JP4993727B2 - Leakage current measuring instrument - Google Patents

Leakage current measuring instrument Download PDF

Info

Publication number
JP4993727B2
JP4993727B2 JP2007225323A JP2007225323A JP4993727B2 JP 4993727 B2 JP4993727 B2 JP 4993727B2 JP 2007225323 A JP2007225323 A JP 2007225323A JP 2007225323 A JP2007225323 A JP 2007225323A JP 4993727 B2 JP4993727 B2 JP 4993727B2
Authority
JP
Japan
Prior art keywords
leakage current
display
vector
measuring instrument
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007225323A
Other languages
Japanese (ja)
Other versions
JP2009058343A (en
Inventor
貞敬 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2007225323A priority Critical patent/JP4993727B2/en
Publication of JP2009058343A publication Critical patent/JP2009058343A/en
Application granted granted Critical
Publication of JP4993727B2 publication Critical patent/JP4993727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば電源ラインの絶縁点検に使用される漏れ電流測定器に関し、詳しくは、配電系統の漏れ電流をベクトル表示可能とした漏れ電流測定器に関するものである。   The present invention relates to a leakage current measuring instrument used, for example, for insulation inspection of a power line, and more particularly to a leakage current measuring instrument capable of displaying a leakage current of a distribution system as a vector.

配電系統の基本波実効値、基本波位相角、漏れ電流、高調波等を測定して配電系統の品質を解析、評価する電源ラインモニタは、例えば特許文献1に記載されている。
図4は、単相3線式の配電系統を対象として、特許文献1に記載された電源ラインモニタを漏れ電流測定器10Aとして使用した場合のブロック図である。
A power supply line monitor that analyzes and evaluates the quality of a power distribution system by measuring the fundamental wave effective value, fundamental wave phase angle, leakage current, harmonics, and the like of the power distribution system is described in Patent Document 1, for example.
FIG. 4 is a block diagram in the case where the power line monitor described in Patent Document 1 is used as the leakage current measuring instrument 10A for a single-phase three-wire distribution system.

図4において、a,b,Nは単相3線式の電路、R,Rは電路a,bの対地抵抗、C,Cは電路a,bの対地静電容量、11は、電路aとB種接地による接地電路Nとの間の線間電圧V、または、電路bと接地電路Nとの間の線間電圧Vが漏れ電流測定時の基準電圧(取得電圧ともいう)として入力されると共に、そのレベル調整等を行う電圧入力部、ZCTは接地電路Nに接続されて合成漏れ電流(有効漏れ電流、無効漏れ電流のベクトル和)Iを検出する零相変流器、12は合成漏れ電流Iが入力されてそのレベル調整等を行う漏れ電流入力部、2a,2bはA/D変換回路、3は有効漏れ電流、無効漏れ電流等を演算する演算部(CPU)、4はA/D変換回路2a,2bを介して収集された演算部3の入力データや演算結果を格納するメモリ、5はsin波、cos波の基準波形データが記憶された基準波形データメモリ、6は演算部3による演算結果を数値表示するための表示部である。
ここで、上記基準波形データは、電圧入力部11への入力電圧波形と同一周期であり、A/D変換回路2a,2bと同じ分解能でテーブル上に予め作成されたデータである。
In FIG. 4, a, b and N are single-phase three-wire electric circuits, R a and R b are ground resistances of the electric circuits a and b, C a and C b are ground capacitances of the electric circuits a and b, and 11 is , line voltage V a or the reference voltage (acquired voltage both line voltage V b leakage during current measurement between the path b and the grounding path N, between the ground path N by path a and B type grounding is input as a means), a voltage input unit for performing the level adjustment, ZCT synthetic leakage current (effective leakage current is connected to a ground path N, the vector sum of the reactive leakage current) zero-phase detecting an I g strange Nagareki, 12 leakage current input section for performing the level adjustment is entered synthesized leakage current I g, 2a, 2b is a / D conversion circuit 3, the calculator for calculating the effective leakage current, disabling leakage current, etc. (CPU) 4 is the input of the arithmetic unit 3 collected via the A / D conversion circuits 2a and 2b Memory for storing a over data and calculation results, 5 sin wave reference waveform data memory for reference waveform data is stored in the cos wave, and 6 a display unit for numerically displaying the calculation result by the calculating section 3.
Here, the reference waveform data has the same period as the input voltage waveform to the voltage input unit 11, and is data created in advance on the table with the same resolution as the A / D conversion circuits 2a and 2b.

