JP2008175696A - Insulation level monitoring device - Google Patents

Insulation level monitoring device Download PDF

Info

Publication number
JP2008175696A
JP2008175696A JP2007009562A JP2007009562A JP2008175696A JP 2008175696 A JP2008175696 A JP 2008175696A JP 2007009562 A JP2007009562 A JP 2007009562A JP 2007009562 A JP2007009562 A JP 2007009562A JP 2008175696 A JP2008175696 A JP 2008175696A
Authority
JP
Japan
Prior art keywords
ground
circuit
leakage current
admittance
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007009562A
Other languages
Japanese (ja)
Other versions
JP4977481B2 (en
Inventor
Yoshikazu Teraue
義和 寺上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Nakajo Engineering Co Ltd
Original Assignee
Nakajo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakajo Engineering Co Ltd filed Critical Nakajo Engineering Co Ltd
Priority to JP2007009562A priority Critical patent/JP4977481B2/en
Publication of JP2008175696A publication Critical patent/JP2008175696A/en
Application granted granted Critical
Publication of JP4977481B2 publication Critical patent/JP4977481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation level monitoring device capable of accurately performing ground insulation resistance determination at the level based on an electrical facility technical reference requirement in an electrical facility operation state. <P>SOLUTION: A simulation circuit 72 having a known value between a measuring object circuit 1 and the ground is selectively connected, and insulation resistance is determined by calculation using variation in ground leakage current before and after simulation circuit connection and admittance of the simulation circuit connected to the current flowing on the ground through the simulation circuit. Thus, precise insulation resistance measurement that is not affected by phase error between voltage and current of a current transformer. By correcting the current detection deviation of a zero phase current transformer, goodness/badness is determined accurately performed based on the ground insulation resistance value (1mA in resistance part leakage current conversion, for example 0.2 MΩ in 200V circuit) defined to the electrical facility technical reference. Therefore, a sign of insulation degradation of each electrical facility can be obtained early and correctly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁監視装置に係り、特に電気回路稼動状態における対地絶縁抵抗値の良否を判定する技術に関する。   The present invention relates to an insulation monitoring device, and more particularly, to a technique for determining the quality of a ground insulation resistance value in an electric circuit operating state.

電気回路稼動状態における対地絶縁状態の良否判断には、漏れ電流に含まれる静電容量成分を除去して絶縁抵抗を通して流れる抵抗分漏れ電流のみを求め、抵抗分漏れ電流の大きさより対地絶縁抵抗値を求めことが有効である。   In order to judge the quality of the ground insulation state when the electric circuit is operating, the capacitance component contained in the leakage current is removed, and only the resistance leakage current that flows through the insulation resistance is obtained. It is effective to seek

その方法の例として、被測定回路に周波数20Hz、電圧0.5V程度の低周波低電圧信号を重畳させた状態において対地漏れ電流を検出し、検出した漏れ電流の中からこの印加周波数成分を抽出したうえで印加電圧との位相をもとに抵抗分漏れ電流を求め、信号電圧値と信号電圧による抵抗分漏れ電流値より対地絶縁抵抗を算出する方法が提案されている。(例えば特許文献1参照)
信号電圧を印加しない方法も提案されており、その一つは、被測定回路の漏れ電流及び対地電圧それぞれに含まれる高調波成分の代表次数における高調波漏れ電流と高調波対地電圧との位相関係より抵抗分漏れ電流を求め、代表次数の高調波対地電圧値をこの抵抗分漏れ電流値で除することにより対地絶縁抵抗を得る方法としている。(例えば特許文献2参照)
信号電圧を印加しない別の方法では、被測定回路の漏れ電流及び対地電圧それぞれに含まれる高調波成分の二つの代表次数における高調波漏れ電流成分及び高調波対地電圧成分のスカラ量より連立方程式によって対地絶縁抵抗分を求め、この大きさにより絶縁状態の良否を判断する方法としている。(例えば特許文献3参照)
特開平1−143971号公報 特開平6−043196号公報 特開2003−177154号公報
As an example of the method, ground leakage current is detected in a state where a low frequency low voltage signal having a frequency of about 20 Hz and a voltage of about 0.5 V is superimposed on the circuit to be measured, and this applied frequency component is extracted from the detected leakage current. In addition, a method has been proposed in which the resistance leakage current is obtained based on the phase of the applied voltage and the ground insulation resistance is calculated from the signal voltage value and the resistance leakage current value based on the signal voltage. (For example, see Patent Document 1)
A method that does not apply a signal voltage has also been proposed, one of which is the phase relationship between the harmonic leakage current and the harmonic ground voltage in the representative orders of the harmonic components contained in the leakage current and ground voltage of the circuit under test. Thus, a resistance leakage current is obtained, and a ground insulation voltage is obtained by dividing a harmonic voltage value of a representative order by this resistance leakage current value. (For example, see Patent Document 2)
In another method in which no signal voltage is applied, simultaneous equations are used to calculate the harmonic leakage current component and the harmonic ground voltage component in the two representative orders of the harmonic component contained in the leakage current and ground voltage of the circuit under test. The ground insulation resistance component is obtained, and the quality of the insulation state is judged based on this magnitude. (For example, see Patent Document 3)
JP-A-1-143971 Japanese Patent Laid-Open No. 6-043196 JP 2003-177154 A

信号電圧を印加する方式では、主回路に印加信号が重畳されることによる負荷設備の誤動作や損傷を防止するために、印加信号電圧を0.5V以下程度の低電圧に抑える配慮が必要となり、印加信号による漏れ電流の成分は極めて小さなものとなる。   In the method of applying the signal voltage, in order to prevent malfunction and damage of the load facility due to the application signal being superimposed on the main circuit, it is necessary to consider that the applied signal voltage is kept at a low voltage of about 0.5 V or less. The leakage current component due to the applied signal is extremely small.

このため、検出に用いる零相変流器の入出力変換損失の影響や、電圧と電流との位相ずれの影響を受けやすく、絶縁抵抗の測定精度を高くできないという欠点があった。   For this reason, there is a drawback that the measurement accuracy of the insulation resistance cannot be increased because it is easily influenced by the input / output conversion loss of the zero-phase current transformer used for detection and the phase shift between the voltage and current.

信号電圧を印加しない方式では、被測定回路の対地電圧による漏れ電流の高調波成分を利用するので、信号印加方式に対して数百倍の大きな漏れ電流を利用できることから前述の信号電圧注入方式に比して計測過程における零相変流器の入出力変換損失等の誤差の影響を小さくできる。   In the method that does not apply the signal voltage, the harmonic component of the leakage current due to the ground voltage of the circuit under test is used, so a leakage current that is several hundred times larger than the signal application method can be used. In comparison, the influence of errors such as input / output conversion loss of the zero-phase current transformer in the measurement process can be reduced.

しかしながら電気回路の末端に配置される負荷設備への電力供給回路にあっては、電気設備技術基準等に示される対地絶縁抵抗規定値(例えば対地電圧200V回路における絶縁抵抗値を0.2MΩ以上と規定するなど、抵抗分漏れ電流に換算して1mA以下に抑えることが必要)の良否判定にあたっては、1mAを下回るレベルの漏れ電流の測定が必要となり、このような微小電流領域では零相変流器の入出力変換損失や電圧と電流の位相ずれの影響排除が残ってしまうことから、信号印加によらない特許文献2や特許文献3などの例においても、電気設備技術基準等に示される対地絶縁抵抗規定値の良否判定を安定して行うまでの精度は得にくいという欠点があった。   However, in the power supply circuit to the load equipment arranged at the end of the electric circuit, the ground insulation resistance specified value (for example, the insulation resistance value in the ground voltage 200V circuit is 0.2 MΩ or more) shown in the electrical equipment technical standards and the like. (For example, it is necessary to reduce to 1 mA or less in terms of resistance leakage current), it is necessary to measure the leakage current at a level lower than 1 mA. In other cases, such as Patent Document 2 and Patent Document 3 that do not depend on signal application, the ground to the ground shown in the electrical equipment technical standards and the like is excluded. There is a drawback that it is difficult to obtain accuracy until stable determination of the insulation resistance specified value is performed.

本発明はこのような事情に鑑みてなされたもので、電気回路稼動状態における高精度の対地絶縁抵抗判定が可能な絶縁監視装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an insulation monitoring device capable of determining a ground insulation resistance with high accuracy in an electric circuit operating state.

前記目的を達成するために、請求項1に記載の絶縁監視装置は、被測定回路から大地への漏れ電流を計測する漏れ電流計測手段と、前記被測定回路と大地との間に切断可能に接続される既知の値のアドミッタンスYtaを有する模擬回路と、前記被測定回路と大地との間に前記模擬回路を接続した接続状態と、前記被測定回路と大地との間から前記模擬回路を切断した切断状態とで切り替えるスイッチ手段と、前記模擬回路を通して大地に流れる模擬電流を計測する模擬電流計測手段と、前記スイッチ手段により前記模擬回路を切断状態とし、該切断状態において前記漏れ電流計測手段により漏れ電流Igを計測する切断時漏れ電流計測手段と、前記スイッチ手段により前記模擬回路を接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igaを計測すると共に、前記模擬電流計測手段により模擬電流Itaを計測する接続時漏れ電流/模擬電流計測手段と、前記切断時漏れ電流計測手段により取得された前記漏れ電流Igと、前記接続時漏れ電流/模擬電流計測手段により取得された前記漏れ電流Iga及び前記模擬電流Itaと、前記模擬回路のアドミッタンスYtaとに基づいて、前記被測定回路の対地絶縁抵抗Reを、所定の関係式Re=F(Ig、Iga、Ita、Yta)を用いて算出する対地絶縁抵抗算出手段と、前記対地絶縁抵抗算出手段により算出された前記対地絶縁抵抗Reに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、を備えたことを特徴としている。 In order to achieve the above object, the insulation monitoring apparatus according to claim 1 is capable of disconnecting between a leakage current measuring means for measuring a leakage current from the circuit to be measured to the ground and the circuit to be measured and the ground. A simulation circuit having a known value of admittance Y ta to be connected, a connection state in which the simulation circuit is connected between the circuit to be measured and the ground, and the simulation circuit between the circuit to be measured and the ground. Switch means for switching between the disconnected state, the simulated current measuring means for measuring the simulated current flowing to the ground through the simulated circuit, and the simulated circuit is disconnected by the switch means, and the leakage current measuring means in the disconnected state a cutting state leakage current measuring means for measuring the leakage current I g by, the simulating circuit and a connected state by the switching means, the leakage current measuring means in said connected state While measuring more leakage current I ga, the simulated current and connected state leakage current / simulated current measuring means for measuring the simulated current I ta by measuring means, the leakage current obtained by the cleavage state leakage current measurement means I g When, with the leakage current I ga and the simulated current I ta acquired by the connection state leakage current / simulated current measurement means, based on the admittance Y ta of the simulation circuit, ground insulation resistance of the circuit under test R Ground insulation resistance calculation means for calculating e using a predetermined relational expression R e = F (I g , I ga , I ta , Y ta ), and the ground insulation resistance calculated by the ground insulation resistance calculation means and output means for outputting information about the insulation state of the circuit under test on the basis of R e, further comprising a are characterized.

