に印加される電圧に基づき、模擬電力供給装置101による電力量を計量し、当該計量に基づくパルス信号を発信する。
The reference meter 40 measures the amount of power by the simulated power supply device 101 based on the current supplied to the 1S terminal and the 3S terminal and the voltage applied to the P1 terminal, the P2 terminal, and the P3 terminal, and based on the measurement. Send a pulse signal.
Further, the power sale meter 21 measures the amount of power by the simulated power supply apparatus 101 based on the current supplied to the 1S terminal and the 3S terminal and the voltage applied to the P1 terminal, the P2 terminal and the P3 terminal, and the measurement A pulse signal based on is transmitted.

検出手段104の第1パルスカウンター104aは、パルスケーブル104dを介して売電用計器21からのパルス信号を受信し、当該パルス信号に基づくパルス数をカウントする。
また、検出手段104の第2パルスカウンター104bは、パルスケーブル104dを介して参考計器40からのパルス信号を受信し、当該パルス信号に基づくパルス数をカウントする。
The first pulse counter 104a of the detecting means 104 receives the pulse signal from the power sale meter 21 via the pulse cable 104d, and counts the number of pulses based on the pulse signal.
The second pulse counter 104b of the detecting means 104 receives a pulse signal from the reference meter 40 via the pulse cable 104d and counts the number of pulses based on the pulse signal.

そして、検出手段104の検出部104cは、第1パルスカウンター104aから入力されたパルス数(パルス信号による売電用計器21の計量値)と第2パルスカウンター104bから入力されたパルス数(パルス信号による参考計器40の計量値)との差を検出し、検出したパルス数の差を第2の判定手段105に出力する。   Then, the detection unit 104c of the detection means 104 includes the number of pulses input from the first pulse counter 104a (measured value of the power sale meter 21 by the pulse signal) and the number of pulses input from the second pulse counter 104b (pulse signal). And the difference in the number of detected pulses is output to the second determination means 105.

第2の判定手段105は、(1)検出手段104の検出部104cが検出したパルス数の差(参考計器40の計量値に対する売電用計器21の計量値の誤差)が第1の閾値(3%)以下の場合に、売電用計器21についての「誤結線無し(正常な結線)」及び「売電用計器21の故障無し」と判定し、(2)検出手段104の検出部104cが検出したパルス数の差が第2の閾値(6%)を超過した場合に、売電用計器21についての「誤結線有り」又は「売電用計器21の故障有り」と判定し、(3)検出手段104の検出部104cが検出したパルス数の差が第1の閾値を超過し第2の閾値以内である場合に、売電用計器21についての「誤結線の可能性有り」又は「売電用計器21の故障の可能性有り」と判定する。   The second determination means 105 has (1) the difference in the number of pulses detected by the detection unit 104c of the detection means 104 (the error of the measured value of the power selling instrument 21 with respect to the measured value of the reference instrument 40) is the first threshold ( 3%) In the following cases, it is determined that there is “no erroneous connection (normal connection)” and “no failure of the power sale meter 21” for the power sale meter 21, and (2) the detection unit 104c of the detection means 104 When the difference in the number of pulses detected by exceeds the second threshold (6%), it is determined that the power selling instrument 21 is “incorrect connection” or “the power selling instrument 21 is faulty” 3) When the difference in the number of pulses detected by the detection unit 104c of the detection unit 104 exceeds the first threshold value and is within the second threshold value, “possibility of erroneous connection” for the power sale meter 21 or It is determined that there is a possibility of failure of the power sale meter 21.

なお、第2の判定手段105が売電用計器21についての「誤結線有り」又は「売電用計器21の故障有り」と判定した場合には、作業者が再度の配線確認を行ない、誤結線がなければ、売電用計器21の故障と判断する。
また、第2の判定手段105が売電用計器21についての「誤結線の可能性有り」又は「売電用計器21の故障の可能性有り」と判定した場合には、作業者が再度の配線確認を行ない、誤結線がなければ、校正された電力量計誤差測定器を用いて、売電用計器21の故障を確認することになる。
If the second determination means 105 determines that “there is an incorrect connection” or “the failure exists in the power sale meter 21” for the power sale meter 21, the operator checks the wiring again, If there is no connection, it is determined that the power sale meter 21 is out of order.
In addition, when the second determination means 105 determines that “there is a possibility of erroneous connection” or “there is a possibility that the power sale meter 21 is faulty” for the power sale meter 21, the operator again If the wiring is confirmed and there is no erroneous connection, the failure of the meter 21 for power sale is confirmed using the calibrated watt-hour error measuring instrument.

つぎに、買電用計器22についての誤結線又は故障を確認する
作業者は、検出手段104の第2パルスカウンター104bのパルスケーブル104dを参考計器40のイヤホンジャック40aに接続したまま、検出手段104の第1パルスカウンター104aのパルスケーブル104dを買電用計器22のイヤホンジャック22aに接続する。
Next, the operator who confirms the erroneous connection or failure of the meter for purchase 22 purchases the detection means 104 while the pulse cable 104d of the second pulse counter 104b of the detection means 104 is connected to the earphone jack 40a of the reference instrument 40. The pulse cable 104d of the first pulse counter 104a is connected to the earphone jack 22a of the meter 22 for power purchase.

そして、作業者は、模擬電力供給装置101の第1トグルSW13a及び第2トグルSW13bのスイッチレバーを上側(逆潮流側)に倒し、第1トグルSW13a並びに第2トグルSW13bの第1端子A及び第3端子C間を接続状態とし、第1トグルSW13a並びに第2トグルSW13bの第2端子B及び第4端子D間を接続状態とする。   Then, the operator tilts the switch levers of the first toggle SW 13a and the second toggle SW 13b of the simulated power supply apparatus 101 upward (reverse power flow side), and the first terminal A and the second toggle SW 13b of the first toggle SW 13a and the second toggle SW 13b. The connection between the three terminals C is set, and the connection between the second terminal B and the fourth terminal D of the first toggle SW 13a and the second toggle SW 13b is set.

これにより、VCTのPT(P1端子、P2端子)からテストSW1(VCT側P1端子、VCT側P2端子)及びテストプラグ11(VCT側P1端子、VCT側P2端子)を介して模擬電力供給装置101の第1Tr12aの一次側(第1端子P1、第2端子P2)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第1Tr12aの二次側の第1端子P1から参考計器40の1S端子に5A以下の電流が流れ、参考計器40(1S端子、1L端子)及び第1トグルSW13a(第5端子E、第4端子D、第2端子B)を介してテストプラグ11の計器側1L端子に向かって5A以下の電流が流れ、テストSW1の計器側1L端子からテストSW3(VCT側1S端子、計器側1S端子)を介して買電用計器22の1S端子に5A以下の電流が流れることになる。
同様に、VCTのPT(P2端子、P3端子)からテストSW1(VCT側P2端子、VCT側P3端子)及びテストプラグ11(VCT側P2端子、VCT側P3端子)を介して模擬電力供給装置101の第2Tr12bの一次側(第1端子P2、第2端子P3)に印加される110Vの電圧が二次側で4.4V程度に降圧され、第2Tr12bの二次側の第2端子P3から参考計器40の3S端子に5A以下の電流が流れ、参考計器40(3S端子、3L端子)及び第2トグルSW13b(第6端子F、第3端子C、第1端子A)を介してテストプラグ11の計器側3L端子に向かって5A以下の電流が流れ、テストSW1の計器側3L端子からテストSW3(VCT側3S端子、計器側の3S端子)を介して買電用計器22の3S端子に5A以下の電流が流れることになる。
Thus, the simulated power supply apparatus 101 from the PT (P1 terminal, P2 terminal) of the VCT through the test SW1 (VCT side P1 terminal, VCT side P2 terminal) and the test plug 11 (VCT side P1 terminal, VCT side P2 terminal). 110V applied to the primary side (first terminal P1, second terminal P2) of the first Tr 12a is stepped down to about 4.4V on the secondary side, and is referenced from the first terminal P1 on the secondary side of the first Tr 12a. A current of 5 A or less flows through the 1S terminal of the meter 40, and the test plug 11 is passed through the reference meter 40 (1S terminal, 1L terminal) and the first toggle SW 13a (fifth terminal E, fourth terminal D, second terminal B). A current of 5 A or less flows toward the 1 L terminal on the meter side, and from the 1 L terminal on the test SW 1 side through the test SW 3 (VCT side 1 S terminal, 1 S terminal on the meter side) So that the 5A following current flows.
Similarly, the simulated power supply apparatus 101 from the VCT PT (P2 terminal, P3 terminal) to the test SW1 (VCT side P2 terminal, VCT side P3 terminal) and the test plug 11 (VCT side P2 terminal, VCT side P3 terminal). The voltage of 110V applied to the primary side (first terminal P2, second terminal P3) of the second Tr 12b of the second Tr 12b is stepped down to about 4.4V on the secondary side and is referenced from the second terminal P3 on the secondary side of the second Tr 12b. A current of 5 A or less flows through the 3S terminal of the meter 40, and the test plug 11 is passed through the reference meter 40 (3S terminal, 3L terminal) and the second toggle SW 13b (sixth terminal F, third terminal C, first terminal A). A current of 5 A or less flows toward the meter side 3L terminal, and the 3S terminal of the power purchase meter 22 from the meter side 3L terminal of the test SW1 through the test SW3 (VCT side 3S terminal, 3S terminal on the meter side) 5A following the current will be flowing.