次に、図5は、図4の構成により有効漏れ電流Igr、無効漏れ電流Igcを求めるための原理を示すベクトル図である。有効漏れ電流Igrは図4における対地抵抗R,Rにそれぞれ流れる漏れ電流Igra,Igrbのベクトル和であり、無効漏れ電流Igcは対地静電容量C,Cにそれぞれ流れる漏れ電流Igca,Igcbのベクトル和である。 Next, FIG. 5 is a vector diagram showing the principle for obtaining the effective leakage current I gr and the reactive leakage current I gc with the configuration of FIG. The effective leakage current I gr is a vector sum of the leakage currents I gra and I grb flowing through the ground resistances R a and R b in FIG. 4, respectively, and the reactive leakage current I gc flows through the ground capacitances C a and C b , respectively. This is a vector sum of leakage currents I gca and I gcb .

なお、電路a,bの絶縁不良が同時に起こることは稀であるため、対地抵抗R,Rによる有効漏れ電流Igrは、対地抵抗R,Rのうち何れか一方による漏れ電流値、つまり、Igr=Igra、またはIgr=Igrbと考えて良い。なお、電路a,bは逆相関係にあるので、Igra,Igrbは逆極性であり、Igca,Igcbも逆極性である。
この図5を参照しながら、従来技術による有効漏れ電流Igr、無効漏れ電流Igcの測定方法を以下に略述する。
Since path a, b of the insulation failure is rarely occur simultaneously, ground resistance R a, the effective leakage current I gr by R b is ground resistance R a, the leakage current value according to either of R b That is, it may be considered that I gr = I gra or I gr = I grb . Since the electric circuits a and b are in a reverse phase relationship, I gra and I grb have opposite polarities, and I gca and I gcb also have opposite polarities.
With reference to FIG. 5, a method for measuring the effective leakage current I gr and the reactive leakage current I gc according to the prior art will be briefly described below.

いま、取得電圧をVとすると、まず、図4の演算部3は、電圧入力部11から取り込んだ所定波数分の電圧Vと基準波形データメモリ5内のsin波データ、cos波データとを用いて積和演算を行い、電圧Vの第1積算値、第2積算値を求める。同様に、演算部3は、漏れ電流入力部12から取り込んだ所定波数分の合成漏れ電流Iと前記sin波データ、cos波データとを用いて積和演算を行い、合成漏れ電流Iの第1積算値、第2積算値を求める。
ここで、上記各積算値の演算方法は本発明の要旨ではないため、説明を省略する。
Now, assuming that the acquired voltage is V a , the calculation unit 3 in FIG. 4 first calculates the voltage V a for a predetermined wave number fetched from the voltage input unit 11, sin wave data and cos wave data in the reference waveform data memory 5, and perform product-sum operation using a first integrated value of the voltage V a, the second cumulative value determined. Similarly, the arithmetic unit 3 performs product-sum calculation using the sin wave data and the synthetic leakage current I g of predetermined wave number of captured from the leak current input 12, and a cos wave data, the synthetic leakage current I g A first integrated value and a second integrated value are obtained.
Here, since the calculation method of each integrated value is not the gist of the present invention, the description thereof is omitted.