また、請求項2に記載の絶縁監視装置は、被測定回路から大地への漏れ電流を計測する漏れ電流計測手段と、前記被測定回路と大地との間に切断可能に接続されると共に、既知の異なる値の第1のアドミッタンスYtaと第2のアドミッタンスYtbとに切替可能に設定される模擬回路と、前記被測定回路と大地との間に前記模擬回路の第1のアドミッタンスYtaと第2のアドミッタンスYtbのうちのいずれかを接続した接続状態と、前記被測定回路と大地との間から前記模擬回路を切断した切断状態とで切り替えるスイッチ手段と、前記スイッチ手段により前記模擬回路を切断状態とし、該切断状態において前記漏れ電流計測手段により前記漏れ電流Igを計測する切断時漏れ電流計測手段と、前記スイッチ手段により前記模擬回路の第1のアドミッタンスYtaを接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igaを計測すると共に、前記スイッチ手段により前記模擬回路の第2のアドミッタンスYtbを接続状態とし、該接続状態において前記漏れ電流計測手段により前記漏れ電流Igbを計測する接続時漏れ電流計測手段と、前記切断時漏れ電流計測手段により取得された前記漏れ電流Igと、前記接続時漏れ電流計測手段により取得された前記漏れ電流Iga及び前記漏れ電流Igbと、前記模擬回路の第1のアドミッタンスYta及び第2のアドミッタンスYtbに基づいて、対地絶縁抵抗Reを、所定の関係式Re=F(Ig、Iga、Igb、Yta、Ytb)を用いて算出する対地絶縁抵抗算出手段と、前記対地絶縁抵抗算出手段により算出された前記対地絶縁抵抗Reに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、を備えたことを特徴としている。 The insulation monitoring device according to claim 2 is connected to a leakage current measuring means for measuring a leakage current from the circuit to be measured to the ground, and to be disconnected between the circuit to be measured and the ground and is known. different from the first admittance Y ta and simulation circuit which is switchably set in the second admittance Y tb values, the first admittance Y ta of the mimic circuit between the circuit to be measured and earth of Switch means for switching between a connection state in which one of the second admittances Y tb is connected and a disconnection state in which the simulation circuit is disconnected from between the circuit under test and the ground; and the simulation circuit by the switch means was disconnected, the disconnection state leakage current measuring means for measuring the leakage current I g by the leakage current measuring means in said disconnected state, the first a of the mimic circuit by said switching means The Mittansu Y ta to a connected state, while measuring the leakage current I ga by the leakage current measuring means in said connected state, the second admittance Y tb of the simulation circuit and a connected state by the switching means, in said connected state a connection state leakage current measuring means for measuring the leakage current I gb by the leakage current measuring means, and the leakage current I g obtained by the cleavage state leakage current measuring means, acquired by the connection state leakage current measuring means the leakage current and I ga and the leakage current I gb, based on the first admittance Y ta and the second admittance Y tb of the simulating circuit, the ground insulation resistance R e, a predetermined relational expression R e = F was (I g, I ga, I gb, Y ta, Y tb) the ground insulation resistance calculated by the ground insulation resistance calculating means for calculating with the ground insulation resistance calculating means And output means for outputting information about the insulation state of the circuit under test on the basis of R e, further comprising a are characterized.

請求項3に記載の絶縁監視装置は、被測定回路から大地への漏れ電流を計測する漏れ電流計測手段と、前記被測定回路と大地との間に切断可能に接続されると共に、既知の異なる値の第1のアドミッタンスYtaと第2のアドミッタンスYtbとに切替可能に設定される模擬回路と、前記被測定回路と大地との間に前記模擬回路の第1のアドミッタンスYtaと第2のアドミッタンスYtbのうちのいずれかを接続した接続状態と、前記被測定回路と大地との間から前記模擬回路を切断した切断状態とで切り替えるスイッチ手段と、前記模擬回路を通して大地に流れる模擬電流を計測する模擬電流計測手段と、前記スイッチ手段により前記模擬回路の第1のアドミッタンスYtaを接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igaを計測すると共に、前記模擬電流計測手段により模擬電流Itaを計測し、前記スイッチ手段により前記模擬回路の第2のアドミッタンスYtbを接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igbを計測すると共に、前記模擬電流計測手段により模擬電流Itbを計測する接続時漏れ電流/模擬電流計測手段と、前記接続時漏れ電流/模擬電流計測手段により取得された漏れ電流Iga、模擬電流Ita、漏れ電流Igb、及び、模擬電流Itbと、前記模擬回路の第1のアドミッタンスYta及び第2のアドミッタンスYtbに基づいて、対地絶縁抵抗Reを、所定の関係式Re=F(Iga、Igb、Ita、Itb、Yta、Ytb)を用いて算出する対地絶縁抵抗算出手段と、前記対地絶縁抵抗算出手段により算出された前記対地絶縁抵抗Reに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、を備えたことを特徴としている。 The insulation monitoring device according to claim 3 is connected to a leakage current measuring means for measuring a leakage current from the circuit to be measured to the ground, and the circuit to be measured and the ground so as to be disconnected, and is known differently. a first admittance Y ta and simulation circuit which is switchably set in the second admittance Y tb values, the first admittance of the mimic circuit between the circuit to be measured and earth Y ta and second Switch means for switching between a connection state in which any one of the admittances Y tb is connected and a disconnection state in which the simulation circuit is disconnected from between the circuit under test and the ground, and a simulated current flowing to the ground through the simulation circuit a simulated current measurement means for measuring a first admittance Y ta of the mimic circuit by said switch means to the connected state, leakage conductive by the leakage current measuring means in said connected state With measuring the I ga, simulated current I ta measured by the simulated current measurement means, the second admittance Y tb of the mimic circuit by said switch means to a connected state by the leakage current measuring means in said connected state The leakage current I gb is measured and the simulated current I tb is measured by the simulated current measuring means. The connected leakage current / simulated current measuring means, and the leakage current I acquired by the connected leakage current / simulated current measuring means. ga, simulated current I ta, the leakage current I gb, and a simulated current I tb, based on the first admittance Y ta and the second admittance Y tb of the simulating circuit, the ground insulation resistance R e, predetermined relationship R e = F (I ga, I gb, I ta, I tb, Y ta, Y tb) and ground insulation resistance calculating means for calculating using said calculated by the ground insulation resistance calculating means It is characterized and output means for outputting information about the insulation state of the circuit under test on the basis of the ground insulation resistance R e, further comprising a.

請求項4に記載の絶縁監視装置は、請求項1、2、又は、3に記載の発明において、前記被測定回路から大地への漏れ電流及び模擬回路を通して大地に流れる電流に含まれる高調波成分中の代表次数高調波成分を利用することを特徴としている。   According to a fourth aspect of the present invention, there is provided the insulation monitoring apparatus according to the first, second, or third aspect, wherein the harmonic component included in the leakage current from the circuit to be measured to the ground and the current flowing to the ground through the simulation circuit. It is characterized by using the representative representative harmonic component.

請求項5に記載の絶縁監視装置は、請求項1に記載の発明において、前記模擬回路のアドミッタンスYtaが静電容量Caにより構成され、前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Ita、Yta)を、
e=(1/ωCa)×(1/(((Ig/Ita)+(Iga 2 ― Ig 2 ― Ita 2)/(2Ita 2))×((Ig/Ita)―(Iga 2 ― Ig 2 ― Ita 2)/(2Ita 2))))0.5
として前記対地絶縁抵抗Reを算出し、
又は、前記模擬回路のアドミッタンスYtaが抵抗Raにより構成され、前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Ita、Yta)を、
e =2Ita 2a/(Iga 2 ― Ig 2 ― Ita 2
として前記対地絶縁抵抗Reを算出することを特徴としている。
According to a fifth aspect of the present invention, there is provided the insulation monitoring apparatus according to the first aspect, wherein the admittance Y ta of the simulation circuit is configured by a capacitance C a , and the ground insulation resistance calculating means is configured to calculate the predetermined relational expression. R e = F (I g , I ga , I ta , Y ta )
R e = (1 / ωC a ) × (1 / (((I g / I ta ) + (I ga 2 −I g 2 −I ta 2 ) / (2I ta 2 )) × ((I g / I ta )-(I ga 2 -I g 2 -I ta 2 ) / (2I ta 2 )))) 0.5
The ground insulation resistance Re is calculated as
Alternatively, the admittance Y ta of the simulation circuit is configured by a resistance Ra, and the ground insulation resistance calculation means calculates the predetermined relational expression R e = F (I g , I ga , I ta , Y ta )
R e = 2I ta 2 R a / (I ga 2 −I g 2 −I ta 2 )
The ground insulation resistance Re is calculated as follows.

請求項6に記載の絶縁監視装置は、請求項2に記載の発明において、前記模擬回路の前記第1のアドミッタンスYtaが第1の静電容量Caで構成され、前記第2のアドミッタンスYtbが第2の静電容量Cbによって構成され、前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Igb、Yta、Ytb)を、
e=(1/ω)×((Iga 2 ― Igb 2)/((Igb 2 ― Iga 2)Ce 2 +2Ceagb 2 ― 2Cebga 2+Igb 2a 2 ― Iga 2b 2))0.5
ここに、Ce=((Igb 2 ―Ig 2)Ca 2 ―(Iga 2 ― Ig 2)Cb 2)/(2((Iga 2 ― Ig 2)Cb ―(Igb 2 ― Ig 2)Ca))
として前記対地絶縁抵抗Reを算出し、
又は、前記模擬回路の前記第1のアドミッタンスYtaが第1の抵抗Raで構成され、前記第2のアドミッタンスYtbが第2の抵抗Rbによって構成され、前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Igb、Yta、Ytb)を、
e=2((Iga 2 ― Ig 2)/Rb ―(Igb 2 ― Ig 2)/Ra)/((Igb 2 ― Ig 2)/Ra 2 ―(Iga 2 ― Ig 2)/Rb 2
として前記対地絶縁抵抗Reを算出することを特徴としている。
According to a sixth aspect of the present invention, there is provided the insulation monitoring apparatus according to the second aspect, wherein the first admittance Y ta of the simulation circuit is configured by a first capacitance Ca, and the second admittance Y tb is configured by a second capacitance C b , and the ground insulation resistance calculation means calculates the predetermined relational expression R e = F (I g , I ga , I gb , Y ta , Y tb ),
R e = (1 / ω) × ((I ga 2 −I gb 2 ) / ((I gb 2 −I ga 2 ) C e 2 + 2C e C a I gb 2 −2C e C b I g a 2 + I gb 2 C a 2 ― I ga 2 C b 2 )) 0.5
Here, C e = ((I gb 2 −I g 2 ) C a 2 − (I ga 2 −I g 2 ) C b 2 ) / (2 ((I ga 2 −I g 2 ) C b − ( I gb 2 -I g 2 ) C a ))
The ground insulation resistance Re is calculated as
Alternatively, the first admittance Y ta of the simulation circuit is configured by a first resistor Ra, the second admittance Y tb is configured by a second resistor R b , and the ground insulation resistance calculating unit includes: The predetermined relational expression R e = F (I g , I ga , I gb , Y ta , Y tb )
R e = 2 ((I ga 2 -I g 2 ) / R b- (I gb 2 -I g 2 ) / R a ) / ((I gb 2 -I g 2 ) / R a 2- (I ga 2 - I g 2) / R b 2)
The ground insulation resistance Re is calculated as follows.

請求項7に記載の絶縁監視装置は、請求項3に記載の発明において、前記模擬回路の前記第1のアドミッタンスYtaが第1の静電容量Caで構成され、前記第2のアドミッタンスYtbが第2の静電容量Cbによって構成され、前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Iga、Igb、Ita、Itb、Yta、Ytb)を、
e=(Itb /ω)×(1/(Igb 2b 2 ―(Ce+Cb2 tb 2 ))0.5
ここに、Ce =((Igb 2 ― Iga 2 )Cb 2 ― Itb 2(Cb 2 ― Ca 2))/(2((Cb ― Ca)Itb 2))
又は、
前記模擬回路の前記第1のアドミッタンスYtaが第1の抵抗Raで構成され、前記第2のアドミッタンスYtbが第2の抵抗Rbによって構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Iga、Igb、Ita、Itb、Yta、Ytb)を、
e =2(1/Rb ― 1/Ra)×(Itb 2b 2/(Igb 2 ― Iga 2 + Itb 2b 2(1/Ra 2 ― 1/Rb 2)))
として前記対地絶縁抵抗Reを算出することを特徴とする請求項3の絶縁監視装置。
According to a seventh aspect of the present invention, there is provided the insulation monitoring apparatus according to the third aspect, wherein the first admittance Y ta of the simulation circuit is configured by a first capacitance Ca, and the second admittance Y tb is constituted by the second capacitance C b, the ground insulation resistance calculation means, the predetermined relationship R e = F (I ga, I gb, I ta, I tb, Y ta, Y tb) The
R e = (I tb / Ω) × (1 / ( I gb 2 C b 2 - (C e + C b) 2 I tb 2)) 0.5
Here, C e = ((I gb 2 −I ga 2 ) C b 2 −I tb 2 (C b 2 −C a 2 )) / (2 ((C b −C a ) I tb 2 ))
Or
The first admittance Y ta of the simulation circuit is configured by a first resistor Ra, and the second admittance Y tb is configured by a second resistor R b ,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I ga , I gb , I ta , I tb , Y ta , Y tb ),
R e = 2 (1 / R b −1 / R a ) × (I tb 2 R b 2 / (I gb 2 −I ga 2 + I tb 2 R b 2 (1 / R a 2 −1 / R b 2 )))
The insulation monitoring apparatus according to claim 3, wherein the ground insulation resistance Re is calculated.