なお、売電用計器21には、買電用計器22の1L端子からテストSW3(計器側1L端子、VCT側1L端子)及びテストSW2(VCT側1L端子、計器側1L端子)を介して売電用計器21の1L端子に電流が流れ、売電用計器21の3L端子からテストSW3(計器側3L端子、VCT側3L端子)及びテストSW2(VCT側3L端子、計器側3L端子)を介して売電用計器21の3L端子に電流が流れることになるが、売電用計器21にとって逆潮流となるために、売電用計器21は電力量を計量しない。   In addition, it sells to the meter 21 for electric power sales from the 1L terminal of the meter 22 for electricity purchase through the test SW3 (1L terminal on the instrument side, 1L terminal on the VCT side) and the test SW2 (1L terminal on the VCT side, 1L terminal on the instrument side). A current flows to the 1L terminal of the electric meter 21 and passes through the test SW3 (the meter side 3L terminal, the VCT side 3L terminal) and the test SW2 (the VCT side 3L terminal, the meter side 3L terminal) from the 3L terminal of the power sale meter 21 Thus, a current flows through the 3L terminal of the power selling meter 21, but the power selling meter 21 does not measure the amount of power because the power selling meter 21 has a reverse power flow.

また、VCTのPT(P1端子、P2端子、P3端子)から、テストSW1(VCT側P1端子、VCT側P2端子、VCT側P3端子)及びテストプラグ11(VCT側P1端子、VCT側P2端子、VCT側P3端子)を介して、参考計器40のP1端子、P2端子及びP3端子に電圧が印加され、さらにテストSW1(計器側P1端子、計器側P2端子、計器側P3端子)及びテストSW3(P1端子、P2端子、P3端子)を介して、買電用計器22のP1端子、P2端子及びP3端子に電圧が印加される。   Further, from the PT (P1 terminal, P2 terminal, P3 terminal) of the VCT, the test SW1 (VCT side P1 terminal, VCT side P2 terminal, VCT side P3 terminal) and the test plug 11 (VCT side P1 terminal, VCT side P2 terminal, The voltage is applied to the P1, P2 and P3 terminals of the reference instrument 40 via the VCT side P3 terminal), and the test SW1 (instrument side P1 terminal, instrument side P2 terminal, instrument side P3 terminal) and test SW3 ( A voltage is applied to the P1 terminal, the P2 terminal, and the P3 terminal of the power purchase meter 22 via the P1 terminal, the P2 terminal, and the P3 terminal.

そして、参考計器40は、1S端子及び3S端子に供給される電流並びにP1端子、P2端子及びP3端子に印加される電圧に基づき、模擬電力供給装置101による電力量を計量し、当該計量に基づくパルス信号を発信する。
また、買電用計器22は、1S端子及び3S端子に供給される電流並びにP1端子、P2端子及びP3端子に印加される電圧に基づき、模擬電力供給装置101による電力量を計量し、当該計量に基づくパルス信号を発信する。
The reference meter 40 measures the amount of power by the simulated power supply device 101 based on the current supplied to the 1S terminal and the 3S terminal and the voltage applied to the P1 terminal, the P2 terminal, and the P3 terminal, and based on the measurement. Send a pulse signal.
Moreover, the meter 22 for electric power purchase measures the electric energy by the simulation electric power supply apparatus 101 based on the electric current supplied to 1S terminal and 3S terminal, and the voltage applied to P1 terminal, P2 terminal, and P3 terminal, and the said measurement A pulse signal based on is transmitted.

検出手段104の第1パルスカウンター104aは、パルスケーブル104dを介して買電用計器22からのパルス信号を受信し、当該パルス信号に基づくパルス数をカウントする。
また、検出手段104の第2パルスカウンター104bは、パルスケーブル104dを介して参考計器40からのパルス信号を受信し、当該パルス信号に基づくパルス数をカウントする。
The first pulse counter 104a of the detecting means 104 receives the pulse signal from the power purchase meter 22 via the pulse cable 104d and counts the number of pulses based on the pulse signal.
The second pulse counter 104b of the detecting means 104 receives a pulse signal from the reference meter 40 via the pulse cable 104d and counts the number of pulses based on the pulse signal.

そして、検出手段104の検出部104cは、第1パルスカウンター104aから入力されたパルス数(パルス信号による買電用計器22の計量値)と第2パルスカウンター104bから入力されたパルス数(パルス信号による参考計器40の計量値)との差を検出し、検出したパルス数の差を第2の判定手段105に出力する。   Then, the detection unit 104c of the detection means 104 includes the number of pulses input from the first pulse counter 104a (measured value of the meter 22 for power purchase using a pulse signal) and the number of pulses input from the second pulse counter 104b (pulse signal). And the difference in the number of detected pulses is output to the second determination means 105.

第2の判定手段105は、(1)検出手段104の検出部104cが検出したパルス数の差(参考計器40の計量値に対する買電用計器22の計量値の誤差)が第1の閾値(3%)以下の場合に、買電用計器22についての「誤結線無し(正常な結線)」及び「買電用計器22の故障無し」と判定し、(2)検出手段104の検出部104cが検出したパルス数の差が第2の閾値(6%)を超過した場合に、買電用計器22についての「誤結線有り」又は「買電用計器22の故障有り」と判定し、(3)検出手段104の検出部104cが検出したパルス数の差が第1の閾値を超過し第2の閾値以内である場合に、買電用計器22についての「誤結線の可能性有り」又は「買電用計器22の故障の可能性有り」と判定する。   The second determination means 105 has (1) the difference in the number of pulses detected by the detection unit 104c of the detection means 104 (the error of the measured value of the power purchase meter 22 with respect to the measured value of the reference meter 40) is the first threshold value ( 3%) In the following cases, it is determined that there is no “incorrect connection (normal connection)” and “no failure in the power purchase meter 22” for the power purchase meter 22, and (2) the detection unit 104c of the detection means 104 When the difference in the number of pulses detected by exceeds the second threshold value (6%), it is determined that “there is a misconnection” or “the failure of the power purchase meter 22” for the power purchase meter 22; 3) When the difference in the number of pulses detected by the detection unit 104c of the detection unit 104 exceeds the first threshold value and is within the second threshold value, “there is a possibility of erroneous connection” with respect to the meter 22 for power purchase or It is determined that there is a possibility of failure of the meter 22 for power purchase.

なお、第2の判定手段105が買電用計器22についての「誤結線有り」又は「買電用計器22の故障有り」と判定した場合には、作業者が再度の配線確認を行ない、誤結線がなければ、買電用計器22の故障と判断する。
また、第2の判定手段105が買電用計器22についての「誤結線の可能性有り」又は「買電用計器22の故障の可能性有り」と判定した場合には、作業者が再度の配線確認を行ない、誤結線がなければ、校正された電力量計誤差測定器を用いて、買電用計器22の故障を確認することになる。
In addition, when the second determination means 105 determines that “there is an erroneous connection” or “there is a failure of the power purchase meter 22” for the power purchase meter 22, the operator checks the wiring again, If there is no connection, it is determined that the meter for power purchase 22 has failed.
In addition, when the second determination unit 105 determines that “there is a possibility of erroneous connection” or “there is a possibility of failure of the power purchase meter 22” for the power purchase meter 22, the operator If the wiring check is performed and there is no erroneous connection, a failure of the meter 22 for power purchase will be confirmed using the calibrated watt-hour error measuring instrument.