次に、これらの電圧V及び合成漏れ電流Iの第1積算値、第2積算値を用いて、図5に示すように、基準波形に対する電圧V及び合成漏れ電流Iの位相角θ,θをそれぞれ求める。次いで、合成漏れ電流Iの第1積算値、第2積算値並びに位相角θを用いて、合成漏れ電流Iの基本波成分I(1)を求める。
なお、有効漏れ電流Igr、無効漏れ電流Igcだけでなく、更に絶縁抵抗も求める場合には、上記に加えて、電圧Vの第1積算値、第2積算値並びに位相角θを用いて、電圧Vの基本波成分Vab(1)を求める。
Next, a first integrated value of these voltages V a and synthetic leakage current I g, by using the second integrated value, as shown in FIG. 5, the phase angle of the voltage V a and synthetic leakage current I g to the reference waveform θ 1 and θ 2 are obtained, respectively. Then, the first integrated value of the combined leakage current I g, the second integrated value and by using the phase angle theta 2, determine the fundamental component I g of synthetic leakage current I g (1).
When not only the effective leakage current I gr and the reactive leakage current I gc but also the insulation resistance is obtained, in addition to the above, the first integrated value, the second integrated value, and the phase angle θ 1 of the voltage V a are set. Using this, the fundamental wave component V ab (1) of the voltage V a is obtained.

更に、θとθとの位相差、すなわち取得電圧Vに対する合成漏れ電流Iの位相角θを求めて、電路a,bのどちらから漏れ電流が発生しているかを判定する。すなわち、|θ|<90°の場合には電路aから、|θ|>90°の場合には電路bから漏れ電流が発生していると判定することができる。 Further, the phase difference between the theta 1 and theta 2, that is, determines a phase angle theta synthetic leakage current I g to the acquisition voltage V a, determines path a, both from leakage current b is generated. That is, it can be determined that leakage current is generated from the electric circuit a when | θ | <90 ° and from the electric circuit b when | θ |> 90 °.

従って、合成漏れ電流Iに含まれている対地抵抗による有効漏れ電流Igr及び対地静電容量による無効漏れ電流Igcは、数式1,数式2によって求めることができる。
[数式1]
gr=I(1)cosθ
[数式2]
gc=I(1)sinθ
Therefore, invalid leakage current I gc by effective leakage current I gr and earth capacitance by ground resistors are included in the combined leakage current I g can be determined by Equation 1, Equation 2.
[Formula 1]
I gr = I g (1) cos θ
[Formula 2]
I gc = I g (1) sin θ

図4の演算部3は上記数式1,数式2の演算により有効漏れ電流Igr、無効漏れ電流Igcを求め、これらの測定値を合成漏れ電流Iや位相角θと共に表示部6に数値表示している。また、必要に応じて、漏れ電流波形も表示部6に表示している。 4 obtains the effective leakage current I gr and the reactive leakage current I gc by the calculations of the above formulas 1 and 2, and these measured values are numerically displayed on the display unit 6 together with the combined leakage current Ig and the phase angle θ. it's shown. Further, a leakage current waveform is also displayed on the display unit 6 as necessary.

特開2006−234402号公報(請求項7,8、段落[0058]〜[0069]、図4等)JP 2006-234402 A (Claims 7 and 8, paragraphs [0058] to [0069], FIG. 4 etc.)

しかしながら、測定者にとっては、合成漏れ電流Iのうち有効漏れ電流と無効漏れ電流とのどちらが支配的であるかという点や、漏れ電流の規定値(管理値)に対する余裕度がどれくらいあるか等を直感的、視覚的に把握したい要請があり、従来の漏れ電流測定器はこれらの要請に応えることができなかった。 However, for the measuring person, which of the effective leakage current and reactive leakage current and that either dominant among synthesized leakage current I g, or margin for the specified value of the leakage current (control value) is much like There is a demand for intuitively and visually grasping the above, and the conventional leakage current measuring device cannot meet these demands.

一方、系統線路の電流、電圧、位相角等をベクトルにて表示するようにした表示装置が、例えば特開平7−318594号公報「測定値のベクトル表示装置」として知られているが、漏れ電流測定器の一機能として、合成漏れ電流の成分等を直感的、視覚的に把握可能としたものは未だ提供されていない。   On the other hand, a display device that displays the current, voltage, phase angle, and the like of the system line as a vector is known as, for example, Japanese Patent Application Laid-Open No. 7-318594 “Measured Value Vector Display Device”. As a function of the measuring instrument, there has not yet been provided an intuitive and visual grasp of the component of the composite leakage current.