請求項8に記載の絶縁監視装置は、請求項1〜7のうちのいずれか1に記載の発明において、前記出力手段は、前記被測定回路の絶縁状態に関する情報として、前記対地絶縁抵抗算出手段により算出された対地絶縁抵抗の値、及び、該対地絶縁抵抗の値に基づいて算出した抵抗分漏れ電流値のうち少なくともいずれか1つにつき、その値もしくはその値が所定の値を超えたことを表示、記録、外部出力又は通報することと、前記対地絶縁抵抗の値、及び、抵抗分漏れ電流値のうち少なくともいずれかひとつにつき、その大きさによって安全領域、危険領域等のように少なくとも2つの領域に区分して表示、記録、外部出力又は通報することのいずれか1つ又は複数を行うことを特徴としている。   According to an eighth aspect of the present invention, there is provided the insulation monitoring apparatus according to any one of the first to seventh aspects, wherein the output means uses the ground insulation resistance calculating means as information on an insulation state of the circuit under test. For at least one of the value of ground insulation resistance calculated by the above and the resistance leakage current value calculated based on the value of the ground insulation resistance, the value or the value exceeded a predetermined value Display, record, external output or report and at least one of the value of the ground insulation resistance and the resistance leakage current value, at least 2 such as a safety area, a dangerous area, etc. depending on its magnitude. It is characterized in that one or a plurality of display, recording, external output or reporting is performed by dividing into one area.

以上の如く構成される本発明は、被測定回路と大地間に模擬回路を接続し、模擬回路接続前後の被測定回路から大地への二つの漏れ電流と、模擬回路のアドミッタンスと、模擬回路を通して大地に流れる電流を用いるか(請求項1に係る発明)、模擬回路を第1及び第2のアドミッタンスによって構成し、模擬回路接続前、第1及び第2のアドミッタンス接続時の被測定回路から大地への三つの漏れ電流と、第1及び第2のアドミッタンスを用いるか(請求項2に係る発明)、第1及び第2のアドミッタンス接続時の被測定回路から大地への二つの漏れ電流と、模擬回路を通して大地に流れる二つの電流と、第1及び第2のアドミッタンスを用いること(請求項3に係る発明)を最も主要な特徴とする。   In the present invention configured as described above, a simulation circuit is connected between the circuit to be measured and the ground, two leakage currents from the circuit to be measured to the ground before and after the connection of the simulation circuit, the admittance of the simulation circuit, and the simulation circuit The current flowing in the ground is used (invention according to claim 1), or the simulation circuit is constituted by the first and second admittances, and the circuit under test at the time of the first and second admittance connections before the simulation circuit is connected to the ground The first and second admittances (the invention according to claim 2), two leakage currents from the circuit under test to the ground when the first and second admittances are connected, The main features are the use of two currents flowing to the ground through the simulation circuit and the first and second admittances (the invention according to claim 3).

本発明の絶縁監視装置によれば、変流器の電圧と電流との位相誤差に左右されない高精度な絶縁抵抗測定ができ、また、特許文献1に示した従来技術のような信号電圧印加装置が不用なために小形で安価なものにできる。   According to the insulation monitoring device of the present invention, it is possible to measure the insulation resistance with high accuracy independent of the phase error between the voltage and current of the current transformer, and the signal voltage application device as in the prior art disclosed in Patent Document 1 Because it is unnecessary, it can be made small and inexpensive.

また、本発明において、漏れ電流の計測において零相変流器を使用した場合に、零相変流器の電流検出偏差を補正する作用が含まれているので、電気設備技術基準に規定される対地絶縁抵抗値(200V回路で0.2MΩ以上など、抵抗分漏れ電流換算で1mA)の良否を電気回路稼動状態で判定する場合のような検出零相変流器の1次側入力電流が1mAレベルという微小な電流においても、高精度な測定ができる。   Further, in the present invention, when a zero-phase current transformer is used in the measurement of leakage current, an action of correcting the current detection deviation of the zero-phase current transformer is included, so that it is defined in the technical standards for electrical equipment. The primary input current of the detection zero-phase current transformer is 1 mA, such as when judging the quality of the insulation resistance value (1 mA in terms of resistance leakage current, such as 0.2 MΩ or more in a 200 V circuit) in the operating state of the electric circuit. High-precision measurement can be performed even with a minute current level.

従って、電気設備個々における絶縁劣化の兆候を早期且つ正確に捉えることができ、絶縁劣化を正確に捉えることで、警報等を行うことが容易になると共に、事故を未然に防止することが容易となる。   Therefore, it is possible to quickly and accurately detect signs of insulation deterioration in individual electrical equipment, and by accurately detecting insulation deterioration, it is easy to perform alarms and to prevent accidents in advance. Become.

以下、添付図面に従って本発明に係る絶縁監視装置を実施するための最良の形態について詳説する。   The best mode for carrying out an insulation monitoring apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、被測定回路の対地漏れ電流検出手段と対地模擬回路の接続を示すもので、被測定回路1には零相変流器4が接続される。被測定回路の電源である変圧器TR2次側(被測定回路側)においては接地線3により接地がなされており、負荷2の対地アドミッタンスYを通して流れる対地漏れ電流は、前記零相変流器4にて検出され絶縁監視装置5の監視制御部6に供給される。絶縁監視装置5の模擬回路接続部7には既知の値を有する模擬回路72があり、監視制御部6及び模擬回路接続部7に組み込まれる模擬回路制御部71の指令に応動する開閉部SSによって被測定回路1の被接地線路と大地との間に接続される。模擬回路72を通して大地に流れる電流は電流検出部73により検出され模擬回路制御部71及び監視制御部6に伝達される。 FIG. 1 shows a connection between a ground leakage current detecting means of a circuit under test and a ground simulation circuit. A zero phase current transformer 4 is connected to the circuit under measurement 1. In the power supply is a transformer TR2 primary side of the circuit under test (measured circuit side) are made grounded by a ground line 3, ground leakage current flowing through the load 2 of ground admittance Y e, the zero-phase current transformer 4 and supplied to the monitoring controller 6 of the insulation monitoring device 5. The simulation circuit connection unit 7 of the insulation monitoring device 5 has a simulation circuit 72 having a known value. The monitoring control unit 6 and the opening / closing unit SS responding to a command of the simulation circuit control unit 71 incorporated in the simulation circuit connection unit 7 Connected between the grounded line of the circuit under test 1 and the ground. The current flowing to the ground through the simulation circuit 72 is detected by the current detection unit 73 and transmitted to the simulation circuit control unit 71 and the monitoring control unit 6.

図2は、図1における被測定回路の対地漏れ電流通過経路に関する等価回路を示す。同図に示すように負荷2の対地アドミッタンスYが絶縁抵抗Reと静電容量Ceの並列回路として表され、その対地アドミッタンスYに対して対地電圧Eが印加されると共に、並列して模擬回路接続部7の模擬回路72、電流検出部73、開閉部SSが接続されている。また、対地アドミッタンスY及び模擬回路72に流れる電流の伝送路に零相変流器4が配置されている。 FIG. 2 shows an equivalent circuit relating to a ground leakage current passing path of the circuit under test in FIG. As shown in the figure, the ground admittance Y e of the load 2 is represented as a parallel circuit of the insulation resistance R e and the capacitance C e , and a ground voltage E is applied to the ground admittance Y e , and in parallel. The simulation circuit 72 of the simulation circuit connection unit 7, the current detection unit 73, and the open / close unit SS are connected. Further, ground admittance Y e and simulating circuit ZCT 4 to the transmission path of the current flowing through the 72 is disposed.

図3は、図2の例において開閉部SSが複数の個別開閉器S〜Snで構成され、複数の既知の抵抗Ra〜Rnまたは静電容量Ca〜Cnを被測定回路と大地間に選択接続可能とすることを示す。 Figure 3 is a switching unit SS in the example of FIG. 2 is composed of a plurality of individual switches S 1 to S n, a plurality of known resistance R a to R n or capacitance C a -C n the circuit under test Indicates that selective connection is possible between

図4は、開閉部SSを閉路させる前の被測定回路から大地への漏れ電流Igと、開閉部SS中の個別開閉器S2閉路によって静電容量Caを接続させた場合の被測定回路から大地への漏れ電流Iga1と、静電容量Caを通して大地に流れる電流Ita1との関係をベクトル図によって表したものである。 4, the leakage current I g from the measured circuit prior to closing the opening portion SS to ground, to be measured in the case where to connect the capacitance C a by individual switch S 2 closed during the opening and closing portion SS The relationship between the leakage current I ga1 from the circuit to the ground and the current I ta1 flowing to the ground through the capacitance C a is represented by a vector diagram.

図4に示す、電流値Ig、Iga1、Ita1及び静電容量Caによって絶縁抵抗Reを求める計算式は次のように導かれる。 The calculation formula for obtaining the insulation resistance R e from the current values I g , I ga1 , Ita1 and the capacitance C a shown in FIG. 4 is derived as follows.

静電容量Caを接続する前の状態における被測定回路の対地漏れ電流Ig、対地電圧E、絶縁抵抗Re、及び被測定回路の対地コンダクタンスωCeの関係は
g 2 =((1/Re2 +(ωCe2)×E2 ……… 式(1)
である。
The relationship between the ground leakage current I g , the ground voltage E, the insulation resistance R e , and the ground conductance ωC e of the circuit to be measured in the state before the capacitance C a is connected is expressed as I g 2 = ((1 / R e ) 2 + (ωC e ) 2 ) × E 2 ......... Formula (1)
It is.

被測定回路と大地間に既知の静電容量Caを接続した場合の対地漏れ電流Iga1と、対地電圧Eと、絶縁抵抗Re、対地コンダクタンスωCe、及び模擬回路72の対地コンダクタンスCaとの関係は、
ga1 2 =((1/Re2 +(ωCe + ωCa2)×E2 ……… 式(2)
静電容量Caを通して大地に流れる電流Ita1と、対地電圧Eと、静電容量Caとの関係は、
2 =Ita1 2 /(ωCa2 ……… 式(3)
であり、式(1)、式(2)、式(3)より、
e a(Iga1 2 ― Ig 2 ― Ita1 2 )/(2Ita1 2 ) ……… 式(4)
が導かれる。
Ground leakage current I ga1 , ground voltage E, insulation resistance R e , ground conductance ωC e , and ground conductance C a of the simulation circuit 72 when a known capacitance C a is connected between the circuit to be measured and the ground The relationship with
I ga1 2 = ((1 / R e ) 2 + (ωC e + ωC a ) 2 ) × E 2 ......... Formula (2)
The relationship between the current I ta1 flowing to the ground through the capacitance C a , the ground voltage E, and the capacitance C a is
E 2 = I ta1 2 / (ωC a ) 2 ……… Formula (3)
From Equation (1), Equation (2), and Equation (3),
C e = C a (I ga1 2 −I g 2 −I ta1 2 ) / (2I ta1 2 ) Equation (4)
Is guided.

従って、式(1)に式(4)を代入して整理した次式、
e =(1/ωCa)×(1/(((Ig/Ita1)+(Iga1 2 ― Ig 2 ― Ita1 2)/(2Ita 1 2))×((Ig/Ita1)―(Iga1 2 ― Ig 2 ― Ita1 2)/(2Ita1 2))))0.5 ……… 式(5)
が模擬回路のアドミッタンスを静電容量Caとした場合の絶縁抵抗Reを求める第1の算出式となる。
Therefore, the following formula arranged by substituting formula (4) into formula (1),
R e = (1 / ωC a ) × (1 / (((I g / I ta1 ) + (I ga1 2 −I g 2 −I ta1 2 ) / (2I ta 1 2 )) × ((I g / I ta1 )-(I ga1 2 -I g 2 -I ta1 2 ) / (2I ta1 2 )))) 0.5 ......... Formula (5)
There the first calculation formula for obtaining the insulation resistance R e in the case of the admittance of the simulation circuit and the capacitance C a.

図5は、開閉部SSを閉路させる前の被測定回路から大地への漏れ電流Igと、開閉部SS中の個別開閉器S1閉路によって抵抗Raを接続させた場合の被測定回路から大地への漏れ電流Iga2と、抵抗Raを通して大地に流れる電流Ita2との関係をベクトル図によって表したものである。 5, the leakage current I g to the ground from the measuring circuit prior to closing the opening portion SS, from the measurement circuit when the individual switch S 1 closed in closing portion SS was connected a resistor R a a leakage current I ga2 to earth, the relation between the current I ta2 flowing to ground through resistor R a is a representation by vector diagram.

図5に示す、電流値Ig、Iga 2、Ita2及び模擬回路の抵抗Raによって絶縁抵抗Reを求める計算式は次のように導かれる。 5, the current value I g, formulas for determining the insulation resistance R e by the resistance R a of I ga 2, I ta2 and simulation circuit is derived as follows.