なお、本実施形態においては、電力量計誤差測定器102の代わりに参考計器40を備え、パルス分周器102cの代わりに検出手段104を備え、第1の判定手段103の代わりに第2の判定手段105を備えるところが第1の実施形態と主に異なるところであり、参考計器40、検出手段104及び第2の判定手段105による作用効果以外は、第1の実施形態と同様の作用効果を奏する。   In this embodiment, the reference meter 40 is provided instead of the watt-hour error measuring device 102, the detection means 104 is provided instead of the pulse frequency divider 102c, and the second determination is performed instead of the first determination means 103. The determination unit 105 is mainly different from the first embodiment, and has the same effects as those of the first embodiment except for the effects of the reference instrument 40, the detection means 104, and the second determination means 105. .

本実施形態に係る正常計量確認装置10においては、JEMIC等で校正された誤差試験装置(電力量計誤差測定器102)を用いることなく、電力会社で常時在庫が存在する電力量計を活用することができるという作用効果を奏する。
なお、本実施形態に係る正常計量確認装置10においては、模擬電力供給装置101に参考計器40を内蔵する場合について説明したが、図3に示す模擬電力供給装置101の外部端子(電圧端子(P1、P2、P3)、電流端子(1L、1S、3L、3S))に、参考計器40の電圧端子(P1端子、P2端子、P3端子)及び電流端子(1L端子、1S端子、3L端子、3S端子)をそれぞれ接続し、参考計器40を模擬電力供給装置101の外付けとする構成であってもよい。
In the normal measurement confirmation device 10 according to the present embodiment, an watt-hour meter that is always in stock at an electric power company is used without using an error test device (watt-hour meter error measuring device 102) calibrated by JEMIC or the like. There is an effect of being able to.
In the normal weighing confirmation device 10 according to the present embodiment, the case where the reference meter 40 is built in the simulated power supply device 101 has been described. However, the external terminal (voltage terminal (P1) of the simulated power supply device 101 shown in FIG. , P2, P3), current terminal (1L, 1S, 3L, 3S)), voltage terminal (P1 terminal, P2 terminal, P3 terminal) and current terminal (1L terminal, 1S terminal, 3L terminal, 3S) of the reference instrument 40. Terminal) may be connected, and the reference meter 40 may be externally attached to the simulated power supply apparatus 101.

(本発明の第3の実施形態)
図6は第3の実施形態に係る正常計量確認装置の概略構成及び結線を示す概略構成図である。図7(a)は有効電力計の接続状態を正常側に切り替えた場合の計測値を説明するためのフェーザ図であり、図7(b)は有効電力計の接続状態を異常側に切り替えた場合の計測値を説明するためのフェーザ図である。図6において、図1乃至図5と同じ符号は、同一又は相当部分を示し、その説明を省略する。
(Third embodiment of the present invention)
FIG. 6 is a schematic configuration diagram showing a schematic configuration and connection of a normal measurement confirmation device according to the third embodiment. FIG. 7A is a phasor diagram for explaining measurement values when the active wattmeter connection state is switched to the normal side, and FIG. 7B is a diagram illustrating the active wattmeter connection state being switched to the abnormal side. It is a phasor figure for demonstrating the measured value in a case. 6, the same reference numerals as those in FIGS. 1 to 5 denote the same or corresponding parts, and the description thereof is omitted.

本実施形態に係る正常計量確認装置10は、図6に示すように、テストプラグ11に接続され、需要家の受電設備である進相コンデンサSC(力率改善用コンデンサ、並列コンデンサ(いわゆるスタコン)、力率改善用スタコン、図2参照)のスイッチ(以下、「第1スイッチ301」と称す)投入により生じる無効電流に基づく無効電力を計測する計測器を、さらに備える。
なお、本実施形態に係る計測器は、コスト低減のために単相有効電力計106を使用し、三相無効電力を計測しているが、単相有効電力計の代わりに、三相無効電力計を使用してもよい。
As shown in FIG. 6, the normal weighing confirmation device 10 according to the present embodiment is connected to a test plug 11 and is a phase advance capacitor SC (power factor improving capacitor, parallel capacitor (so-called stacon)) that is a power receiving facility of a consumer. And a measuring instrument for measuring reactive power based on reactive current generated by turning on a switch (hereinafter referred to as “first switch 301”) of a power factor improving supercomputer (see FIG. 2).
Note that the measuring instrument according to the present embodiment uses the single-phase active wattmeter 106 for cost reduction and measures the three-phase reactive power, but instead of the single-phase active wattmeter, the three-phase reactive power is measured. A meter may be used.

有効電力計106は、電流端子がテストプラグ11のVCT側3S端子及びVCT側3L端子に接続され、電圧端子が、第1端子A、第2端子B、第3端子C、第4端子D、第5端子E及び第6端子Fからなる6つの端子を有するトグルスイッチ(以下、「第3トグルSW13c」と称す)の第2端子B及び第5端子Eに接続される。   The active wattmeter 106 has a current terminal connected to the VCT side 3S terminal and the VCT side 3L terminal of the test plug 11, and voltage terminals are a first terminal A, a second terminal B, a third terminal C, a fourth terminal D, It is connected to a second terminal B and a fifth terminal E of a toggle switch (hereinafter referred to as “third toggle SW13c”) having six terminals including a fifth terminal E and a sixth terminal F.

第3トグルSW13cは、第4端子Dがテストプラグ11のVCT側P3端子及び計器側P3端子間の配線に接続され、第5端子Eがテストプラグ11のVCT側P2端子及び計器側P2端子間の配線に接続され、第6端子Fがテストプラグ11のVCT側P1端子及び計器側P1端子間の配線に接続される。   In the third toggle SW 13c, the fourth terminal D is connected to the wiring between the VCT side P3 terminal and the instrument side P3 terminal of the test plug 11, and the fifth terminal E is between the VCT side P2 terminal and the instrument side P2 terminal of the test plug 11. The sixth terminal F is connected to the wiring between the VCT side P1 terminal and the instrument side P1 terminal of the test plug 11.

また、本実施形態に係る模擬電力供給装置101においては、テストプラグ11のVCT側P1端子及び計器側P1端子間並びにテストプラグ11のVCT側P3端子及び計器側P3端子間の配線に、スイッチ(以下、「第2スイッチ14」と称す)を配設しており、第2スイッチ14を開放することにより、計器20(売電用計器21、買電用計器22)のP1端子及びP3端子に対するVCTのPTからの電圧の印加を遮断することができる。
また、本実施形態に係る模擬電力供給装置101においては、第2スイッチ14を開放することにより、計器側が停電状態になるため、誤結線の場合に、結線の手直しを安全に実施することができるという効果がある。
Further, in the simulated power supply apparatus 101 according to the present embodiment, a switch (on the wiring between the VCT side P1 terminal and the instrument side P1 terminal of the test plug 11 and between the VCT side P3 terminal and the instrument side P3 terminal of the test plug 11 is provided. (Hereinafter referred to as “second switch 14”), and by opening the second switch 14, the P1 terminal and the P3 terminal of the meter 20 (the meter 21 for power sale, the meter 22 for power purchase) are connected. Application of voltage from the PT of the VCT can be cut off.
Further, in the simulated power supply apparatus 101 according to the present embodiment, by opening the second switch 14, the instrument side is in a power failure state, so that it is possible to safely rework the connection in the case of incorrect connection. There is an effect.

また、本実施形態に係る第1の判定手段103は、有効電力計106の計測値に基づき、VCTの二次側端子及びテストスイッチ30(テストSW1)のVCT側端子間の配線の誤結線並びにVCTの一次側端子における電源側と負荷側との逆接続を判断する。   Further, the first determination unit 103 according to the present embodiment is based on the measured value of the active wattmeter 106, and the misconnection of the wiring between the VCT secondary terminal and the VCT side terminal of the test switch 30 (test SW1) and The reverse connection between the power supply side and the load side at the primary side terminal of the VCT is determined.