そこで本発明の解決課題は、合成漏れ電流の各成分やその他の測定値をベクトル表示することによって漏れ電流の解析、ひいては配電系統の状態把握を容易にした漏れ電流測定器を提供することにある。   Therefore, a problem to be solved by the present invention is to provide a leakage current measuring instrument that makes it easy to analyze leakage current and thereby grasp the state of a distribution system by displaying each component of the combined leakage current and other measured values as vectors. .

上記課題を解決するため、請求項1に係る発明は、配電系統と接地点との間を流れる合成漏れ電流を検出する手段と、
前記配電系統の線間電圧を取得電圧として検出する手段と、
前記取得電圧と前記合成漏れ電流との間の位相角、及び、前記合成漏れ電流を用いて、前記合成漏れ電流の成分を演算する演算手段と、
この演算手段により演算した前記合成漏れ電流の成分を表示する表示手段と、
を備えた漏れ電流測定器において、
前記演算手段は、少なくとも、前記合成漏れ電流と、その成分である有効漏れ電流及び無効漏れ電流とをベクトルとして表示するための表示データを生成し、
前記表示手段は、前記表示データを用いてベクトル表示すると共に、予め設定された前記有効漏れ電流の規定値を、前記有効漏れ電流のベクトル方向に表示するものである。
In order to solve the above-mentioned problem, the invention according to claim 1 detects a combined leakage current flowing between the distribution system and the grounding point;
Means for detecting a line voltage of the distribution system as an acquired voltage;
A calculation unit that calculates a component of the combined leakage current using the phase angle between the acquired voltage and the combined leakage current, and the combined leakage current;
Display means for displaying the component of the combined leakage current calculated by the calculation means;
In the leakage current measuring instrument with
The calculation means generates display data for displaying at least the combined leakage current, and effective leakage current and reactive leakage current that are components thereof as vectors,
The display means displays the vector using the display data, and displays a preset value of the effective leakage current in the vector direction of the effective leakage current .

なお、請求項2に記載するように、演算手段は、取得電圧をベクトルとして表示するための表示データを生成し、表示手段に、前記取得電圧を合成漏れ電流、有効漏れ電流及び無効漏れ電流と共にベクトル表示させることが望ましい。   In addition, as described in claim 2, the calculation unit generates display data for displaying the acquired voltage as a vector, and the display unit displays the acquired voltage together with the combined leakage current, the effective leakage current, and the invalid leakage current. It is desirable to display the vector.

請求項3に係る発明は、請求項1または2に記載した漏れ電流測定器において、前記表示手段にベクトル表示した諸量を、ベクトルと共に数値表示するものである。
According to a third aspect of the present invention, in the leakage current measuring instrument according to the first or second aspect, various quantities displayed as vectors on the display means are numerically displayed together with vectors .

本発明によれば、合成漏れ電流の成分である有効漏れ電流、無効漏れ電流がベクトルとして表示されるので、測定者は配電系統の絶縁劣化状態等を直感的、視覚的に把握することができる。また、漏れ電流の規定値も併せて表示すれば漏れ電流の余裕度の把握が容易になり、配電系統の状態把握や保守点検作業に役立てることができる。   According to the present invention, the effective leakage current and the reactive leakage current that are components of the combined leakage current are displayed as vectors, so that the measurer can intuitively and visually grasp the insulation deterioration state of the distribution system. . Moreover, if the specified value of the leakage current is also displayed, it becomes easy to grasp the margin of leakage current, which can be used for grasping the state of the power distribution system and maintenance inspection work.

以下、図に沿って本発明の実施形態を説明する。
図1は、実施形態に係る漏れ電流測定器10の構成を示すブロック図であり、演算部7及び表示部8の機能以外は、実質的に図4と同一である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram illustrating a configuration of a leakage current measuring instrument 10 according to the embodiment, and is substantially the same as FIG. 4 except for the functions of the calculation unit 7 and the display unit 8.