抵抗Raを接続した場合の対地漏れ電流Iga2と、対地電圧Eと、絶縁抵抗Re及び対地コンダクタンスωCe、及び模擬回路の抵抗Raとの関係は、
ga2 2 =((1/Re + 1/Ra2 +(ωCe2)×E2 ……… 式(6)
であり、抵抗Raを通して大地に流れる電流Ita2と、対地電圧Eと、抵抗Raとの関係は、
2 =Ita2 2 ・Ra 2 ……… 式(7)
である。
When the resistor Ra is connected, the relationship between the ground leakage current I ga2 , the ground voltage E, the insulation resistance R e and the ground conductance ωC e , and the resistance R a of the simulation circuit is
I ga2 2 = ((1 / R e + 1 / R a ) 2 + (ωC e ) 2 ) × E 2 ......... Formula (6)
, And the current I ta2 flowing to ground through resistor R a, and ground voltage E, the relationship between the resistance R a,
E 2 = I ta2 2・ R a 2 ......... Formula (7)
It is.

従って、式(1)、式(6)、式(7)より導かれる次式、
e 2Ita2 2 a/(Iga2 2 ― Ig 2 ― Ita2 2) ……… 式(8)
が模擬回路のアドミッタンスを抵抗Raとした場合の絶縁抵抗Reを求める第2の算出式となる。
Therefore, the following expression derived from Expression (1), Expression (6), and Expression (7):
R e = 2I ta2 2 R a / (I ga2 2I g 2I ta2 2) ......... formula (8)
There is a second calculation formula for obtaining the insulation resistance R e in the case of the admittance of the simulation circuit and the resistance R a.

図6は、模擬回路を既知の異なる2以上のアドミッタンスとする例のうち、第1のアドミッタンスを静電容量Ca、第2のアドミッタンスを静電容量Cbとする場合において、静電容量接続前の電流Ig、個別開閉器S閉路によって静電容量Ca を接続させた場合の被測定回路から大地への漏れ電流Iga3と、個別開閉器S閉路によって静電容量Cbを接続させた場合の被測定回路から大地への漏れ電流Igb3との関係をベクトル図によって表したものである。 FIG. 6 shows a case where the first admittance is the capacitance C a and the second admittance is the capacitance C b among the two or more known different admittances. The previous current I g , the leakage current I ga3 from the circuit to be measured when the capacitance C a is connected by the individual switch S 2 closed circuit, and the capacitance C b by the individual switch S 4 closed circuit FIG. 5 is a vector diagram showing a relationship between a circuit under test and a leakage current I gb3 from the circuit to be measured when connected.

図6に示す電流値Ig、Iga3、Igb3、静電容量Ca、静電容量Cbによって、絶縁抵抗Reを求める計算式は次のように導かれる。 Current value I g shown in FIG. 6, I ga3, I gb3, the capacitance C a, the capacitance C b, calculation formula for obtaining the insulation resistance R e is derived as follows.

静電容量Caを接続した場合の対地漏れ電流Iga3と、対地電圧Eと、静電容量Ceとの関係は、
ga3 =((1/Re2 +(ωCe + ωCa2)×E2 ……… 式(9)
となり、静電容量Cbを接続した場合の対地漏れ電流Igb 3と、対地電圧Eと、静電容量Ceとの関係は
gb3 =((1/Re2 +(ωCe + ωCb2)×E2 ……… 式(10)
となる。
When the capacitance C a is connected, the relationship between the ground leakage current I ga3 , the ground voltage E, and the capacitance C e is as follows:
I ga3 = ((1 / R e ) 2 + (ωC e + ωC a ) 2 ) × E 2 ……… Formula (9)
The relationship between the ground leakage current I gb 3 , the ground voltage E, and the capacitance C e when the capacitance C b is connected is I gb3 = ((1 / R e ) 2 + (ωC e + ωC b ) 2 ) x E 2 ……… Formula (10)
It becomes.

式(9)、式(10)より被測定回路の対地静電容量Ce は、
e =((Igb3 2 ― Ig 2)Ca 2 ―(Iga3 2 ― Ig 2)Cb 2)/(2((Iga3 2 ― Ig 2)Cb―(Igb3 2 ― Ig 2)Ca)) ……… 式(11)
となる。
Equation (9), the capacitance to ground C e of the measuring circuit from the equation (10),
C e = ((I gb3 2 −I g 2 ) C a 2 − (I ga3 2 −I g 2 ) C b 2 ) / (2 (((I ga3 2 −I g 2 ) C b − (I gb3 2 ― I g 2 ) C a )) ……… Formula (11)
It becomes.

一方、式(9)、式(10)より被測定回路の絶縁抵抗Reは、
e =(1/ω)×((Iga3 2 ― Igb3 2)/((Igb3 2 ― Iga3 2)Ce 2 + 2Ceagb3 2 ― 2Cebga3 2 + Igb3 2a 2 ― Iga3 2b 2))0.5 ……… 式(12)
となり、式(12)に式(11)で求めたCeを与えたものが、絶縁抵抗Reを求める第3の算出式となる。
On the other hand, the formula (9), the insulation resistance R e of the measuring circuit from the equation (10),
R e = (1 / ω) × ((I ga3 2 −I gb3 2 ) / ((I gb3 2 −I ga3 2 ) C e 2 + 2C e C a I gb3 2 −2C e C b I ga3 2 + I gb3 2 C a 2 —I ga3 2 C b 2 )) 0.5 ……… Formula (12)
Next, which gave C e calculated in equation (11) into equation (12) becomes the third calculation formula for obtaining the insulation resistance R e.

図7は、模擬回路を既知の異なる2以上のアドミッタンスとする別の例として、第1のアドミッタンスを抵抗Ra、第2のアドミッタンスを抵抗Rbとする場合において、抵抗接続前の電流Ig、抵抗Raを接続させた場合の被測定回路から大地への漏れ電流Iga4と、抵抗Rbを接続させた場合の被測定回路から大地への漏れ電流Igb4との関係をベクトル図によって表したものである。 FIG. 7 shows another example in which the simulated circuit has two or more known different admittances. In the case where the first admittance is a resistor R a and the second admittance is a resistor R b , the current I g before resistance connection is shown. , the leakage current I GA4 to earth from the measurement circuit when to connect the resistors R a, by a vector diagram the relationship between the leakage current I GB4 to earth from the measurement circuit when the resistance R b is connected It is a representation.

図7に示す、電流値Ig、Iga4、Igb4、抵抗Ra、抵抗Rb、によって絶縁抵抗Reを求める計算式は次のように導かれる。 7, the current value I g, I ga4, I gb4 , resistors R a, resistor R b, by determining the insulation resistance R e equation is derived as follows.

抵抗Raを接続した場合の対地漏れ電流Iga4と、対地電圧Eと、抵抗Raとの関係は、
ga4 =((1/Re + 1/Ra2 +(ωCe2)×E2 ……… 式(13)
となり、抵抗Rbを接続した場合の対地漏れ電流Igb4と、対地電圧Eと、抵抗Rbとの関係は、
gb4 =((1/Re + 1/Rb2 +(ωCe2)×E2 ……… 式(14)
となる。
When the resistor R a is connected, the relationship between the ground leakage current I ga4 , the ground voltage E, and the resistor R a is
I ga4 = ((1 / R e + 1 / R a ) 2 + (ωC e ) 2 ) × E 2 ......... Formula (13)
When the resistance R b is connected, the relationship between the ground leakage current I gb4 , the ground voltage E, and the resistance R b is
I gb4 = ((1 / R e + 1 / R b ) 2 + (ωC e ) 2 ) × E 2 ……… Formula (14)
It becomes.

従って、式(13)、式(14)より導かれる次式、
e =2((Iga4 2 ― Ig 2)/Rb ― (Igb4 2 ― Ig 2)/Ra)/((Igb4 2 ― Ig 2)/Ra 2 ― (Iga4 2 ― Ig 2)/Rb 2 ……… 式(15)
が絶縁抵抗Reを求める第4の算出式となる。
Therefore, the following expression derived from Expression (13) and Expression (14):
R e = 2 ((I ga4 2 −I g 2 ) / R b − (I gb4 2 −I g 2 ) / R a ) / ((I gb4 2 −I g 2 ) / R a 2 − (I ga4 2 - I g 2) / R b 2) ……… Formula (15)
There the fourth calculation formula for obtaining the insulation resistance R e.

図8は模擬回路を既知の異なる2以上のアドミッタンスとする例のうちの、第1のアドミッタンス静電容量Ca、第2のアドミッタンスを静電容量Cbとする場合において、静電容量Caを接続させた場合の被測定回路から大地への漏れ電流Iga5と、静電容量Caを通して大地に流れる電流Ita5と、静電容量Cbを接続させた場合の被測定回路から大地への漏れ電流Igb5、静電容量Cbを通して大地に流れる電流Itb5との関係をベクトル図によって表したものである。 8 of the examples and simulating circuits of two or more different known admittance, the first admittance capacitance C a, in the case where the second admittance to the capacitance C b, the capacitance C a a leakage current I GA5 to earth from the measurement circuit when to connect the, the current I ta5 flowing to ground through the capacitance C a, the earth from the measurement circuit when to connect the electrostatic capacitance C b leakage current I Gb5, a representation by the vector diagram the relationship between the current I tb5 flowing to ground through the capacitance C b.

図8に示す電流値Iga5、Ita5、Igb5、Igb5、静電容量Ca、Cb、によって、絶縁抵抗Reを求める計算式は次のように導かれる。 Current value I GA5 shown in FIG. 8, I ta5, I gb5, I gb5, the capacitance C a, C b, the calculation formula for obtaining the insulation resistance R e is derived as follows.

静電容量Caを接続させた場合の対地漏れ電流Iga5と、対地電圧Eとの関係は、
ga5 2 =((1/Re2 +(ωCe + ωCa2)×E2 ……… 式(16)
であり、静電容量Cbを接続させた場合の対地漏れ電流Igb5と、対地電圧Eとの関係は、
gb5 2 =((1/Re2 +(ωCe + ωCb2)×E2 ……… 式(17)
となる。
The relationship between the ground leakage current I ga5 and the ground voltage E when the capacitance C a is connected is as follows:
I ga5 2 = ((1 / R e ) 2 + (ωC e + ωC a ) 2 ) × E 2 ......... Formula (16)
The relationship between the ground leakage current I gb5 and the ground voltage E when the capacitance C b is connected is as follows:
I gb5 2 = ((1 / R e ) 2 + (ωC e + ωC b ) 2 ) × E 2 ……… Formula (17)
It becomes.

静電容量Cbを通して大地に流れるItb5 と、対地電圧Eとの関係は、
2 = Itb5 2/ω2b 2 ……… 式(18)
なので、式(16)、式(17)、式(18)によって、
e =(Igb5 2 ― Iga5 2)Cb 2 ― Itb5 2(Cb 2 ― Ca 2)/(2(Cb ― Ca)Itb5 2) ……… 式(19)
が得られる。
The relationship between I tb5 flowing to the ground through the capacitance C b and the ground voltage E is
E 2 = I tb5 2 / ω 2 C b 2 ... (18)
Therefore, according to Equation (16), Equation (17), and Equation (18),
C e = (I gb5 2 - I ga5 2) C b 2 - I tb5 2 (C b 2 - C a 2) / (2 (C b - C a) I tb5 2) ......... (19)
Is obtained.

式(17)、式(18)を整理して得られる次式、
e =(Itb5 /ω)×(1/(Igb5 2b 2 ―(Ce+Cb2tb5 2 ))0.5
……… 式(20)
に式(19)で求められるCeを与えたものが、絶縁抵抗Reを求める第5の算出式の一つとなる。
The following formula obtained by rearranging formula (17) and formula (18):
R e = (I tb5 / Ω) × (1 / (I gb5 2 C b 2 − (C e + C b ) 2 It b5 2 )) 0.5
……… Formula (20)
The value obtained by giving C e obtained by the equation (19) is one of the fifth calculation equations for obtaining the insulation resistance Re .

一方、静電容量Caを通して大地に流れるIta5 と、対地電圧Eとの関係は
2 = Ita5 2/ω2a 2 ……… 式(21)
なので、式(16)、式(17)、式(21)によって
e =((Igb5 2 ― Iga5 2)Ca 2 ― Ita5 2(Cb 2 ― Ca 2))/(2(Cb ― Ca)Ita5 2) ……… 式(22)
が得られる。
On the other hand, the relationship between I ta5 flowing to the ground through the capacitance C a and the ground voltage E is E 2 = I ta5 2 / ω 2 C a 2 (Equation (21))
So, equation (16), equation (17), wherein C e = by (21) ((I gb5 2 - I ga5 2) C a 2 - I ta5 2 (C b 2 - C a 2)) / (2 (C b -C a ) I ta5 2 ) Equation (22)
Is obtained.