なお、本実施形態に係る正常計量確認装置10においては、図6に示すように、第1Tr12aの一次側の第1端子P1及び第2端子P2間の電圧P1−P2を測定し、第2Tr12bの一次側の第1端子P2及び第2端子P3間の電圧P3−P2を測定する電圧計を図示し、第1Tr12aの二次側の第1端子P1を流れる電流を測定し、第2Tr12bの二次側の第2端子P3を流れる電流を測定する電流計を図示しているが、これらの電圧計及び電流計は、必ずしも配設する必要はない。   In the normal weighing confirmation device 10 according to the present embodiment, as shown in FIG. 6, the voltage P1-P2 between the first terminal P1 and the second terminal P2 on the primary side of the first Tr 12a is measured, and the second Tr 12b A voltmeter for measuring the voltage P3-P2 between the first terminal P2 and the second terminal P3 on the primary side is illustrated, the current flowing through the first terminal P1 on the secondary side of the first Tr 12a is measured, and the secondary of the second Tr 12b Although an ammeter for measuring the current flowing through the second terminal P3 on the side is illustrated, these voltmeters and ammeters are not necessarily arranged.

つぎに、本実施形態に係る正常計量確認装置10の使用方法について説明する。
なお、計器20(売電用計器21、買電用計器22)についての誤結線又は故障の確認については、第1の実施形態に係る正常計量確認装置10の使用方法と同様であるので、説明を省略する。
以下、本実施形態に係る正常計量確認装置10による、VCTの二次側端及びテストスイッチ30(テストSW1)のVCT側端子間における配線の誤結線並びにVCTの一次側端子における電源側と負荷側との逆接続の確認方法について説明する。
Below, the usage method of the normal measurement confirmation apparatus 10 which concerns on this embodiment is demonstrated.
In addition, since it is the same as that of the usage method of the normal measurement confirmation apparatus 10 which concerns on 1st Embodiment about confirmation of the misconnection or failure about the meter 20 (the meter 21 for power sale, the meter 22 for power purchase), it demonstrates. Is omitted.
Hereinafter, by the normal measurement confirmation device 10 according to the present embodiment, the wiring connection between the secondary side end of the VCT and the VCT side terminal of the test switch 30 (test SW1), and the power supply side and the load side of the primary side terminal of the VCT A method for confirming reverse connection to will be described.

まず、作業者は、需要家の受電設備である第1スイッチ301を投入して、進相コンデンサSCを投入する。   First, the worker turns on the first switch 301 that is a power receiving facility of the customer, and turns on the phase advance capacitor SC.

これにより、進相コンデンサSCに流れる各相の電流は、相電圧より90°進みの電流であり、無効電流として、VCTのCT(3S端子、3L端子)及びテストSW1のVCT側(3S端子、3L端子)を介して、有効電力計106に供給される。なお、進相コンデンサSCからの電流は、無効電流となるために、計器20(売電用計器21、買電用計器22)は、進相コンデンサSCからの電流に基づいて電力量を計量しない。   As a result, the current of each phase that flows through the phase advance capacitor SC is a current that is 90 ° ahead of the phase voltage, and the CT of the VCT (3S terminal, 3L terminal) and the VCT side of the test SW1 (3S terminal, 3L terminal) to the active wattmeter 106. Since the current from the phase advance capacitor SC becomes a reactive current, the meter 20 (the power sale meter 21 and the power purchase meter 22) does not measure the amount of power based on the current from the phase advance capacitor SC. .

また、作業者は、模擬電力供給装置101の第3トグルSW13cのスイッチレバーを下側(正常側)に倒し、第1端子A及び第5端子E間を接続状態とし、第2端子B及び第6端子F間を接続状態とする。   In addition, the operator tilts the switch lever of the third toggle SW 13c of the simulated power supply apparatus 101 downward (normal side), connects the first terminal A and the fifth terminal E, and connects the second terminal B and the second terminal The 6 terminals F are connected.

これにより、VCTのPTのP1端子からの電圧が、テストSW1のVCT側P1端子及びテストプラグ11のVCT側P1端子並びに模擬電力供給装置101の第3トグルSW13cの第6端子F及び第7端子Bを介して、有効電力計106に印加され、VCTのPTのP2端子からの電圧が、テストSW1のVCT側P2端子及びテストプラグ11のVCT側P2端子並びに模擬電力供給装置101の第3トグルSW13cの第5端子Eを介して、有効電力計106に印加される。   As a result, the voltage from the P1 terminal of the PT of the VCT becomes the VCT side P1 terminal of the test SW1, the VCT side P1 terminal of the test plug 11, and the sixth terminal F and the seventh terminal of the third toggle SW13c of the simulated power supply apparatus 101. The voltage from the P2 terminal of the PT of the VCT is applied to the active wattmeter 106 via B, and the third toggle of the VCT side P2 terminal of the test SW1, the VCT side P2 terminal of the test plug 11, and the simulated power supply apparatus 101 is applied. The voltage is applied to the active wattmeter 106 through the fifth terminal E of the SW 13c.

そして、有効電力計106は、進相コンデンサSCから供給される無効電流並びにP1端子及びP2端子に印加される電圧に基づいて無効電力を計測し、計測値(以下、「正常側計測値」と称す)を第1の判定手段103に出力する。   The active power meter 106 measures the reactive power based on the reactive current supplied from the phase advance capacitor SC and the voltage applied to the P1 terminal and the P2 terminal, and the measured value (hereinafter referred to as “normal-side measured value”). Is output to the first determination means 103.

つぎに、作業者は、模擬電力供給装置101の第3トグルSW13cのスイッチレバーを上側(異常側)に倒し、第1端子A及び第3端子C間を接続状態とし、第2端子B及び第4端子D間を接続状態とする。   Next, the operator tilts the switch lever of the third toggle SW 13c of the simulated power supply apparatus 101 to the upper side (abnormal side) so that the first terminal A and the third terminal C are connected, and the second terminal B and the second terminal B are connected. The four terminals D are connected.

これにより、VCTのPTのP3端子からの電圧が、テストSW1のVCT側P3端子及びテストプラグ11のVCT側P3端子並びに模擬電力供給装置101の第3トグルSW13cの第4端子D及び第2端子Bを介して、有効電力計106に印加され、VCTのPTのP2端子からの電圧が、テストSW1のVCT側P2端子及びテストプラグ11のVCT側P2端子並びに模擬電力供給装置101の第3トグルSW13cの第5端子Eを介して、有効電力計106に印加される。   As a result, the voltage from the P3 terminal of the PT of the VCT becomes the VCT side P3 terminal of the test SW1, the VCT side P3 terminal of the test plug 11, and the fourth terminal D and the second terminal of the third toggle SW13c of the simulated power supply apparatus 101. The voltage from the P2 terminal of the PT of the VCT is applied to the active wattmeter 106 via B, and the third toggle of the VCT side P2 terminal of the test SW1, the VCT side P2 terminal of the test plug 11, and the simulated power supply apparatus 101 is applied. The voltage is applied to the active wattmeter 106 through the fifth terminal E of the SW 13c.

そして、有効電力計106は、進相コンデンサSCから供給される無効電流並びにP2端子及びP3端子に印加される電圧に基づいて無効電力を計測し、計測値(以下、「異常側計測値」と称す)を第1の判定手段103に出力する。   The active power meter 106 measures the reactive power based on the reactive current supplied from the phase advance capacitor SC and the voltage applied to the P2 terminal and the P3 terminal, and the measured value (hereinafter referred to as “abnormal side measured value”). Is output to the first determination means 103.

第1の判定手段103は、正常側計測値と異常側計測値とを比較し、正常側計測値の絶対値が異常側計測値の絶対値より大きい場合に、VCTの二次側端子及びテストSW1のVCT側端子間の配線の誤結線が無いと判定し、正常側計測値の絶対値が異常側計測値の絶対値より小さい場合に、VCTの二次側端子及びテストSW1のVCT側端子間の配線の誤結線が有りと判定する。
そして、第1の判定手段103は、正常側計測値の絶対値が異常側計測値の絶対値より大きい場合において、正常側計測値が正の場合に、VCTの一次側端子における電源側と負荷側との結線が逆であると判定し、正常側計測値が負の場合に、VCTの一次側端子における電源側と負荷側との結線が正常結線であると判定する。
The first determination unit 103 compares the normal side measurement value and the abnormal side measurement value, and when the absolute value of the normal side measurement value is larger than the absolute value of the abnormal side measurement value, the VCT secondary terminal and test When it is determined that there is no wiring misconnection between the VCT side terminals of SW1 and the absolute value of the normal side measurement value is smaller than the absolute value of the abnormal side measurement value, the VCT secondary terminal and the VCT side terminal of the test SW1 It is determined that there is an incorrect connection between the wires.
The first determination unit 103 determines whether the absolute value of the normal side measurement value is larger than the absolute value of the abnormal side measurement value, and the normal side measurement value is positive. When the connection with the power supply side is reversed and the normal measurement value is negative, it is determined that the connection between the power supply side and the load side at the primary terminal of the VCT is a normal connection.