図1において、前記同様に、a,b,Nは単相3線式の電路、R,Rは電路a,bの対地抵抗、C,Cは電路a,bの対地静電容量、11は、電路a,N間または電路b,N間の線間電圧が取得電圧として入力されると共に、そのレベル調整等を行う電圧入力部、ZCTはB種接地の接地電路Nに接続されて合成漏れ電流Iを検出する零相変流器、12は合成漏れ電流Iが入力されてそのレベル調整等を行う漏れ電流入力部、2a,2bはA/D変換回路、7は有効漏れ電流Igr、無効漏れ電流Igc等を演算し、後述するようにこれらの測定値をベクトル表示するための演算部(CPU)、4はA/D変換回路2a,2bを介して収集された演算部7の入力データや演算結果を格納するメモリ、5はsin波、cos波の基準波形データが記憶された基準波形データメモリ、8は演算部7の出力に基づいて測定値のベクトル表示、数値表示等を行う液晶ディスプレイ、プラズマディスプレイ等からなる表示部である。 In FIG. 1, as described above, a, b, and N are single-phase three-wire electric circuits, R a and R b are ground resistances of the electric circuits a and b, and C a and C b are electrostatic capacitances of the electric circuits a and b. Capacitance 11 is a voltage input unit for adjusting the level of the line voltage between the electric circuits a and N or between the electric circuits b and N as an acquired voltage, and ZCT is connected to a grounding electric circuit N with B type grounding. zero-phase current transformer for detecting a has been synthesized leakage current I g, 12 leakage current input section for performing the level adjustment is entered synthesized leakage current I g, 2a, 2b is a / D conversion circuit, 7 A calculation unit (CPU) for calculating effective leakage current I gr , reactive leakage current I gc and the like and displaying these measured values in vector as will be described later, 4 is collected via A / D conversion circuits 2a and 2b A memory for storing the input data and calculation results of the calculated calculation unit 7, 5 is a sin wave, co Reference waveform data memory for reference waveform data are stored in the wave, 8 is a liquid crystal display, display unit comprising a plasma display or the like vector representation of the measured values, a numerical display or the like performed on the basis of the output of the arithmetic unit 7.

図2は、上記演算部7の構成を示す機能ブロック図である。
この演算部7は、A/D変換回路2a,2b、メモリ4及び基準波形データメモリ5に接続されて、電圧入力部11に入力された取得電圧、合成漏れ電流I、有効漏れ電流Igr(IgraまたはIgrb)、無効漏れ電流Igc、位相角θ等を演算する測定値演算部71と、これらの測定値をベクトル表示するための座標を演算する座標演算部72と、上記測定値及び座標演算値に基づいて表示部8における表示データを生成する表示制御部73とから構成されている。
FIG. 2 is a functional block diagram showing the configuration of the arithmetic unit 7.
The calculation unit 7 is connected to the A / D conversion circuits 2a and 2b, the memory 4, and the reference waveform data memory 5, and the acquired voltage, the combined leakage current I g , and the effective leakage current I gr input to the voltage input unit 11 are connected. (I gra or I grb ), reactive leakage current I gc , phase angle θ, etc., a measurement value calculation unit 71, a coordinate calculation unit 72 that calculates coordinates for vector display of these measurement values, and the above measurement The display control unit 73 generates display data on the display unit 8 based on the value and the coordinate calculation value.

この実施形態の動作を、以下に説明する。
いま、取得電圧がVであるとすると、図2の測定値演算部71は、従来技術に記載された方法により、取得電圧Vと合成漏れ電流Iとを用いて位相角θ、有効漏れ電流Igr、無効漏れ電流Igcを演算する。このとき、前述したようにθの大きさに基づいて、有効漏れ電流Igrが電路aによるIgraであるか電路bによるIgrbであるかも検出することができる。ここでは、Igr=Igraであると仮定する。
また、測定値演算部71には、メモリ4に予め記憶された有効漏れ電流Igrの規定値(管理値)が入力される。
The operation of this embodiment will be described below.
Now, the acquisition voltage is assumed to be V a, the measurement value calculating unit 71 of FIG. 2, according to the methods described in the prior art, the phase angle theta, effective with the acquisition voltage V a and the synthesis leakage current I g The leakage current I gr and the reactive leakage current I gc are calculated. At this time, as described above, based on the magnitude of θ, it can also be detected whether the effective leakage current I gr is I gra by the electric circuit a or I grb by the electric circuit b. Here, it is assumed that I gr = I gra .
Further, the specified value (management value) of the effective leakage current I gr stored in advance in the memory 4 is input to the measured value calculation unit 71.