式(16)、式(21)を整理して得られる次式、
e =(Ita5/ω)×(1/(Iga5 2a 2 ―(Ce + Ca2ta5 2 ))0.5 ……… 式(23)
に式(22)で求められるCeを与えたものが、絶縁抵抗Reを求める第5の算出式のもう一つとなる。
The following formula obtained by rearranging formula (16) and formula (21):
R e = (I ta5 / ω) × (1 / (I ga5 2 C a 2 − (C e + C a ) 2 I ta5 2 )) 0.5 Equation (23)
The value obtained by giving C e obtained by the equation (22) is another fifth calculation equation for obtaining the insulation resistance Re .

図9は模擬回路を既知の異なる2以上のアドミッタンスとする例のうち、第1のアドミッタンスを抵抗Ra、第2のアドミッタンスを抵抗Rbとする場合において、抵抗Raを接続させた場合の被測定回路から大地への漏れ電流Iga6と、抵抗Raを通して大地に流れる電流Ita6と、抵抗Rbを接続させた場合の被測定回路から大地への漏れ電流Igb6、抵抗Rbを通して大地に流れる電流Itb6との関係をベクトル図によって表したものである。 FIG. 9 shows an example in which the resistor R a is connected when the first admittance is the resistor R a and the second admittance is the resistor R b among the two or more known different admittances. a leakage current I GA6 to earth from the circuit under test and the current I ta6 flowing to ground through resistor R a, leakage current I GB6 of the resistor R b from the measurement circuit when is connected to ground through a resistor R b The relationship with the current I tb6 flowing through the ground is represented by a vector diagram.

図9に示す電流値Iga6、Ita6、Igb6、Itb6、Ra、Rb、によって、絶縁抵抗Reを求める計算式は次のように導かれる。 Current value I GA6 shown in FIG. 9, I ta6, I gb6, I tb6, R a, R b, the calculation formula for obtaining the insulation resistance R e is derived as follows.

開閉部SSによって抵抗Raを接続させた場合の対地漏れ電流Iga6と、対地電圧Eとの関係は、
ga6 =((1/Re + 1/Ra2 +(ωCe2)×E2 ……… 式(24)
であり、抵抗Rbを接続させた場合の対地漏れ電流Igb6と、対地電圧Ebとの関係は、
gb6 =((1/Re + 1/Rb2 +(ωCe2)×E2 ……… 式(25)
となる。
The relationship between the ground leakage current I ga6 and the ground voltage E when the resistor Ra is connected by the switching unit SS is as follows:
I ga6 = ((1 / R e + 1 / R a ) 2 + (ωC e ) 2 ) × E 2 ……… Formula (24)
The relationship between the ground leakage current I gb6 when the resistor R b is connected and the ground voltage E b is as follows:
I gb6 = ((1 / R e + 1 / R b ) 2 + (ωC e ) 2 ) × E 2 ……… Formula (25)
It becomes.

抵抗Rbを通して大地に流れるItb6 と、対地電圧Eとの関係は
2 = Itb6 2 b 2 ……… 式(26)
なので、式(24)、式(25)、式(26)によって得られる次式、
e = 2(1/Rb ― 1/Ra)×(Itb6 2b 2/(Igb6 2 ― Iga6 2 + Itb6 2b 2(1/Ra 2 ― 1/Rb 2))) ……… 式(27)
が、絶縁抵抗Reを求める第6の算出式の一つとなる。
The relationship between I tb6 flowing to the ground through the resistor R b and the ground voltage E is E 2 = I tb6 2 R b 2 ……… Formula (26)
Therefore, the following formulas obtained by formula (24), formula (25), and formula (26):
R e = 2 (1 / R b -1 / R a ) × (I tb6 2 R b 2 / (I gb6 2 -I ga6 2 + I tb6 2 R b 2 (1 / R a 2 -1 / 1 / R b 2 ))) ……… Formula (27)
But it becomes one of the sixth calculation formula for obtaining the insulation resistance R e.

一方、抵抗Raを通して大地に流れるIta6と、対地電圧Eとの関係は、
2 = Ita6 2 a 2 ……… 式(28)
なので、式(24)、式(25)、式(28)によって得られる次式、
e = 2(1/Rb ― 1/Ra)×(Ita6 2a 2/(Igb6 2 ― Iga6 2 + Ita6 2a 2(1/Ra 2 ― 1/Rb 2))) ……… 式(29)
が、絶縁抵抗Reを求める第6の算出式のもう一つとなる。
On the other hand, the I ta6 flowing to ground through resistor R a, the relationship between the ground voltage E,
E 2 = I ta6 2 R a 2 ……… Formula (28)
Therefore, the following expression obtained by Expression (24), Expression (25), and Expression (28):
R e = 2 (1 / R b -1 / R a ) × (I ta6 2 R a 2 / (I gb6 2 -I ga6 2 + I ta6 2 R a 2 (1 / R a 2 -1 / Rb) 2 ))) ……… Formula (29)
But the other sixth calculation formula for obtaining the insulation resistance R e.

前述の絶縁抵抗Reを求める第1から第6の算出式は、いずれも
e=F(Ig、Iga、Ita、Yta ………… 式(30)
または
e=F(Ig、Iga、Igb、Yta、Ytb ……… 式(31)
または
e=F(Iga、Igb、Ita、Itb、Yta、Ytb ……… 式(32)
で表され、対地電圧や対地電圧と漏れ電流の位相には依存しないことを示している。
The above-described first to sixth calculation formulas for obtaining the insulation resistance Re are all R e = F (I g , I ga , I ta , Y ta ). ………… Formula (30)
Or R e = F (I g , I ga , I gb , Y ta , Y tb ) ……… Formula (31)
Or R e = F (I ga , I gb , I ta , I tb , Y ta , Y tb ) ……… Formula (32)
It shows that it does not depend on the ground voltage or the phase of ground voltage and leakage current.

零相変流器の入力電流が微小な場合には、対地電圧と漏れ電流との位相誤差が大きくなるので、位相に依存しない式(30)〜式(32)は、入力電流が微小な場合においても高精度の測定ができることを示している。   When the input current of the zero-phase current transformer is very small, the phase error between the ground voltage and the leakage current becomes large. Therefore, the equations (30) to (32) that do not depend on the phase are obtained when the input current is very small. This shows that high-precision measurement can be performed.

また、式(30)〜式(32)の中の零相変流器によって測定される漏れ電流Ig、Iga、Igbが、(Iga 2 ― Ig 2)等のように電流要素相互の二乗差の形で構成されている。 Further, the leakage currents I g , I ga , and I gb measured by the zero-phase current transformer in the equations (30) to (32) are current elements such as (I ga 2 −I g 2 ). It is constructed in the form of a square difference between each other.

特定の回路の絶縁抵抗を測定する場合には、同一の零相変流器に1次導体が同一な条件で装着された状態で測定されるため、前述の電流要素Ig、Iga、Igbの測定値に含まれる零相変流器の誤差は、誤差の正負が同一で大きさも近似な偏差となることから、零相変流器によって測定される電流Ig、Iga、Igbが偏差を含んだものであったとしても、式(30)〜式(32)による算出過程において零相変流器の測定電流偏差の影響が相殺される方向に作用することを示している。 When measuring the insulation resistance of a specific circuit, the measurement is performed with the primary conductor mounted on the same zero-phase current transformer under the same conditions. Therefore, the current elements I g , I ga , I Since the error of the zero-phase current transformer included in the measured value of gb is the same and the magnitude of the error is an approximate deviation, the currents I g , I ga , I gb measured by the zero-phase current transformer are the same. Even if it contains a deviation, it shows that the influence of the measured current deviation of the zero-phase current transformer is canceled in the calculation process according to the equations (30) to (32).

また、式(30)や式(32)中の模擬回路を通して大地に流れる電流要素Ita、Itbについては、前述の零相変流器と同じ仕様の零相変流器によって計測するか、前述の零相変流器において予め求められる偏差と同等の補正値を算出過程で与えることによって、(Iga 2 ―Itg 2)等のように零相変流器の検出電流偏差を相殺させる作用を持たせる事ができる。 Further, the current elements I ta and I tb flowing to the ground through the simulation circuit in the equations (30) and (32) are measured by a zero-phase current transformer having the same specifications as the above-described zero-phase current transformer, By giving a correction value equivalent to the deviation obtained in advance in the above-described zero-phase current transformer in the calculation process, the detected current deviation of the zero-phase current transformer is canceled as (I ga 2 −I tg 2 ) or the like. Can have an effect.

被測定回路が三相交流回路の場合には、三相とも同相となって重なる高調波3n次(nは整数)の代表次数を抽出して前述の第1から第6の算出式による絶縁抵抗の計算を行なうことによって、従来技術による方法よりも精度の高い絶縁抵抗値の算出ができる。   In the case where the circuit under test is a three-phase AC circuit, the representative orders of the harmonics 3n-th order (n is an integer) that are in phase with all three phases are extracted, and the insulation resistance is calculated according to the above first to sixth calculation formulas. By calculating the above, it is possible to calculate the insulation resistance value with higher accuracy than the conventional method.

図10は被測定回路が単相三線交流回路の場合において模擬回路接続相を切替できるようにした例を示す回路図である。尚、図1に示した回路図と同一又は類似作用の構成部には図1と同一符号を付している。図10において、接続相切替部SFによって模擬回路72を被測定回路の二つの非接地相それぞれにつき予め接続し、被測定回路から大地への漏れ電流増加量が大きかった相を選択したうえで前述の第1から第6の算出式による絶縁抵抗の計算を行なうことによって、従来技術による方法よりも精度の高い絶縁抵抗値の算出ができる。   FIG. 10 is a circuit diagram showing an example in which the circuit connection phase can be switched when the circuit under test is a single-phase three-wire AC circuit. Components having the same or similar functions as those in the circuit diagram shown in FIG. In FIG. 10, the simulation circuit 72 is connected in advance to each of the two ungrounded phases of the circuit under test by the connection phase switching unit SF, and the phase having a large increase in leakage current from the circuit under test to the ground is selected. By calculating the insulation resistance according to the first to sixth calculation formulas, it is possible to calculate the insulation resistance value with higher accuracy than the conventional method.

図11は本発明の絶縁監視装置の実施例を示す構成図である。4j1〜4k2は漏れ電流検出用の零相変流器であり、その2次出力は監視装置5を構成する一方のブロックである監視制御部6の中の対地漏れ電流入力部62に入力される。61は監視制御装置6の内部に動作用電圧を供給する電源部、63は入力部62にて内部信号に変換されたアナログ信号を後述する演算処理部64の指示を受けて前記入力部62の出力をサンプリング及びディジタル値に変換するA/D変換部、64はA/D変換部63に対するサンプリング及びディジタル変換指示、また得られたディジタル値を記憶部65に記憶させると共に、上述した方法により絶縁抵抗や抵抗分漏れ電流を算出するための演算処理部である。また、演算処理部64は算出結果である絶縁抵抗値や抵抗分漏れ電流値の後述する出力部68への出力も併せて行う。制御部66は演算処理部64の指示を受けて後述の模擬回路制御部7に測定対象回路の選択指示や模擬回路の接続指示を行なうとともに、模擬回路を通して大地に流れる電流値を演算処理部に伝達する。出力部68は、演算処理部64により得られた結果の監視装置5や上位装置10への遠隔出力を行う。設定部67は警報出力の判断値などを与えるものであり、絶縁抵抗や抵抗分漏れ電流の演算値がこの判断値に達した場合に出力部68あるいは上位装置10に出力する。絶縁監視装置5や上位装置10における出力手段は表示器などによる視覚表示、ブザーなどの音声通知、演算結果や異常発生時刻の通知及び記録である。なお、前述の警報判断値の設定や警報保持状態の解除は上位装置10からも行える。記憶部65または上位装置10は演算結果の定期記憶を継続的に行うことができ、絶縁状態の連続記録や絶縁劣化進行状況の連続監視及び遡及チェックに利用できる。 FIG. 11 is a block diagram showing an embodiment of the insulation monitoring apparatus of the present invention. 4 j1 to 4 k2 are zero-phase current transformers for detecting leakage current, and the secondary output thereof is input to the ground leakage current input unit 62 in the monitoring control unit 6 which is one block constituting the monitoring device 5. Is done. Reference numeral 61 denotes a power supply unit that supplies an operation voltage to the inside of the monitoring control device 6, and 63 denotes an analog signal converted into an internal signal by the input unit 62 in response to an instruction from the arithmetic processing unit 64 to be described later. An A / D converter 64 for sampling the output and converting it into a digital value, 64 is a sampling and digital conversion instruction for the A / D converter 63, and the obtained digital value is stored in the storage unit 65 and insulated by the method described above. It is an arithmetic processing unit for calculating resistance and resistance leakage current. The arithmetic processing unit 64 also outputs an insulation resistance value and a resistance leakage current value, which are calculation results, to an output unit 68 described later. In response to an instruction from the arithmetic processing unit 64, the control unit 66 instructs the simulation circuit control unit 7 (to be described later) to select a circuit to be measured and to instruct connection to the simulation circuit. introduce. The output unit 68 performs remote output of the result obtained by the arithmetic processing unit 64 to the monitoring device 5 and the host device 10. The setting unit 67 gives a judgment value for alarm output and the like, and outputs the output value to the output unit 68 or the host device 10 when the calculated values of insulation resistance and resistance leakage current reach the judgment value. The output means in the insulation monitoring device 5 and the host device 10 is a visual display by a display device, a sound notification such as a buzzer, and a notification and recording of a calculation result and an abnormality occurrence time. Note that the above-described alarm judgment value can be set and the alarm holding state can be canceled from the host device 10. The storage unit 65 or the host device 10 can continuously store the calculation results periodically, and can be used for continuous recording of the insulation state, continuous monitoring of the progress of insulation deterioration, and retroactive checking.