ここで、正常側計測値の絶対値が異常側計測値の絶対値より大きい場合に、VCTの二次側端子及びテストSW1のVCT側端子間の配線の誤結線が無いと判定し、正常側計測値が異常側計測値より小さい場合に、VCTの二次側端子及びテストSW1のVCT側端子間の配線の誤結線が有りと判定する根拠について、図7を用いて説明する。
また、正常側計測値の絶対値が異常側計測値の絶対値より大きい場合において、正常側計測値が正の場合に、VCTの一次側端子における電源側と負荷側との結線が逆であると判定し、正常側計測値が負の場合に、VCTの一次側端子における電源側と負荷側との結線が正常結線であると判定する根拠について、図7を用いて説明する。
なお、図7においては、電流Ica(I)が、進相コンデンサSCに流れるa(U)相の電流(a相電圧V(Vp1)より90°進みの電流)であり、電流Icb(I)が、進相コンデンサSCに流れるb(V)相の電流(b相電圧V(Vp2)より90°進みの電流)であり、電流Icc(I)が、進相コンデンサSCに流れるc(W)相の電流(c相電圧V(Vp3)より90°進みの電流)である。
また、三相無効電力Q3cは、a相電圧をEとし、a相電流をIとし、b相電圧をEとし、b相電流をIとし、c相電圧をEとし、c相電流をIとすると、次式1にて表される。但し、進みの電流及び進みの無効電力を正とする。
Here, when the absolute value of the normal side measurement value is larger than the absolute value of the abnormal side measurement value, it is determined that there is no misconnection between the secondary side terminal of the VCT and the VCT side terminal of the test SW1, and the normal side The basis for determining that there is an incorrect connection of wiring between the secondary terminal of the VCT and the VCT terminal of the test SW1 when the measured value is smaller than the abnormal measured value will be described with reference to FIG.
Further, when the absolute value of the normal side measurement value is larger than the absolute value of the abnormal side measurement value, when the normal side measurement value is positive, the connection between the power supply side and the load side at the primary side terminal of the VCT is reversed. The basis for determining that the connection between the power supply side and the load side at the primary terminal of the VCT is a normal connection when the normal measurement value is negative will be described with reference to FIG.
In FIG. 7, the current I ca (I 1 ) is the a (U) -phase current (current that is 90 ° ahead of the a-phase voltage V a (V p1 )) that flows through the phase advance capacitor SC. I cb (I 2 ) is the b (V) phase current (current 90 ° ahead of the b phase voltage V b (V p2 )) flowing through the phase advance capacitor SC, and the current I cc (I 3 ) is C (W) -phase current flowing in the phase-advancing capacitor SC (current advanced by 90 ° from the c-phase voltage V c (V p3 )).
Further, the three-phase reactive power Q 3c has an a-phase voltage as E a , an a-phase current as I a , a b-phase voltage as E b , a b-phase current as I b , and a c-phase voltage as E c , When the c-phase current is I c , it is expressed by the following formula 1. However, the leading current and the leading reactive power are positive.

[式1]
3c=|E|×|I|×sinθ+|E|×|I|×sinθ+|E|×|I|×sinθ=3×E×I×sinθ=√3×V×I×sinθ
(但し、進相コンデンサSCの場合は、θ=90°になり、プラスの無効電力となる。)
[Formula 1]
Q 3c = | E a | × | I a | × sin θ + | E b | × | I b | × sin θ + | E c | × | I c | × sin θ = 3 × E × I × sin θ = √3 × V × I x sinθ
(However, in the case of the phase advance capacitor SC, θ = 90 °, which is a positive reactive power.)

まず、第3トグルSW13を正常側(P1端子及びP2端子間の線間電圧Vab(Vp1−p2)と3S端子及び3L端子間を流れる電流I(電流Icc)間)にした場合における計測について、図7(a)を用いて説明する。 First, when the third toggle SW 13 is set to the normal side (between the line voltage V ab (V p1−p2 ) between the P1 terminal and the P2 terminal and the current I 3 (current I cc ) flowing between the 3S terminal and the 3L terminal). The measurement in will be described with reference to FIG.

(1)正常結線の場合には、Vab(Vp1−p2)×Icc(I)の有効電力の計測となるので、次式2となり、三相無効電力Q3cの1/√3をマイナスデータ(遅れ無効電力)として計測する。
すなわち、(1)正常結線の場合には、−Q3c/√3とマイナス計量(遅れの無効電力として正常計量)される。
(1) In the case of normal connection, since the active power of V ab (V p1 −p2 ) × I cc (I 3 ) is measured, the following equation 2 is obtained and 1 / √3 of the three-phase reactive power Q 3c Is measured as negative data (delay reactive power).
That is, (1) In the case of normal connection, minus measurement (normal measurement as delayed reactive power) is performed with -Q 3c / √3.

[式2]
|Vab|×|Icc|×cos(90°+θ)=−V×I×sinθ=−Q3c/√3
[Formula 2]
| V ab | × | I cc | × cos (90 ° + θ) = − V × I × sin θ = −Q 3c / √3

これに対し、(2)誤結線(1Sと3Sが入れ替わり)の場合には、Vab(Vp1−p2)×Ica(I)の有効電力の計測となるので、次式3となり、三相無効電力Q3cの(1/√3)/2に、三相有効電力Pの1/2を加えた値として、プラス計量(進みの無効電力として誤計量)される。 On the other hand, in the case of (2) erroneous connection (1S and 3S are interchanged), the effective power of V ab (V p1−p2 ) × I ca (I 1 ) is measured. to (1 / √3) / 2 of a three-phase reactive power Q 3c, as a value obtained by adding half of the three-phase active power P 3, is plus metering (erroneous as reactive power metering proceeds).

[式3]
|Vab|×|Ica|×cos(θ−30°)
=V×I×(cosθ×cos30°+sinθ×sin30°)
=V×I×(cosθ×(√3/2)+sinθ×(1/2))
=√3×V×I×cosθ×(1/2)+V×I×sinθ×(1/2)
=(P/2)+(Q3c/√3)/2
[Formula 3]
| V ab | × | I ca | × cos (θ−30 °)
= V × I × (cos θ × cos 30 ° + sin θ × sin 30 °)
= V × I × (cos θ × (√3 / 2) + sin θ × (1/2))
= √3 × V × I × cos θ × (1/2) + V × I × sin θ × (1/2)
= (P 3/2) + (Q 3c / √3) / 2

但し、進相コンデンサSCのみの場合は、三相有効電力Pがゼロであるため、三相無効電力Q3cの(1/√3)/2((1)正常結線の場合の1/2の値)として、プラス計量(進みの無効電力として計量)される。
すなわち、(2)誤結線(1Sと3Sが入れ替わり)の場合には、+(Q3c/√3)/2にプラス計量となり、かつ、(1)正常結線の場合の絶対値の1/2の値となる。
なお、有効電力が発生していると、三相有効電力Pの1/2が加算された値となり、これが誤差として測定されるため、有効電力が小(進相コンデンサSCの電気容量の10%程度以下)の状態で計測することが必要である。
However, if only phase advancing capacitor SC, since a three-phase active power P 3 is zero, the three-phase reactive power Q 3c (1 / √3) / 2 ((1) 1/2 in the case of normal connection ) As a positive value (measured as a reactive power in advance).
That is, (2) In the case of erroneous connection (1S and 3S are switched), + (Q 3c / √3) / 2 is positively measured, and (1) 1/2 of the absolute value in the case of normal connection It becomes the value of.
When active power is generated, a value obtained by adding 1/2 of the three-phase active power P 3 is added, and this is measured as an error. Therefore, the active power is small (10 times the electric capacity of the phase advance capacitor SC). %) Or less) is necessary.