これらの測定値I,V,V(Vに対し逆相で大きさが等しいとする),θ,Igra,Igc及び前記規定値は、図2の表示制御部73に送られると共に、座標演算部72に入力される。
座標演算部72では、I,V,V,Igra,Igcをベクトル表示するための座標と、前記規定値をIgraと同方向の位置に表示するための座標とを演算し、これらの座標データを表示制御部73に出力する。
These measured values I g , V a , V b (assuming they are opposite in phase to V a and have the same magnitude), θ, I gra , I gc, and the specified values are sent to the display control unit 73 in FIG. And is input to the coordinate calculation unit 72.
The coordinate calculation unit 72 calculates coordinates for displaying I g , V a , V b , I gra , and I gc as vectors, and coordinates for displaying the specified value at a position in the same direction as I gra. These coordinate data are output to the display control unit 73.

図2の表示制御部73では、前記測定値演算部71の出力データと座標演算部72からの座標データとを用いて、各測定値や規定値のベクトル表示データ、数値表示データを作成し、表示部8に出力する。 In the display control unit 73 of FIG. 2, using the output data of the measurement value calculation unit 71 and the coordinate data from the coordinate calculation unit 72, vector display data and numerical display data of each measurement value and specified value are created, Output to the display unit 8.

図3は、表示部8の表示画面8aを示しており、この表示画面8aは、ベクトル表示部81と、規定値表示部82a,82bと、数値表示部83とを有している。
ベクトル表示部81には、I,V,V,Igra,Igcがベクトル表示され、かつ位相角θも表示されており、ベクトルIgraと同一方向及び逆方向に配置された規定値表示部82a,82bには、ベクトルIgraと同じ比率で、規定値(例えば5mA)の位置が「規定値5mA」の文字と共に表示されている。なお、このような規定値の表示と共に、あるいは表示に代えて、規定値に対するIgra(Igr)の値の%表示を行っても良い。このように規定値を併せて表示することで、漏れ電流の余裕度の把握が容易になる。
FIG. 3 shows a display screen 8 a of the display unit 8, and this display screen 8 a has a vector display unit 81, specified value display units 82 a and 82 b, and a numerical value display unit 83.
In the vector display portion 81, I g , V a , V b , I gra , and I gc are displayed as vectors, and the phase angle θ is also displayed, and are defined in the same direction and in the opposite direction to the vector I gra. In the value display portions 82a and 82b, the position of the specified value (for example, 5 mA) is displayed together with the characters “specified value 5 mA” at the same ratio as the vector I gra . In addition to or in place of the display of the specified value,% display of the value of I gra (I gr ) with respect to the specified value may be performed. Displaying the specified value together in this way makes it easy to grasp the margin of leakage current.

また、ベクトル表示部81の下方に配置された数値表示部83には、I,Igra,Igrb,Igc,θの各測定値が、数値によって表示されている。なお、図示されていないが、取得電圧VまたはVの測定値を同時に数値表示しても良い。
更に、必要に応じて漏れ電流波形を同時に表示しても良い。
In addition, the measured values I g , I gra , I grb , I gc , and θ are displayed as numerical values in a numerical value display portion 83 disposed below the vector display portion 81. Although not shown, the measured value of the acquired voltage V a or V b may be numerically displayed simultaneously.
Furthermore, the leakage current waveform may be displayed simultaneously as necessary.