監視装置5を構成する他方のブロックである模擬回路接続部7は、模擬回路制御部71、模擬回路制御部71の指令に応動する開閉部SS、開閉部SSによってアドミッタンスを選択接続される模擬回路72、模擬回路を通して大地に流れる電流を計測する電流計測部73、被測定回路を選択接続する測定回路切替装置CCを有する。模擬回路制御部71は、監視制御部6の中の制御部66と接続され、制御部66の指示に応動して前述の測定回路切替装置CC、開閉部SSへの開閉動作指示を行なうとともに、計測部73の計測値を模擬回路制御部71及び制御部66を介して監視制御部の演算処理部に伝達する。   The simulation circuit connection unit 7, which is the other block constituting the monitoring device 5, includes a simulation circuit control unit 71, an opening / closing unit SS that responds to a command from the simulation circuit control unit 71, and a simulation circuit in which admittance is selectively connected by the opening / closing unit SS 72, a current measuring unit 73 for measuring the current flowing to the ground through the simulation circuit, and a measuring circuit switching device CC for selectively connecting the circuit under measurement. The simulated circuit control unit 71 is connected to the control unit 66 in the monitoring control unit 6, and in response to an instruction from the control unit 66, performs an opening / closing operation instruction to the above-described measurement circuit switching device CC and the opening / closing unit SS. The measurement value of the measurement unit 73 is transmitted to the arithmetic processing unit of the monitoring control unit via the simulation circuit control unit 71 and the control unit 66.

図12は、負荷設備群に本発明の絶縁監視装置を適用する場合を示す接続図である。監視制御部6を零相変流器近傍に設置し、模擬回路接続部7は負荷近傍に設置し、両者の間は有線または無線による通信によって接続され、被測定回路の選択、模擬回路の選択開閉や模擬回路電流の返信を行なう。   FIG. 12 is a connection diagram showing a case where the insulation monitoring device of the present invention is applied to a load facility group. The monitoring control unit 6 is installed in the vicinity of the zero-phase current transformer, the simulation circuit connection unit 7 is installed in the vicinity of the load, and the two are connected by wired or wireless communication to select the circuit to be measured and the simulation circuit. Reply with switching and simulated circuit current.

図13は、電気設備技術基準に規定されている絶縁抵抗値を判定する例として、被測定回路の対地電圧E=200V、対地絶縁抵抗Re=0.2MΩ、対地静電容量Ce=0.05μFを想定し、零相変流器の検出電流偏差の影響分についての対地絶縁抵抗良否判定誤差の大きさを、従来技術と本発明とで比較した説明図である。 FIG. 13 shows an example of determining the insulation resistance value defined in the electrical equipment technical standards. The ground voltage E = 200 V, the ground insulation resistance R e = 0.2 MΩ, and the ground capacitance C e = 0 of the circuit to be measured. It is explanatory drawing which compared magnitude | size of the ground insulation resistance quality determination error about the influence part of the detection electric current deviation of a zero phase current transformer by comparing with the prior art and this invention supposing 0.05 micro F.

微小電流領域における零相変流器の検出電流偏差の影響のみを比較するために、零相変流器の検出偏差以外の誤差要因は無いものと想定した計算比較内容を下記に示す。   In order to compare only the influence of the detected current deviation of the zero-phase current transformer in the minute current region, the calculation comparison contents assuming that there is no error factor other than the detected deviation of the zero-phase current transformer are shown below.

漏れ電流真値Ig =((1/0.22)+ ω20.0520.5 ×200×10-3 = 3.30(mA)であり、零相変流器の検出偏差値を−0.5(mA)と想定した場合、漏れ電流検出値Ig ´は、Ig ´ = Ig − 0.5 = 2.80(mA)となる。 The leakage current true value I g = ((1 / 0.2 2 ) + ω 2 0.05 2 ) 0.5 × 200 × 10 −3 = 3.30 (mA), and the detection deviation value of the zero-phase current transformer Assuming that −0.5 (mA), the leakage current detection value I g is I g = I g −0.5 = 2.80 (mA).

抵抗分漏れ電流算出への影響を零相変流器の検出電流偏差分のみと想定したので、従来技術における対地絶縁抵抗算出値R(従来技術)、算出誤差、誤差比率はそれぞれ、
(従来技術)= 0.2×(Ig ´/Ig)= 0.236(MΩ)
絶縁抵抗算出誤差 = 0.236 ― 0.2 = 0.036(MΩ)
絶縁抵抗算出誤差率 = 0.036/0.2×100 = 18.0%
となる。
Since the influence on the resistance leakage current calculation is assumed to be only the detected current deviation of the zero-phase current transformer, the ground insulation resistance calculation value R e (conventional technology), the calculation error, and the error ratio in the conventional technology are respectively
R e (prior art) = 0.2 × (I g / I g ) = 0.236 (MΩ)
Insulation resistance calculation error = 0.236-0.2 = 0.036 (MΩ)
Insulation resistance calculation error rate = 0.036 / 0.2 x 100 = 18.0%
It becomes.

本実施の形態で示した式(15)を用いる例で、模擬回路の第1の抵抗を0.7(MΩ)、第2の抵抗を0.35(MΩ)とした場合の零相変流器の検出電流Ig、Iga、Igbそれぞれの測定値にはすべて検出電流偏差値を−0.5(mA)が含まれるものとして算出した対地絶縁抵抗算出値R、算出誤差、誤差比率はそれぞれ、
対地絶縁抵抗算出値R = 0.206(MΩ)
絶縁抵抗算出誤差 = 0.206 ― 0.2 = 0.006(MΩ)
絶縁抵抗算出誤差率 = 0.006/0.2×100 = 3.0%
となる。
In the example using the equation (15) shown in the present embodiment, zero-phase current transformation when the first resistance of the simulation circuit is 0.7 (MΩ) and the second resistance is 0.35 (MΩ) The ground insulation resistance calculated value R e , the calculation error, and the error calculated by assuming that the detected current deviation value includes −0.5 (mA) in all measured values of the detected currents I g , I ga , and I gb. Each ratio is
Ground insulation resistance calculation value R e = 0.206 (MΩ)
Insulation resistance calculation error = 0.206-0.2 = 0.006 (MΩ)
Insulation resistance calculation error rate = 0.006 / 0.2 x 100 = 3.0%
It becomes.

負荷設備及び模擬回路から大地を通して流れる電流の経路と絶縁監視装置への入力を示す回路図である。It is a circuit diagram which shows the path | route of the electric current which flows through the earth from a load installation and a simulation circuit, and the input to an insulation monitoring apparatus. 被測定回路から大地を通して流れる漏れ電流の等価回路図である。It is an equivalent circuit diagram of the leakage current which flows through the ground from a circuit to be measured. 模擬回路接続部の内部回路図である。It is an internal circuit diagram of a simulation circuit connection part. 被測定回路の模擬回路接続前の漏れ電流と、模擬回路のコンデンサ接続後の漏れ電流と、模擬回路のコンデンサを通して大地に流れる電流との関係を示すベクトル図である。It is a vector diagram showing the relationship between the leakage current before connection of the simulation circuit of the circuit to be measured, the leakage current after connection of the capacitor of the simulation circuit, and the current flowing to the ground through the capacitor of the simulation circuit. 被測定回路の模擬回路接続前の漏れ電流と、模擬回路の抵抗接続後の漏れ電流と、模擬回路の抵抗を通して大地に流れる電流との関係を示すベクトル図である。It is a vector diagram showing the relationship between the leakage current before connection of the simulation circuit of the circuit to be measured, the leakage current after connection of the resistance of the simulation circuit, and the current flowing to the ground through the resistance of the simulation circuit. 被測定回路の模擬回路接続前の漏れ電流と、模擬回路を構成する第1のコンデンサ接続後の漏れ電流と、第2のコンデンサ接続後の漏れ電流との関係を示すベクトル図である。It is a vector diagram showing the relationship between the leakage current before connection of the simulation circuit of the circuit under test, the leakage current after connection of the first capacitor constituting the simulation circuit, and the leakage current after connection of the second capacitor. 被測定回路の模擬回路接続前の漏れ電流と、模擬回路を構成する第1の抵抗接続後の漏れ電流と、第2の抵抗接続後の漏れ電流との関係を示すベクトル図である。It is a vector diagram showing the relationship between the leakage current before connection of the simulation circuit of the circuit to be measured, the leakage current after connection of the first resistor constituting the simulation circuit, and the leakage current after connection of the second resistor. 被測定回路に模擬回路を構成する第1のコンデンサを接続した場合の漏れ電流と、第1のコンデンサを通して大地に流れる電流と、第2のコンデンサを接続した場合の漏れ電流と、第2のコンデンサを通して大地に流れる電流との関係を示すベクトル図である。A leakage current when the first capacitor constituting the simulation circuit is connected to the circuit to be measured, a current flowing to the ground through the first capacitor, a leakage current when the second capacitor is connected, and the second capacitor It is a vector diagram which shows the relationship with the electric current which flows into the earth through. 被測定回路に模擬回路を構成する第1の抵抗を接続した場合の漏れ電流と、第1の抵抗を通して大地に流れる電流と、第2の抵抗を接続した場合の漏れ電流と、第2の抵抗を通して大地に流れる電流との関係を示すベクトル図である。A leakage current when the first resistor constituting the simulation circuit is connected to the circuit to be measured, a current flowing to the ground through the first resistor, a leakage current when the second resistor is connected, and the second resistance It is a vector diagram which shows the relationship with the electric current which flows into the earth through. 本発明を単相3線交流回路に適用する場合の回路図である。It is a circuit diagram in the case of applying the present invention to a single-phase three-wire AC circuit. 本発明の実施例による絶縁監視装置の構成を示す構成図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by the Example of this invention. 本発明の絶縁監視装置を複数の被測定回路に適用した例を示す回路図である。It is a circuit diagram which shows the example which applied the insulation monitoring apparatus of this invention to several to-be-measured circuits. 本発明の零相変流器測定偏差抑制効果を従来技術による算出結果と比較記載した説明図である。It is explanatory drawing which described the zero phase current transformer measurement deviation suppression effect of this invention compared with the calculation result by a prior art.