つまり、第3トグルSW13が正常側の場合は、(1)正常結線の場合の測定値(絶対値)が、(2)誤結線の場合の測定値(絶対値)に対して2倍の値になる。   That is, when the third toggle SW 13 is on the normal side, (1) the measurement value (absolute value) in the case of normal connection is (2) a value twice as large as the measurement value (absolute value) in the case of incorrect connection. become.

つぎに、第3トグルSW13を異常側(P3端子及びP2端子間の線間電圧Vcb(Vp3−p2)と3S端子及び3L端子間を流れる電流I(電流Icc)間)にした場合における計測について、図7(b)を用いて説明する。 Next, the third toggle SW 13 is set to the abnormal side (between the line voltage V cb (V p3-p2 ) between the P3 terminal and the P2 terminal and the current I 3 (current I cc ) flowing between the 3S terminal and the 3L terminal). Measurement in this case will be described with reference to FIG.

(1)正常結線の場合には、Vcb(Vp3−p2)×Icc(I)の有効電力の計測となるので、次式4となり、三相無効電力Q3cの−(1/√3)/2として、マイナス計量(遅れの無効電力として正常計量)に三相有効電力Pの1/2を加えた値として誤計量される。 (1) In the case of normal wiring, since the measurement of active power of V cb (V p3-p2) × I cc (I 3), the following equation 4, and the three-phase reactive power Q 3c of - (1 / As √3) / 2, it is erroneously measured as a value obtained by adding 1/2 of the three-phase active power P 3 to minus measurement (normal measurement as delayed reactive power).

[式4]
|Vcb|×|Icc|×cos(330°−θ)
=V×I×(cos330°×cosθ+sin330°×sinθ)
=V×I×(cosθ×(√3/2)+sinθ×(−1/2))
=(√3×V×I×cosθ×(1/2)+V×I×sinθ×(−1/2))
=(P/2)+(−Q3c/√3)/2
[Formula 4]
| V cb | × | I cc | × cos (330 ° −θ)
= V × I × (cos 330 ° × cos θ + sin 330 ° × sin θ)
= V × I × (cos θ × (√3 / 2) + sin θ × (−1/2))
= (√3 × V × I × cos θ × (1/2) + V × I × sin θ × (−1/2))
= (P 3/2) + (- Q 3c / √3) / 2

但し、進相コンデンサSCのみの場合は、三相有効電力Pがゼロであるため、三相無効電力Q3cの−(1/√3)/2((1)正常結線の場合の1/2の値)として、マイナス計量(遅れの無効電力として計量)される。
すなわち、(1)正常結線の場合には、−(Q3c/√3)/2となり、正常計測値の1/2の値となる。
なお、有効電力が発生していると、三相有効電力Pの1/2が加算された値となり、これが誤差として測定されるため、有効電力が小(進相コンデンサSCの電気容量の10%程度以下)の状態で計測することが必要である。
However, in the case of only the phase advance capacitor SC, since the three-phase active power P 3 is zero, the three-phase reactive power Q 3c is − (1 / √3) / 2 ((1) 1 / in the case of normal connection. Minus value (measured as delayed reactive power).
That is, (1) in the case of normal connection, − (Q 3c / √3) / 2, which is half the normal measurement value.
When active power is generated, a value obtained by adding 1/2 of the three-phase active power P 3 is added, and this is measured as an error. Therefore, the active power is small (10 times the electric capacity of the phase advance capacitor SC). %) Or less) is necessary.

これに対し、(2)誤結線(1Sと3Sが入れ替わり)の場合には、Vcb(Vp3−p2)×Ica(I)の有効電力の計測となるので、次式5となり、三相無効電力Q3cの1/√3としてプラス計量(進みの無効電力として正常計量)される。
すなわち、(2)誤結線(1Sと3Sが入れ替わり)の場合には、Q3c/√3となり、正常計量値と同じ値になる。
On the other hand, in the case of (2) erroneous connection (1S and 3S are switched), the effective power of V cb (V p3-p2 ) × I ca (I 1 ) is measured. The positive metering is performed as 1 / √3 of the three-phase reactive power Q 3c (normal metering as the leading reactive power).
That is, in the case of (2) erroneous connection (1S and 3S are switched), Q 3c / √3, which is the same value as the normal measurement value.

[式5]
|Vcb|×|Ica|×cos(90°−θ)=V×I×sinθ=Q3c/√3
[Formula 5]
| V cb | × | I ca | × cos (90 ° −θ) = V × I × sin θ = Q 3c / √3

つまり、第3トグルSW13が異常側の場合は、(2)誤結線の場合の測定値(絶対値)が、(1)正常結線の場合の測定値(絶対値)に対して2倍の値になる。   That is, when the third toggle SW 13 is on the abnormal side, (2) the measurement value (absolute value) in the case of incorrect connection is (1) a value twice the measurement value (absolute value) in the case of normal connection. become.

したがって、結論としては、第3トグルSW13の正常側の計測値及び異常側の計測値のうち計測値(絶対値)の大きい方を判定データとし、第3トグルSW13が正常側の場合に、その判定データが計測されれば、正常結線の判定になり、第3トグルSW13が異常側の場合に、その判定データが計測されれば、誤結線の判定になる。
そして、第3トグルSW13の正常側の計測値(絶対値)が異常側の計測値(絶対値)より大きい場合に、符号が逆の計測(進相コンデンサSCの負荷であっても遅れ電力として計測)となれば、潮流の向きを正しく計量する結線と判定することができる。
すなわち、VCTの一次側端子における電源側と負荷側との結線が逆の場合は、電流の向きが逆になるのみで他は同一であるため、計測値も符号の正負が逆になるのみである。このため、正常側計測値が負(遅れの無効電力として計量)の場合に、VCTの一次側端子における電源側と負荷側との結線が正常結線であるという判定になり、正常側計測値が正(進みの無効電力として計量)の場合に、VCTの一次側端子における電源側と負荷側との結線が逆であるという判定になる。
Therefore, as a conclusion, if the measured value (absolute value) of the measured value on the normal side and the measured value on the abnormal side of the third toggle SW 13 is the determination data, and the third toggle SW 13 is on the normal side, If the determination data is measured, the normal connection is determined. If the determination data is measured when the third toggle SW 13 is on the abnormal side, the erroneous connection is determined.
When the measured value (absolute value) on the normal side of the third toggle SW 13 is larger than the measured value (absolute value) on the abnormal side, the measurement is reversed in sign (even as a delay power even if the load is on the phase advance capacitor SC). If it is (measurement), it can be determined that the direction of the tidal current is a connection for measuring correctly.
That is, when the connection between the power supply side and the load side at the primary terminal of the VCT is reversed, the direction of the current is reversed and the others are the same. is there. For this reason, when the normal side measurement value is negative (measured as delayed reactive power), it is determined that the connection between the power supply side and the load side at the primary side terminal of the VCT is a normal connection, and the normal side measurement value is In the case of positive (measured as advance reactive power), it is determined that the connection between the power supply side and the load side at the primary side terminal of the VCT is reversed.

以上のように、本実施形態に係る正常計量確認装置10は、進相コンデンサSCの投入により生じる無効電流に基づく無効電力を有効電力計106で計測することにより、VCTの二次側端子及びテストSW1のVCT側端子間の配線の誤結線並びにVCTの一次側端子における電源側と負荷側との逆接続を判定することができるという作用効果を奏する。   As described above, the normal measurement confirmation device 10 according to the present embodiment measures the reactive power based on the reactive current generated by turning on the phase advance capacitor SC with the active wattmeter 106, thereby enabling the secondary terminal of the VCT and the test. There is an effect that it is possible to determine the erroneous connection of the wiring between the VCT side terminals of SW1 and the reverse connection between the power supply side and the load side at the primary side terminal of the VCT.

なお、本実施形態においては、有効電力計106を備えるところのみが第1の実施形態と異なるところであり、有効電力計106による作用効果以外は、第1の実施形態と同様の作用効果を奏する。   Note that in the present embodiment, only the location where the active wattmeter 106 is provided is different from the first embodiment, and the same operational effects as those of the first embodiment are obtained except for the operational effects of the active wattmeter 106.