以上のように本実施形態によれば、合成漏れ電流Iの成分である有効漏れ電流Igr,無効漏れ電流Igcが表示画面8aにベクトル表示されるので、測定者はこれらの成分のうちどちらが支配的であるか等を含めて配電系統の絶縁劣化状態等を直感的、視覚的に把握することができる。更に、規定値表示部82a,82bによる規定値の表示によって漏れ電流の余裕度の把握が容易になり、配電系統の状態把握や保守点検作業に役立てることができる。 According to this embodiment as described above, the effective leakage current I gr is a component of the composite leakage current I g, so disabling leakage current I gc is the vector on the display screen 8a, the measurer of these components It is possible to intuitively and visually grasp the insulation deterioration state of the power distribution system including which is dominant. Further, the display of the specified values by the specified value display units 82a and 82b facilitates the grasp of the leakage current margin, which can be used for grasping the status of the power distribution system and maintenance inspection work.

上記実施形態では、単相3線式の配電系統を対象とする漏れ電流測定器について説明したが、本発明は、単相2線式、三相3線式、三相4線式の配電系統を対象とする漏れ電流測定器にも適用可能である。   In the above embodiment, the leakage current measuring device for the single-phase three-wire distribution system has been described. However, the present invention is a single-phase two-wire system, a three-phase three-wire system, and a three-phase four-wire distribution system. The present invention can also be applied to a leakage current measuring device targeting the above.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 図1における演算部の機能ブロック図である。It is a functional block diagram of the calculating part in FIG. 図1における表示部の表示画面を示す図である。It is a figure which shows the display screen of the display part in FIG. 従来技術を示すブロック図である。It is a block diagram which shows a prior art. 従来技術により漏れ電流を求める原理を示すベクトル図である。It is a vector diagram which shows the principle which calculates | requires a leakage current by a prior art.

符号の説明Explanation of symbols

10:漏れ電流測定器
11:電圧入力部
12:漏れ電流入力部
2a,2b:A/D変換回路
4:メモリ
5:基準波形データメモリ
7:演算部
71:測定値演算部
72:座標演算部
73:表示制御部
8:表示部
8a:表示画面
81:ベクトル表示部
82a,82b:規定値表示部
83:数値表示部
ZCT:零相変流器
10: Leakage current measuring instrument 11: Voltage input unit 12: Leakage current input unit 2a, 2b: A / D conversion circuit 4: Memory 5: Reference waveform data memory 7: Calculation unit 71: Measurement value calculation unit 72: Coordinate calculation unit 73: Display control unit 8: Display unit 8a: Display screen 81: Vector display unit 82a, 82b: Specified value display unit 83: Numerical value display unit ZCT: Zero-phase current transformer

Claims (3)

配電系統と接地点との間を流れる合成漏れ電流を検出する手段と、
前記配電系統の線間電圧を取得電圧として検出する手段と、
前記取得電圧と前記合成漏れ電流との間の位相角、及び、前記合成漏れ電流を用いて、前記合成漏れ電流の成分を演算する演算手段と、
この演算手段により演算した前記合成漏れ電流の成分を表示する表示手段と、
を備えた漏れ電流測定器において、
前記演算手段は、少なくとも、前記合成漏れ電流と、その成分である有効漏れ電流及び無効漏れ電流とをベクトルとして表示するための表示データを生成し、
前記表示手段は、前記表示データを用いてベクトル表示すると共に、予め設定された前記有効漏れ電流の規定値を、前記有効漏れ電流のベクトル方向に表示することを特徴とする漏れ電流測定器。
Means for detecting a composite leakage current flowing between the distribution system and the ground point;
Means for detecting a line voltage of the distribution system as an acquired voltage;
A calculation unit that calculates a component of the combined leakage current using the phase angle between the acquired voltage and the combined leakage current, and the combined leakage current;
Display means for displaying the component of the combined leakage current calculated by the calculation means;
In the leakage current measuring instrument with
The calculation means generates display data for displaying at least the combined leakage current, and effective leakage current and reactive leakage current that are components thereof as vectors,
The display means displays a vector using the display data, and displays a preset value of the effective leakage current in the vector direction of the effective leakage current .
請求項1に記載した漏れ電流測定器において、
前記演算手段は、前記取得電圧をベクトルとして表示するための表示データを生成し、前記表示手段に、前記取得電圧を前記合成漏れ電流、有効漏れ電流及び無効漏れ電流と共にベクトル表示させることを特徴とする漏れ電流測定器。
In the leakage current measuring instrument according to claim 1,
The calculation means generates display data for displaying the acquired voltage as a vector, and causes the display means to display the acquired voltage together with the combined leakage current, effective leakage current and reactive leakage current as a vector. Leakage current measuring instrument.
請求項1または2に記載した漏れ電流測定器において、
前記表示手段にベクトル表示した諸量を、ベクトルと共に数値表示することを特徴とする漏れ電流測定器。
In the leakage current measuring device according to claim 1 or 2,
A leakage current measuring instrument characterized in that various quantities displayed as vectors on the display means are numerically displayed together with vectors .
JP2007225323A 2007-08-31 2007-08-31 Leakage current measuring instrument Expired - Fee Related JP4993727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225323A JP4993727B2 (en) 2007-08-31 2007-08-31 Leakage current measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225323A JP4993727B2 (en) 2007-08-31 2007-08-31 Leakage current measuring instrument