符号の説明Explanation of symbols

E・・・被測定回路の対地電圧、Ig・・・被測定回路の対地漏れ電流、Iga・・・模擬回路の第1のアドミッタンスを接続した場合の被測定回路の対地漏れ電流、Igb・・・模擬回路の第2のアドミッタンスを接続した場合の被測定回路の対地漏れ電流、Ita・・・被測定回路から模擬回路の第1のアドミッタンスを通して大地に流れる電流、Itb・・・被測定回路から模擬回路の第2のアドミッタンスを通して大地に流れる電流、R・・・被測定回路の絶縁抵抗、Ra・・・模擬回路の第1の抵抗、Rb・・・模擬回路の第2の抵抗、Ce・・・被測定回路の対地間静電容量、Ca・・・模擬回路の第1の静電容量、Cb・・・模擬回路の第2の静電容量、SS・・・開閉部、S1〜Sn・・・個別開閉器、SF・・・接続相切替部、CC…測定回路切替装置、1・・・被測定回路、2…負荷、3・・・変圧器2次側接地線、4、4j〜4k・・・零相電流器、5・・・絶縁監視装置、6・・・監視制御部、7・・・模擬回路接続部、8 ・・・被測定回路接続部、9・・・上位装置との通信手段、10・・・上位装置、61・・・電源部、62・・・対地漏れ電流入力部、63・・・A/D変換部、64・・・演算処理部、65・・・記憶部、66・・・制御部、67・・・設定部、68・・・出力部、71・・・模擬回路制御部、72・・・模擬回路、73・・・電流計測部、81・・・被測定回路の非接地線の一方、82・・・被測定回路の非接地線の他の一方 Ground voltage E · · · the circuit under test, I g · · · ground leakage current of the circuit under test, I ga · · · first ground leakage current of the circuit to be measured when connecting the admittance of the simulating circuit, I gb : ground leakage current of the circuit under test when the second admittance of the simulation circuit is connected, I ta: current flowing from the circuit under test to the ground through the first admittance of the simulation circuit, I tb. Current flowing from the circuit under test to the ground through the second admittance of the simulation circuit, R e ... insulation resistance of the circuit under measurement, R a ... first resistance of the simulation circuit, R b ... simulation circuit Second resistance, C e ... capacitance of the circuit under measurement, C a ... first capacitance of the simulation circuit, C b ... second capacitance of the simulation circuit , SS · · · closing unit, S 1 ~S n ··· individual switches, SF · · · connected phase switching unit, CC Measuring circuit switching device, 1 ... circuit under test, 2 ... load, 3 ... transformer secondary side ground line, 4, 4 j to 4 k ... zero-phase current unit, 5 ... insulation monitoring Device: 6 ... Monitoring control unit, 7 ... Simulated circuit connection unit, 8 ... Measured circuit connection unit, 9 ... Communication means with host device, 10 ... Host device, 61 ... -Power supply unit, 62 ... Ground leakage current input unit, 63 ... A / D conversion unit, 64 ... arithmetic processing unit, 65 ... storage unit, 66 ... control unit, 67 ... Setting unit 68 ... Output unit 71 ... Simulated circuit control unit 72 ... Simulated circuit 73 ... Current measuring unit 81 ... One of the ungrounded wires of the circuit under test 82 ..Other one of the ungrounded wires of the circuit under test

Claims (8)

被測定回路から大地への漏れ電流を計測する漏れ電流計測手段と、
前記被測定回路と大地との間に切断可能に接続される既知の値のアドミッタンスYtaを有する模擬回路と、
前記被測定回路と大地との間に前記模擬回路を接続した接続状態と、前記被測定回路と大地との間から前記模擬回路を切断した切断状態とで切り替えるスイッチ手段と、
前記模擬回路を通して大地に流れる模擬電流を計測する模擬電流計測手段と、
前記スイッチ手段により前記模擬回路を切断状態とし、該切断状態において前記漏れ電流計測手段により漏れ電流Igを計測する切断時漏れ電流計測手段と、
前記スイッチ手段により前記模擬回路を接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igaを計測すると共に、前記模擬電流計測手段により模擬電流Itaを計測する接続時漏れ電流/模擬電流計測手段と、
前記切断時漏れ電流計測手段により取得された前記漏れ電流Igと、前記接続時漏れ電流/模擬電流計測手段により取得された前記漏れ電流Iga及び前記模擬電流Itaと、前記模擬回路のアドミッタンスYtaとに基づいて、前記被測定回路の対地絶縁抵抗Reを、所定の関係式Re=F(Ig、Iga、Ita、Yta)を用いて算出する対地絶縁抵抗算出手段と、
前記対地絶縁抵抗算出手段により算出された前記対地絶縁抵抗Reに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、
を備えたことを特徴とする絶縁監視装置。
Leakage current measuring means for measuring the leakage current from the circuit under test to the ground,
A simulation circuit having a known value of admittance Y ta severably connected between the circuit under test and the ground;
Switch means for switching between a connection state in which the simulation circuit is connected between the circuit to be measured and the ground, and a disconnection state in which the simulation circuit is disconnected from between the circuit to be measured and the ground;
Simulated current measuring means for measuring a simulated current flowing to the ground through the simulated circuit;
A cutting state leakage current measuring means for measuring the leakage current I g by the simulated circuit is disconnected, the leakage current measuring means in said disconnected state by the switching means,
The simulation circuit and a connected state by the switching means, the measured leakage current I ga by the leakage current measuring means in said connected state, the simulated current connection state leakage current / simulated to measure a simulated current I ta by measuring means Current measuring means;
Wherein a cutting state leakage current measuring means and the leakage current I obtained by g, and the leakage current I ga and the simulated current I ta, which is acquired by the connection state leakage current / simulated current measurement means, admittance of the simulation circuit based on the Y ta, the ground insulation resistance R e of the circuit under test, the predetermined relationship R e = F (I g, I ga, I ta, Y ta) ground insulation resistance calculating means for calculating with When,
And output means for outputting information about the insulation state of the circuit under test on the basis of the ground insulation resistance R e calculated by the ground insulation resistance calculating means,
An insulation monitoring device comprising:
被測定回路から大地への漏れ電流を計測する漏れ電流計測手段と、
前記被測定回路と大地との間に切断可能に接続されると共に、既知の異なる値の第1のアドミッタンスYtaと第2のアドミッタンスYtbとに切替可能に設定される模擬回路と、
前記被測定回路と大地との間に前記模擬回路の第1のアドミッタンスYtaと第2のアドミッタンスYtbのうちのいずれかを接続した接続状態と、前記被測定回路と大地との間から前記模擬回路を切断した切断状態とで切り替えるスイッチ手段と、
前記スイッチ手段により前記模擬回路を切断状態とし、該切断状態において前記漏れ電流計測手段により前記漏れ電流Igを計測する切断時漏れ電流計測手段と、
前記スイッチ手段により前記模擬回路の第1のアドミッタンスYtaを接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igaを計測すると共に、前記スイッチ手段により前記模擬回路の第2のアドミッタンスYtbを接続状態とし、該接続状態において前記漏れ電流計測手段により前記漏れ電流Igbを計測する接続時漏れ電流計測手段と、
前記切断時漏れ電流計測手段により取得された前記漏れ電流Igと、前記接続時漏れ電流計測手段により取得された前記漏れ電流Iga及び前記漏れ電流Igbと、前記模擬回路の第1のアドミッタンスYta及び第2のアドミッタンスYtbに基づいて、対地絶縁抵抗Reを、所定の関係式Re=F(Ig、Iga、Igb、Yta、Ytb)を用いて算出する対地絶縁抵抗算出手段と、
前記対地絶縁抵抗算出手段により算出された前記対地絶縁抵抗Reに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、
を備えたことを特徴とする絶縁監視装置。
Leakage current measuring means for measuring the leakage current from the circuit under test to the ground,
A simulation circuit which is severably connected between the circuit to be measured and the ground and is set to be switchable between a first admittance Y ta and a second admittance Y tb having different known values;
The connection state in which one of the first admittance Y ta and the second admittance Y tb of the simulation circuit is connected between the circuit to be measured and the ground, and between the circuit to be measured and the ground from the ground. Switch means for switching between the cut state when the simulated circuit is cut,
The simulated circuit is disconnected, and a cutting state leakage current measuring means for measuring the leakage current I g by the leakage current measuring means in said disconnected state by the switching means,
A first admittance Y ta of the simulation circuit is set in a connected state by the switch means, and a leakage current Iga is measured by the leakage current measurement means in the connected state, and a second admittance of the simulation circuit is measured by the switch means. Y tb is set to a connected state, and in the connected state, the leakage current measuring unit at the time of measuring the leakage current I gb by the leakage current measuring unit;
Wherein a cutting state leakage current measuring means and the current leakage is obtained by I g, and the leakage current I ga and the leakage-current I gb acquired by the connection state leakage current measuring means, the first admittance of the simulation circuit Based on Y ta and the second admittance Y tb , the ground insulation resistance R e is calculated using a predetermined relational expression R e = F (I g , I ga , I gb , Y ta , Y tb ) Insulation resistance calculation means;
And output means for outputting information about the insulation state of the circuit under test on the basis of the ground insulation resistance R e calculated by the ground insulation resistance calculating means,
An insulation monitoring device comprising:
被測定回路から大地への漏れ電流を計測する漏れ電流計測手段と、
前記被測定回路と大地との間に切断可能に接続されると共に、既知の異なる値の第1のアドミッタンスYtaと第2のアドミッタンスYtbとに切替可能に設定される模擬回路と、
前記被測定回路と大地との間に前記模擬回路の第1のアドミッタンスYtaと第2のアドミッタンスYtbのうちのいずれかを接続した接続状態と、前記被測定回路と大地との間から前記模擬回路を切断した切断状態とで切り替えるスイッチ手段と、
前記模擬回路を通して大地に流れる模擬電流を計測する模擬電流計測手段と、
前記スイッチ手段により前記模擬回路の第1のアドミッタンスYtaを接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igaを計測すると共に、前記模擬電流計測手段により模擬電流Itaを計測し、前記スイッチ手段により前記模擬回路の第2のアドミッタンスYtbを接続状態とし、該接続状態において前記漏れ電流計測手段により漏れ電流Igbを計測すると共に、前記模擬電流計測手段により模擬電流Itbを計測する接続時漏れ電流/模擬電流計測手段と、
前記接続時漏れ電流/模擬電流計測手段により取得された漏れ電流Iga、模擬電流Ita、漏れ電流Igb、及び、模擬電流Itbと、前記模擬回路の第1のアドミッタンスYta及び第2のアドミッタンスYtbに基づいて、対地絶縁抵抗Reを、所定の関係式Re=F(Iga、Igb、Ita、Itb、Yta、Ytb)を用いて算出する対地絶縁抵抗算出手段と、
前記対地絶縁抵抗算出手段により算出された前記対地絶縁抵抗Reに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、
を備えたことを特徴とする絶縁監視装置。
Leakage current measuring means for measuring the leakage current from the circuit under test to the ground,
A simulation circuit which is severably connected between the circuit to be measured and the ground and is set to be switchable between a first admittance Y ta and a second admittance Y tb having different known values;
The connection state in which one of the first admittance Y ta and the second admittance Y tb of the simulation circuit is connected between the circuit to be measured and the ground, and between the circuit to be measured and the ground from the ground. Switch means for switching between the cut state when the simulated circuit is cut,
Simulated current measuring means for measuring a simulated current flowing to the ground through the simulated circuit;
The switch means puts the first admittance Y ta of the simulation circuit into a connected state, and in the connected state, the leakage current Iga is measured by the leakage current measuring means, and the simulated current Ita is measured by the simulated current measuring means. Then, the second admittance Y tb of the simulation circuit is set in the connected state by the switch means, and the leakage current Igb is measured by the leakage current measuring means in the connected state, and the simulated current I tb is measured by the simulated current measuring means. Leakage current / simulated current measuring means for measuring
The acquired by the connection state leakage current / simulated current measurement means the leakage current I ga, simulated current I ta, the leakage current I gb, and the simulated current I tb and the first admittance of the simulation circuit Y ta and the second Based on the admittance Y tb , the ground insulation resistance R e is calculated using a predetermined relational expression R e = F (I ga , I gb , I ta , I tb , Y ta , Y tb ) A calculation means;
And output means for outputting information about the insulation state of the circuit under test on the basis of the ground insulation resistance R e calculated by the ground insulation resistance calculating means,
An insulation monitoring device comprising:
前記被測定回路から大地への漏れ電流及び模擬回路を通して大地に流れる電流に含まれる高調波成分中の代表次数高調波成分を利用することを特徴とする請求項1、2、又は、3の絶縁監視装置。   4. Insulation according to claim 1, 2 or 3, wherein a leakage current from the circuit to be measured to the ground and a representative order harmonic component among the harmonic components contained in the current flowing to the ground through the simulation circuit are used. Monitoring device. 前記模擬回路のアドミッタンスYtaが静電容量Caにより構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Ita、Yta)を、
e =(1/ωCa)×(1/(((Ig/Ita)+(Iga 2 ― Ig 2 ― Ita 2)/(2Ita 2))×((Ig/Ita)―(Iga 2 ― Ig 2 ― Ita 2)/(2Ita 2))))0.5
として前記対地絶縁抵抗Reを算出し、
又は、
前記模擬回路のアドミッタンスYtaが抵抗Raにより構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Ita、Yta)を、
e = 2Ita 2a/(Iga 2 ― Ig 2 ― Ita 2
として前記対地絶縁抵抗Reを算出することを特徴とする請求項1の絶縁監視装置。
The admittance Y ta of the simulation circuit is constituted by a capacitance C a ,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I g , I ga , I ta , Y ta ),
R e = (1 / ωC a ) × (1 / (((I g / I ta ) + (I ga 2 −I g 2 −I ta 2 ) / (2I ta 2 )) × ((I g / I ta )-(I ga 2 -I g 2 -I ta 2 ) / (2I ta 2 )))) 0.5
The ground insulation resistance Re is calculated as
Or
The admittance Y ta of the simulation circuit is constituted by a resistor Ra,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I g , I ga , I ta , Y ta ),
R e = 2I ta 2 R a / (I ga 2 −I g 2 −I ta 2 )
The insulation monitoring apparatus according to claim 1, wherein the ground insulation resistance Re is calculated.
前記模擬回路の前記第1のアドミッタンスYtaが第1の静電容量Caで構成され、前記第2のアドミッタンスYtbが第2の静電容量Cbによって構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Igb、Yta、Ytb)を、
e =(1/ω)×((Iga 2 ― Igb 2)/((Igb 2 ― Iga 2)Ce 2 + 2Ceagb 2 ― 2Cebga 2 + Igb 2a 2 ― Iga 2b 2))0.5
ここに、Ce =((Igb 2 ― Ig 2)Ca 2 ―(Iga 2 ― Ig 2)Cb 2)/(2((Iga 2 ― Ig 2)Cb ―(Igb 2 ― Ig 2)Ca))
として前記対地絶縁抵抗Reを算出し、
又は、
前記模擬回路の前記第1のアドミッタンスYtaが第1の抵抗Raで構成され、前記第2のアドミッタンスYtbが第2の抵抗Rbによって構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Ig、Iga、Igb、Yta、Ytb)を、
e = 2((Iga 2 ― Ig 2)/Rb ―(Igb 2 ― Ig 2)/Ra)/((Igb 2 ― Ig 2)/Ra 2 ― Iga 2 ― Ig 2)/Rb 2
として前記対地絶縁抵抗Reを算出することを特徴とする請求項2の絶縁監視装置。
The first admittance Y ta of the simulation circuit is configured by a first capacitance C a , and the second admittance Y tb is configured by a second capacitance C b ,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I g , I ga , I gb , Y ta , Y tb ),
R e = (1 / ω) × ((I ga 2 −I gb 2 ) / ((I gb 2 −I ga 2 ) C e 2 + 2C e C a I gb 2 - 2C e C b I ga 2 + I gb 2 C a 2 - I ga 2 C b 2)) 0.5
Here, C e = ((I gb 2 −I g 2 ) C a 2 − (I ga 2 −I g 2 ) C b 2 ) / (2 (((I ga 2 −I g 2 ) C b − ( I gb 2 -I g 2 ) C a ))
The ground insulation resistance Re is calculated as
Or
The first admittance Y ta of the simulation circuit is configured by a first resistor Ra, and the second admittance Y tb is configured by a second resistor R b ,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I g , I ga , I gb , Y ta , Y tb ),
R e = 2 ((I ga 2 −I g 2 ) / R b − (I gb 2 −I g 2 ) / R a ) / ((I gb 2 −I g 2 ) / R a 2 −I ga 2 ― I g 2 ) / R b 2 )
The insulation monitoring apparatus according to claim 2, wherein the ground insulation resistance Re is calculated.
前記模擬回路の前記第1のアドミッタンスYtaが第1の静電容量Caで構成され、前記第2のアドミッタンスYtbが第2の静電容量Cbによって構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Iga、Igb、Ita、Itb、Yta、Ytb)を、
e =(Itb /ω)×(1/(Igb 2b 2 ―(Ce + Cb2tb 2 ))0.5
ここに、Ce =((Igb 2 ― Iga 2 )Cb 2 ― Itb 2(Cb 2 ― Ca 2))/(2((Cb ― Ca)Itb 2))
又は、
前記模擬回路の前記第1のアドミッタンスYtaが第1の抵抗Raで構成され、前記第2のアドミッタンスYtbが第2の抵抗Rbによって構成され、
前記対地絶縁抵抗算出手段は、前記所定の関係式Re=F(Iga、Igb、Ita、Itb、Yta、Ytb)を、
e = 2(1/Rb ― 1/Ra)×(Itb 2b 2/(Igb 2 ― Iga 2 + Itb 2b 2(1/Ra 2 ― 1/Rb 2)))
として前記対地絶縁抵抗Reを算出することを特徴とする請求項3の絶縁監視装置。
The first admittance Y ta of the simulation circuit is configured by a first capacitance C a , and the second admittance Y tb is configured by a second capacitance C b ,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I ga , I gb , I ta , I tb , Y ta , Y tb ),
R e = (I tb / Ω) × (1 / ( I gb 2 C b 2 - (C e + C b) 2 I tb 2)) 0.5
Here, C e = ((I gb 2 −I ga 2 ) C b 2 −I tb 2 (C b 2 −C a 2 )) / (2 ((C b −C a ) I tb 2 ))
Or
The first admittance Y ta of the simulation circuit is configured by a first resistor Ra, and the second admittance Y tb is configured by a second resistor R b ,
The ground insulation resistance calculating means calculates the predetermined relational expression R e = F (I ga , I gb , I ta , I tb , Y ta , Y tb ),
R e = 2 (1 / R b - 1 / R a) × (I tb 2 R b 2 / (I gb 2 - I ga 2 + I tb 2 R b 2 (1 / R a 2 - 1 / R b 2 )))
The insulation monitoring apparatus according to claim 3, wherein the ground insulation resistance Re is calculated.
前記出力手段は、前記被測定回路の絶縁状態に関する情報として、前記対地絶縁抵抗算出手段により算出された対地絶縁抵抗の値、及び、該対地絶縁抵抗の値に基づいて算出した抵抗分漏れ電流値のうち少なくともいずれか1つにつき、その値もしくはその値が所定の値を超えたことを表示、記録、外部出力又は通報することと、前記対地絶縁抵抗の値、及び、抵抗分漏れ電流値のうち少なくともいずれかひとつにつき、その大きさによって安全領域、危険領域等のように少なくとも2つの領域に区分して表示、記録、外部出力又は通報することのいずれか1つ又は複数を行うことを特徴とする請求項1〜7のうちのいずれか1に記載の絶縁監視装置。   The output means includes, as information on the insulation state of the circuit under test, a value of the ground insulation resistance calculated by the ground insulation resistance calculation means, and a resistance leakage current value calculated based on the value of the ground insulation resistance Display, record, external output or report that the value or the value has exceeded a predetermined value, and the value of the ground insulation resistance and the resistance leakage current value. At least one of them is classified into at least two areas such as a safety area and a dangerous area according to its size, and one or more of display, recording, external output, or reporting is performed. The insulation monitoring apparatus according to any one of claims 1 to 7.
JP2007009562A 2007-01-18 2007-01-18 Insulation monitoring device Active JP4977481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009562A JP4977481B2 (en) 2007-01-18 2007-01-18 Insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009562A JP4977481B2 (en) 2007-01-18 2007-01-18 Insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2008175696A true JP2008175696A (en) 2008-07-31
JP4977481B2 JP4977481B2 (en) 2012-07-18

Family

ID=39702824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009562A Active JP4977481B2 (en) 2007-01-18 2007-01-18 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP4977481B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151488A (en) * 2008-12-24 2010-07-08 Ntt Facilities Inc Device and system for detecting ground fault
CN101957416A (en) * 2010-04-30 2011-01-26 奇瑞汽车股份有限公司 Leakage detection tool system and detection method thereof
CN103116107A (en) * 2012-12-28 2013-05-22 广东志成冠军集团有限公司 High voltage direct current power source insulation monitoring device
JP2013195093A (en) * 2012-03-15 2013-09-30 Omron Corp Electric leakage detector
KR20190001855A (en) * 2017-06-28 2019-01-07 주식회사 바로텍시너지 Multipurpose insulation resistance measurement apparatus for resistance test of electric equipment and cable
WO2019187817A1 (en) * 2018-03-29 2019-10-03 オムロン株式会社 Insulation measurement device and insulation measurement method
JP2021001765A (en) * 2019-06-20 2021-01-07 日新電機株式会社 Electrostatic capacitance measurement device, deterioration diagnosis device, electrostatic capacitance measurement method, deterioration diagnosis method, and electrostatic capacitance measurement program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135031B (en) * 2012-12-31 2015-03-04 中国矿业大学 Coal mine high-voltage grid system insulation state monitoring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344476A (en) * 2002-05-24 2003-12-03 Kawamura Electric Inc Insulation monitor
JP2005300514A (en) * 2004-03-16 2005-10-27 Nakajo Engineering Co Ltd Insulation supervising device
JP2006071341A (en) * 2004-08-31 2006-03-16 Toshiba Corp Insulation monitoring device and method of electric installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344476A (en) * 2002-05-24 2003-12-03 Kawamura Electric Inc Insulation monitor
JP2005300514A (en) * 2004-03-16 2005-10-27 Nakajo Engineering Co Ltd Insulation supervising device
JP2006071341A (en) * 2004-08-31 2006-03-16 Toshiba Corp Insulation monitoring device and method of electric installation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151488A (en) * 2008-12-24 2010-07-08 Ntt Facilities Inc Device and system for detecting ground fault
CN101957416A (en) * 2010-04-30 2011-01-26 奇瑞汽车股份有限公司 Leakage detection tool system and detection method thereof
CN101957416B (en) * 2010-04-30 2012-10-24 奇瑞汽车股份有限公司 Leakage detection tool system and detection method thereof
JP2013195093A (en) * 2012-03-15 2013-09-30 Omron Corp Electric leakage detector
CN103116107A (en) * 2012-12-28 2013-05-22 广东志成冠军集团有限公司 High voltage direct current power source insulation monitoring device
KR20190001855A (en) * 2017-06-28 2019-01-07 주식회사 바로텍시너지 Multipurpose insulation resistance measurement apparatus for resistance test of electric equipment and cable
KR101940190B1 (en) * 2017-06-28 2019-01-18 주식회사 바로텍시너지 Multipurpose insulation resistance measurement apparatus for resistance test of electric equipment and cable
WO2019187817A1 (en) * 2018-03-29 2019-10-03 オムロン株式会社 Insulation measurement device and insulation measurement method
JP2019174385A (en) * 2018-03-29 2019-10-10 オムロン株式会社 Insulation measuring device and insulation measuring method
JP2021001765A (en) * 2019-06-20 2021-01-07 日新電機株式会社 Electrostatic capacitance measurement device, deterioration diagnosis device, electrostatic capacitance measurement method, deterioration diagnosis method, and electrostatic capacitance measurement program
JP7306093B2 (en) 2019-06-20 2023-07-11 日新電機株式会社 Capacitance measuring device, deterioration diagnosis device, deterioration diagnosis method and capacitance measurement program

Also Published As

Publication number Publication date
JP4977481B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4977481B2 (en) Insulation monitoring device
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
KR102050255B1 (en) Method and test device for testing wiring of transducers
US20170192047A1 (en) High impedance fault location in dc distribution systems
JP5419079B2 (en) Tap setting method of arc extinguishing reactor, tap setting device thereof, and tap setting program thereof
JP2018183034A (en) Protector for power supply system and system comprising the same
JP2009058234A (en) Leak current measuring instrument and measuring method
JP2006204069A (en) Individual operation detecting method and individual operation detecting device
KR101179062B1 (en) On-line cable monitoring system
JP2011137718A (en) Device for monitoring high voltage insulation
KR102260550B1 (en) Facility health monitoring method by measuring the electric circuit constant inside the power facility in operation
RU112525U1 (en) AUTOMATED DIAGNOSTIC AND MONITORING SYSTEM OF POWER CABLE LINES INSULATION
CN104111434A (en) Detection method for fault indicator of physical simulating model
CN106257294A (en) For the method and apparatus detecting the fault in electrical network
JP2004184346A (en) Insulation state measuring apparatus
KR20090103856A (en) Insulation Monitoring System
RU2305292C1 (en) METHOD OF DETECTING FAULT IN 6( 10 )-35 kV ELECTRIC CIRCUIT WITH ISOLATED OR COMPENSATED NEUTRAL POINT
JP2011149959A (en) Insulation monitoring device
JP2017194465A (en) Monitoring device
CN110794354A (en) Alternating current-to-direct current function calibrator for insulation monitoring device and application method thereof
TWI609187B (en) Insulation monitoring device
JP2006267002A (en) Insulation deterioration position locating device and method thereof
CN110703146A (en) Excitation surge current measuring instrument
JP5428030B1 (en) Insulation monitoring device
RU2650695C2 (en) Method and device for monitoring transformer state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250