また、本実施形態に係る正常計量確認装置10においては、電力量計誤差測定器102を使用した第1の実施形態に係る正常計量確認装置10(模擬電力供給装置101)に有効電力計106を配設させた場合について説明したが、参考計器40を使用した第2の実施形態に係る正常計量確認装置10(模擬電力供給装置101)に有効電力計106を配設させてもよい。   Further, in the normal metering confirmation device 10 according to the present embodiment, the active wattmeter 106 is added to the normal metering confirmation device 10 (simulated power supply device 101) according to the first embodiment using the watt-hour error measuring device 102. Although the case where it arrange | positions was demonstrated, you may arrange | position the active wattmeter 106 to the normal measurement confirmation apparatus 10 (simulated electric power supply apparatus 101) which concerns on 2nd Embodiment using the reference meter 40. FIG.

10 正常計量確認装置
11 テストプラグ
12 模擬負荷回路
13 切換手段
14 第2スイッチ
20 計器
21 売電用計器
21a イヤホンジャック
22 買電用計器
22a イヤホンジャック
30 テストスイッチ
31 短絡バー
40 参考計器
40a イヤホンジャック
100 高圧・特高用計器函
101 模擬電力供給装置
101a 計器側端子台
101b VCT側端子台
102 電力量計誤差測定器
102a 電圧ケーブル
102b 電流ケーブル
102c パルス分周器
102d パルスケーブル
103 第1の判定手段
104 検出手段
104a 第1パルスカウンター
104b 第2パルスカウンター
104c 検出部
104d パルスケーブル
105 第2の判定手段
106 有効電力計
200 配電線路
300 負荷
301 第1スイッチ
DESCRIPTION OF SYMBOLS 10 Normal measurement confirmation apparatus 11 Test plug 12 Simulated load circuit 13 Switching means 14 2nd switch 20 Meter 21 Electric power sale meter 21a Earphone jack 22 Electricity purchase meter 22a Earphone jack 30 Test switch 31 Short-circuit bar 40 Reference meter 40a Earphone jack 100 High voltage / extra high voltage instrument box 101 Simulated power supply device 101a Instrument side terminal block 101b VCT side terminal block 102 Power meter error measuring instrument 102a Voltage cable 102b Current cable 102c Pulse divider 102d Pulse cable 103 First determination means 104 Detection means 104a First pulse counter 104b Second pulse counter 104c Detection unit 104d Pulse cable 105 Second determination means 106 Active power meter 200 Distribution line 300 Load 301 First switch

Claims (6)

電力量計及び計器用変圧変流器間に接続されるテストスイッチに嵌合し、当該テストスイッチの開放状態で前記テストスイッチの電力量計側の端子及び計器用変圧変流器側の端子に介装されるテストプラグと、
降圧型の変圧器で形成され、当該変圧器の一次側が前記テストプラグの電力量計側の3相のうちの一の相の電圧端子と計器用変圧変流器側の前記一の相の電圧端子とが接続される第1端子と前記テストプラグの電力量計側の3相のうちの他の相の電圧端子と計器用変圧変流器側の前記他の相の電圧端子とが接続される第2端子と有し、前記変圧器の二次側が前記テストプラグの電力量計側の3相のうちの一の相の電流端子に接続される第3端子と、前記テストプラグの電力量計側の3相のうちの他の相の電流端子に接続される第4端子とを有する模擬負荷回路と、
を備えることを特徴とする模擬電力供給装置。
Fitting to a test switch connected between the watt-hour meter and the instrument transformer current transformer, and when the test switch is open, to the terminal on the watt-hour meter side of the test switch and the terminal on the instrument transformer current transformer side With an intervening test plug,
Is formed in a step-down transformer, the transformer primary-side the test plug of the power meter end of one phase of the voltage terminal and the one phase voltage of the instrument transformer current transformer side of the 3-phase A first terminal to which the terminal is connected, a voltage terminal of the other phase of the three phases on the watt hour meter side of the test plug, and a voltage terminal of the other phase on the transformer current transformer side It has a second terminal which is a third terminal on the secondary side of the transformer is connected to the current terminals of one phase of the three-phase electricity meter side of the test plug, the test plug power A simulated load circuit having a fourth terminal connected to a current terminal of the other phase of the three phases on the meter side ;
A simulated power supply apparatus comprising:
請求項1に記載の模擬電力供給装置において、
前記電力量計が、売電用計器及び買電用計器からなる計量形態であり、
前記売電用計器に電力量を計量させる順潮流と、前記買電用計器に電力量を計量させる逆潮流と、を切り換える切換手段を備えることを特徴とする模擬電力供給装置。
The simulated power supply apparatus according to claim 1,
The watt-hour meter is a metering form consisting of a meter for selling power and a meter for buying power,
A simulated power supply apparatus comprising switching means for switching between a forward power flow for allowing the power selling meter to measure the amount of power and a reverse power flow for allowing the power meter to measure the amount of power.
請求項2に記載の模擬電力供給装置において、
切換手段が、第1端子、第2端子、第3端子、第4端子、第5端子及び第6端子からなる6つの端子を有し、当該第3端子及び第6端子間を短絡させ、当該第4端子及び第5端子間を短絡させたトグルスイッチであり、
前記テストプラグの電力量計側及び計器用変圧変流器側の端子が、電流端子である1S端子、1L端子、3S端子及び3L端子と、電圧端子であるP1端子、P2端子及びP3端子と、からなり、
前記変圧器が、第1変圧器及び第2変圧器からなり、
前記トグルスイッチが、第1トグルスイッチ及び第2トグルスイッチからなり、
前記テストプラグの電力量計側の1L端子及び3L端子が短絡し、
前記テストプラグの電力量計側の1S端子が、前記第1トグルスイッチの第1端子に接続され、
前記テストプラグの電力量計側の1L端子が、前記第1トグルスイッチの第2端子に接続され、
前記テストプラグの電力量計側の3L端子が、前記第2トグルスイッチの第1端子に接続され、
前記テストプラグの電力量計側の3S端子が、前記第2トグルスイッチの第2端子に接続され、
前記テストプラグの計器用変圧変流器側の1L端子及び1S端子が短絡し、
前記テストプラグの計器用変圧変流器側の3L端子及び3S端子が短絡し、
前記テストプラグの計器用変圧変流器側のP1端子が、前記テストプラグの電力量計側のP1端子及び前記第1変圧器の一次側の第1端子に接続され、
前記テストプラグの計器用変圧変流器側のP2端子が、前記テストプラグの電力量計側のP2端子、前記第1変圧器の一次側の第2端子及び前記第2変圧器の一次側の第1端子に接続され、
前記テストプラグの計器用変圧変流器側のP3端子が、前記テストプラグの電力量計側のP3端子及び前記第2変圧器の一次側の第2端子に接続され、
前記第1変圧器の二次側の第1端子が、前記第1トグルスイッチの第5端子に接続され、
前記第1変圧器の二次側の第2端子が、前記第1トグルスイッチの第6端子に接続され、
前記第2変圧器の二次側の第1端子が、前記第2トグルスイッチの第5端子に接続され、
前記第2変圧器の二次側の第2端子が、前記第2トグルスイッチの第6端子に接続されることを特徴とする模擬電力供給装置。
The simulated power supply apparatus according to claim 2,
The switching means has six terminals consisting of a first terminal, a second terminal, a third terminal, a fourth terminal, a fifth terminal and a sixth terminal, and short-circuits between the third terminal and the sixth terminal, A toggle switch in which the fourth terminal and the fifth terminal are short-circuited;
The terminals on the watt-hour meter side and the instrument transformer current transformer side of the test plug are a 1S terminal, a 1L terminal, a 3S terminal, and a 3L terminal that are current terminals, and a P1, P2, and P3 terminals that are voltage terminals. Consists of
The transformer comprises a first transformer and a second transformer;
The toggle switch comprises a first toggle switch and a second toggle switch;
1L terminal and 3L terminal on the electricity meter side of the test plug are short-circuited,
The 1S terminal on the watt hour side of the test plug is connected to the first terminal of the first toggle switch,
The 1L terminal on the watt hour side of the test plug is connected to the second terminal of the first toggle switch,
The 3L terminal on the watt hour side of the test plug is connected to the first terminal of the second toggle switch,
The 3S terminal on the watt hour side of the test plug is connected to the second terminal of the second toggle switch,
The 1L terminal and 1S terminal on the instrument transformer current transformer side of the test plug are short-circuited,
The 3L terminal and 3S terminal on the instrument transformer current transformer side of the test plug are short-circuited,
The P1 terminal of the test plug on the instrument transformer current transformer side is connected to the P1 terminal on the watt hour meter side of the test plug and the first terminal on the primary side of the first transformer,
The P2 terminal on the test transformer's current transformer side is connected to the P2 terminal on the power meter side of the test plug, the second terminal on the primary side of the first transformer, and the primary side of the second transformer. Connected to the first terminal,
The P3 terminal on the instrument transformer current transformer side of the test plug is connected to the P3 terminal on the watt hour meter side of the test plug and the second terminal on the primary side of the second transformer,
A first terminal on the secondary side of the first transformer is connected to a fifth terminal of the first toggle switch;
A second terminal on the secondary side of the first transformer is connected to a sixth terminal of the first toggle switch;
A first terminal on a secondary side of the second transformer is connected to a fifth terminal of the second toggle switch;
The simulated power supply apparatus, wherein a second terminal on the secondary side of the second transformer is connected to a sixth terminal of the second toggle switch.
請求項1乃至3のいずれかに記載の模擬電力供給装置と、
前記電力量計に供給される電流を測定し、前記電力量計に印加される電圧を測定して、電力量を算出すると共に、当該電力量の算出値又は当該算出値に対応するパルス信号のパルス数と前記電力量計の計量値又は当該計量値に対応するパルス信号のパルス数との誤差を算出する電力量計誤差測定器と、
前記電力量計誤差測定器が算出した誤差に基づき、前記電力量計及びテストスイッチ間の配線の誤結線又は前記電力量計の故障の有無を判断する第1の判定手段と、
を備えることを特徴とする正常計量確認装置。
The simulated power supply device according to any one of claims 1 to 3,
The current supplied to the watt hour meter is measured, the voltage applied to the watt hour meter is measured to calculate the power amount, and the calculated value of the power amount or the pulse signal corresponding to the calculated value A watt-hour meter error measuring device for calculating an error between the number of pulses and the measured value of the watt-hour meter or the number of pulses of a pulse signal corresponding to the measured value;
First determination means for determining the presence or absence of a misconnection of wiring between the watt hour meter and a test switch or the failure of the watt hour meter based on the error calculated by the watt hour meter error measuring device;
A normal weighing confirmation device comprising:
請求項1乃至3のいずれかに記載の模擬電力供給装置と、
前記変圧器及び前記テストプラグ間に接続され、前記電力量計と異なる他の電力量計である参考計器と、
前記電力量計の計量値又は当該計量値に対応するパルス信号及び前記参考計器の計量値又は当該計量値に対応するパルス信号に基づき、当該電力量計及び参考計器の計量値又はパルス数の誤差を検出する検出手段と、
前記検出手段が検出した計量値又はパルス数の誤差に基づき、前記電力量計及びテストスイッチ間の配線の誤結線又は前記電力量計の故障の有無を判断する第2の判定手段と、
を備えることを特徴とする正常計量確認装置。
The simulated power supply device according to any one of claims 1 to 3,
A reference meter that is connected between the transformer and the test plug and is another watt-hour meter different from the watt-hour meter;
Based on the measured value of the watt-hour meter or the pulse signal corresponding to the measured value and the measured value of the reference meter or the pulse signal corresponding to the measured value, an error in the measured value or number of pulses of the watt-hour meter and the reference meter Detecting means for detecting
Second determination means for determining the presence or absence of a misconnection of the wiring between the watt hour meter and the test switch or the failure of the watt hour meter based on the measurement value or the error in the number of pulses detected by the detection means;
A normal weighing confirmation device comprising:
請求項4又は5に記載の正常計量確認装置において、
前記テストプラグに接続され、需要家の受電設備である進相コンデンサの投入により生じる無効電流に基づく無効電力を計測する計測器を備え、
前記計測器の計測値に基づき、前記計器用変圧変流器の二次側端子及びテストスイッチの計器用変圧変流器側端子間の配線の誤結線又は前記計器用変圧変流器の一次側端子における電源側と負荷側との逆接続を判断することを特徴とする正常計量確認装置。
In the normal weighing confirmation device according to claim 4 or 5,
A measuring instrument that is connected to the test plug and measures reactive power based on reactive current generated by inserting a phase advance capacitor that is a power receiving facility of a consumer;
Based on the measured value of the measuring instrument, the wiring connection between the secondary terminal of the instrument transformer current transformer and the instrument transformer current transformer side terminal of the test switch or the primary side of the instrument transformer current transformer A normal weighing confirmation device characterized by determining reverse connection between a power supply side and a load side at a terminal.
JP2014044169A 2014-03-06 2014-03-06 Simulated power supply device and normal weighing confirmation device Active JP6373019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044169A JP6373019B2 (en) 2014-03-06 2014-03-06 Simulated power supply device and normal weighing confirmation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044169A JP6373019B2 (en) 2014-03-06 2014-03-06 Simulated power supply device and normal weighing confirmation device

Publications (2)

Publication Number Publication Date
JP2015169526A JP2015169526A (en) 2015-09-28
JP6373019B2 true JP6373019B2 (en) 2018-08-15

Family

ID=54202386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044169A Active JP6373019B2 (en) 2014-03-06 2014-03-06 Simulated power supply device and normal weighing confirmation device

Country Status (1)

Country Link
JP (1) JP6373019B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319466B (en) * 2015-10-26 2017-12-29 江苏省电力公司扬州供电公司 A kind of middle pressure electric equipment simulation live testing test method
CN107664755A (en) * 2017-09-11 2018-02-06 云南电网有限责任公司电力科学研究院 A kind of double-layer multifunctional ammeter calibration equipment
JP7059609B2 (en) * 2017-12-12 2022-04-26 中国電力株式会社 Wiring structure of power meter
JP2020012672A (en) * 2018-07-13 2020-01-23 九電テクノシステムズ株式会社 Connection confirmation device
KR102075660B1 (en) * 2018-09-04 2020-02-10 주식회사 엠스테크 Check system for watt-hour meter
CN109444790B (en) * 2018-10-29 2021-05-04 广西电网有限责任公司电力科学研究院 Method suitable for feeder terminal to identify working state of power supply voltage transformer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528468Y1 (en) * 1971-11-23 1977-02-22
JPH0527016Y2 (en) * 1987-05-28 1993-07-08
JP3105111B2 (en) * 1993-05-27 2000-10-30 東京電力株式会社 Interface device for power quality measurement
JP4587946B2 (en) * 2005-12-05 2010-11-24 中国電力株式会社 Check terminal, check terminal mounting structure, and check terminal mounting method
US7859809B2 (en) * 2008-09-12 2010-12-28 Abb Technology Ag Test plug with overvoltage protection

Also Published As

Publication number Publication date
JP2015169526A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
ES2439279T3 (en) Method and apparatus for transformer diagnosis
US7791351B2 (en) Method for detecting electrical ground faults
US8044666B2 (en) Method for determining location of phase-to earth fault
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP4599120B2 (en) Electrical installation insulation monitoring device and method
KR101079848B1 (en) Power metering device and method for correcting error of mof
CN107636481B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
JP2011200024A (en) Leakage detector of low voltage power distribution system
JP5268969B2 (en) Digital test plug and power / phase measurement method using the same
JP4738244B2 (en) Energy meter inspection device
CN102455395B (en) Method for testing high-voltage power supply and power distribution system loop
JP2017194465A (en) Monitoring device
JP5105591B2 (en) Cable connection checker
KR101654644B1 (en) Test device for wiring electric generator
KR101908380B1 (en) Watt-hour meter, transmission line measurement system and measuring method thereof
JP3176114U (en) Single-phase three-wire type / three-phase three-wire voltage / phase detector
JP3208336U (en) Calibration test equipment
KR102344297B1 (en) Metering system using three-phase three-wire system for neutral grounding customer
KR20200002226A (en) Apparatus for detecting phase error of watt hour meter and method thereof
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter
JP3176113U (en) Single-phase three-wire type / three-phase three-wire voltage / phase detector
JP2607928B2 (en) Transformer uninterruptible replacement equipment for high voltage instruments
CN106932663B (en) Measuring instrument of frequency conversion system
JP6568573B2 (en) Distribution line inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250