Publications (2)

Publication Number Publication Date
JP2009058343A JP2009058343A (en) 2009-03-19
JP4993727B2 true JP4993727B2 (en) 2012-08-08

Family

ID=40554215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225323A Expired - Fee Related JP4993727B2 (en) 2007-08-31 2007-08-31 Leakage current measuring instrument

Country Status (1)

Country Link
JP (1) JP4993727B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386231B2 (en) * 2009-05-22 2014-01-15 中国電力株式会社 Insulation monitoring device testing apparatus and insulation monitoring device testing method
JP5636698B2 (en) * 2010-03-03 2014-12-10 東京電力株式会社 DC accident point inspection device
CN102955055B (en) * 2011-08-19 2014-11-26 湖北省电力公司电力科学研究院 Method for two-dimensional lightning leader progress model to acquire electric potential in mountainous terrain
JP6588261B2 (en) * 2015-07-10 2019-10-09 株式会社日立産機システム Insulation monitoring device and inverter device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294827A (en) * 1993-04-09 1994-10-21 Sankooshiya:Kk Effective/reactive current measuring system
JPH07318594A (en) * 1994-05-25 1995-12-08 Nissin Electric Co Ltd Vector-displayer of measured value
JP2000258484A (en) * 1999-03-10 2000-09-22 Hioki Ee Corp Connection state detector in power meter
JP4564863B2 (en) * 2005-02-22 2010-10-20 日置電機株式会社 Power line measuring device

Also Published As

Publication number Publication date
JP2009058343A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4167872B2 (en) Leakage current monitoring device and monitoring system therefor
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
JP4993727B2 (en) Leakage current measuring instrument
JP5494929B2 (en) Ground fault current detection method and detection apparatus
JP2012198134A (en) Fault point locating device and program
JP6127824B2 (en) Power conditioner system for photovoltaic power generation
JP2006204069A (en) Individual operation detecting method and individual operation detecting device
JP5449895B2 (en) Leakage current measuring device
JP4993728B2 (en) Effective leakage current measuring instrument
JP2008175696A (en) Insulation level monitoring device
JP2008157838A (en) Insulation monitoring device
JP5627326B2 (en) Ground resistance meter and method for measuring ground resistance
JP2011149959A (en) Insulation monitoring device
JP2004184346A (en) Insulation state measuring apparatus
KR20190091859A (en) Protection relay installation compliance inspection method and inspection apparatus
JP2023021267A (en) Detection device, method, and program
JPH11287836A (en) Compound measuring device of power supply circuit
TW201514510A (en) Insulation monitoring device
JP4734177B2 (en) Three-phase three-wire circuit leakage detection device and leakage detection method
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
US9915687B2 (en) Real current meter
JPH0743399A (en) Measurement data display method for power analyzer
JP3988932B2 (en) Earth leakage detector
JP2008145155A (en) Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees