JP2013195093A - Electric leakage detector - Google Patents

Electric leakage detector Download PDF

Info

Publication number
JP2013195093A
JP2013195093A JP2012059490A JP2012059490A JP2013195093A JP 2013195093 A JP2013195093 A JP 2013195093A JP 2012059490 A JP2012059490 A JP 2012059490A JP 2012059490 A JP2012059490 A JP 2012059490A JP 2013195093 A JP2013195093 A JP 2013195093A
Authority
JP
Japan
Prior art keywords
leakage
virtual
zero
phase
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059490A
Other languages
Japanese (ja)
Other versions
JP5942506B2 (en
Inventor
Takeshi Takeuchi
豪 竹内
Yuji Tsurukawa
優治 鶴川
Kyoji Miyazaki
恭二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2012059490A priority Critical patent/JP5942506B2/en
Publication of JP2013195093A publication Critical patent/JP2013195093A/en
Application granted granted Critical
Publication of JP5942506B2 publication Critical patent/JP5942506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate electric leakage detector simple in configuration.SOLUTION: In order to obtain a resistance portion leakage current I0r using a zero-phase current sensor in three-phase three cable ways having one phase grounded, the output of the zero-phase current sensor before virtual electric leakage is added is measured, and the output of the zero-phase current sensor when the virtual electric leakage is added is measured. The resistance portion leakage current I0r is calculated from these measured values by a predetermined vector calculation. The vector calculation of the electric leakage detector is carried out by using an insertion parameter, a measurement parameter, and a formula (1). The measured value of the zero-phase current sensor is a value obtained when a measured value a of the zero-phase current sensor, virtual electric leakage b, and virtual electric leakage c are added.

Description

この発明は構成の簡単な漏電検出器に関し、特に、精度が高く、構成の簡単な漏電検出器に関する。   The present invention relates to a leakage detector having a simple configuration, and more particularly to a leakage detector having a high accuracy and a simple configuration.

従来、構成が簡単で安価な漏電検出器がたとえば、特許第3405407号公報(特許文献1)に開示されている。特許文献1によれば、一相が接地された3相電路において、零相電流i0を計測する零相電流センサと、非接地の2相の線間電圧と90°の位相差を有する位相判定信号idを発生する手段とを有し、零相電流センサにより計測された零相電流i0と位相判定信号idをベクトル的に加算及び減算してベクトルix及びiyを作り、それに基づいて所定の演算を行って、抵抗性地絡電流igrの値を出力する漏電検出器を開示している。 Conventionally, an earth leakage detector that is simple and inexpensive is disclosed in, for example, Japanese Patent No. 3405407 (Patent Document 1). According to Patent Document 1, in a three-phase circuit in which one phase is grounded, a zero-phase current sensor that measures a zero-phase current i 0 , and a phase having a phase difference of 90 ° with a non-grounded two-phase line voltage and means for generating a decision signal i d, making the vectors i x and i y the measured zero-phase current i 0 and the phase decision signal i d vectorially adding and subtracting to the zero-phase current sensor, An earth leakage detector is disclosed that performs a predetermined calculation based on this and outputs a value of the resistive ground fault current i gr .

3405407号公報(請求項2等)No. 3405407 (Claim 2 etc.)

従来の構成の簡単な漏電検出器は上記のように構成されていた。   A simple leakage detector having a conventional configuration is configured as described above.

しかしながら、従来の漏電検出器装置においては、非接地の2相の線間電圧と90°の位相差を有する位相判定信号idを発生する必要があった。正確に90°の位相差を作成するのは困難で、誤差が大きくなるという問題があった。また、加算及び減算の2つのベクトル演算が必要であるとともに、その演算のための位相判定信号idを個別に作成する必要があり、このときにも誤差が発生するという問題があった。 However, in the conventional earth leakage detector device, a phase decision signal i d having a phase difference of the line voltage of the 2-phase and 90 ° ungrounded had to be generated. There is a problem that it is difficult to accurately generate a phase difference of 90 ° and an error becomes large. In addition, two vector operations of addition and subtraction are required, and it is necessary to individually generate the phase determination signal i d for the calculation, and there is a problem that an error also occurs at this time.

この発明は上記のような問題点を解消するためになされたもので、構成が簡単でありながら、精度の高い漏電検出器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly accurate leakage detector with a simple configuration.

この発明に係る漏電検出器は、一相が接地された3相3線電路において、零相電流センサを用いて抵抗分漏電電流I0rを求める漏電検出器である。漏電検出器は、仮想の漏電を追加する仮想漏電追加手段と、零相電流センサの計測値と、仮想の漏電を追加したときの零相電流センサの計測値と、仮想漏電のそれぞれのベクトル演算によって、抵抗分漏電電流I0rを、所定のベクトル演算で求める。   The leakage detector according to the present invention is a leakage detector for obtaining a resistance leakage current I0r using a zero-phase current sensor in a three-phase three-wire circuit in which one phase is grounded. The earth leakage detector is a virtual earth leakage adding means for adding virtual earth leakage, the measured value of the zero phase current sensor, the measured value of the zero phase current sensor when the virtual earth leakage is added, and the vector calculation of the virtual earth leakage. Thus, the resistance leakage current I0r is obtained by a predetermined vector calculation.

好ましくは、ベクトル演算はベクトル加算のみを行う。   Preferably, the vector operation performs only vector addition.

さらに好ましくは、仮想の漏電を追加する仮想漏追加手段は零相電流センサに見かけ上の仮想の漏電を追加する。   More preferably, the virtual leakage adding means for adding a virtual leakage adds an apparent virtual leakage to the zero-phase current sensor.

ベクトル演算は、以下のa,b,cパラメータと式(1)を用いて行うのが好ましい。   The vector operation is preferably performed using the following a, b, and c parameters and Equation (1).

Figure 2013195093
Figure 2013195093

但し、a=前記零相電流センサの計測値、b=前記仮想漏電、c=前記仮想の漏電を追加したときの前記零相電流センサの計測値である。   However, a = measured value of the zero phase current sensor, b = measured value of the zero phase current sensor when the virtual leakage is added, and c = the virtual leakage.

なお、bのパラメータは所定の挿入手段によって挿入され、挿入手段は抵抗接続回路であってもよいし、定電流回路であってもよい。   The parameter b is inserted by a predetermined insertion means, and the insertion means may be a resistance connection circuit or a constant current circuit.

また、仮想の漏電を追加する仮想漏電追加手段は、別途準備された内部回路上で、見かけ上の仮想の漏電を追加するようにしてもよい。   The virtual leakage adding means for adding a virtual leakage may add an apparent virtual leakage on an separately prepared internal circuit.

この場合、漏電検出器は、仮想の漏電を追加する仮想漏電追加手段と、仮想漏電追加手段によって仮想の漏電を追加しなかったときの零相電流センサの計測値と、仮想の漏電を追加したときの零相電流センサの計測値と、仮想漏電を同時に計測してもよい。   In this case, the leakage detector has added a virtual leakage adding means for adding a virtual leakage, a measured value of a zero-phase current sensor when a virtual leakage is not added by the virtual leakage adding means, and a virtual leakage. The measured value of the zero phase current sensor and the virtual leakage may be measured simultaneously.

さらに、上記のベクトル演算は、以下のa,b,cのパラメータと式(2)を用いて行ってもよい。   Furthermore, the above vector calculation may be performed using the following parameters a, b, and c and equation (2).

Figure 2013195093
Figure 2013195093

但し、a=前記零相電流センサの計測値、b=前記仮想漏電、c=前記零相電流センサの計測値と前記仮想漏電とで合成された計測値である。   However, a = measured value of the zero-phase current sensor, b = virtual leakage, c = measured value synthesized by the measured value of the zero-phase current sensor and the virtual leakage.

この発明の他の局面においては、漏電検出器は、一相が接地された3相3線電路において、零相電流センサを用いて抵抗分漏電電流I0rを求める。漏電検出器は、零相電流センサの計測値と、基準電圧のゼロクロス点と、その周波数を計測し、その計測値を元に仮想の漏電を生成する仮想漏電生成手段と、零相電流センサの計測値と仮想漏電生成手段で生成した値を合成した値のそれぞれのベクトル演算によって抵抗分漏電電流I0rを所定のベクトル演算で求める。   In another aspect of the present invention, the leakage detector determines a resistance leakage current I0r using a zero-phase current sensor in a three-phase three-wire circuit in which one phase is grounded. The leakage detector includes a measured value of the zero-phase current sensor, a zero-crossing point of the reference voltage, and a frequency thereof, a virtual leakage generation means for generating a virtual leakage based on the measured value, a zero-phase current sensor The resistance leakage current I0r is obtained by a predetermined vector calculation by vector calculation of each value obtained by combining the measured value and the value generated by the virtual leakage generation means.

好ましくは、ベクトル演算はベクトル加算のみを行う。   Preferably, the vector operation performs only vector addition.

上記のベクトル演算は、以下のa,b,cのパラメータと式(3)を用いて行ってもよい。   The above vector calculation may be performed using the following parameters a, b, and c and Equation (3).

Figure 2013195093
Figure 2013195093

但し、a=前記零相電流センサの計測値、b=前記仮想漏電、c=前記零相電流センサの計測値と前記仮想漏電生成手段で生成した値を合成した値である。   However, a = measured value of the zero-phase current sensor, b = virtual leakage, c = measured value of the zero-phase current sensor and a value generated by the virtual leakage generation means.

bのパラメータは所定の挿入手段によって挿入され、挿入手段はソフトウエアによって準備され、cのパラメータはソフトウエアによって合成されてもよい。   The parameter b may be inserted by predetermined insertion means, the insertion means may be prepared by software, and the parameter c may be synthesized by software.

この発明においては、漏電検出器は一相が接地された3相3電路において、抵抗分漏電電流I0rを、零相電流センサに見かけ上の仮想の漏電を追加し、仮想の漏電を追加しなかったときの零相電流センサの計測値と、仮想の漏電を追加したときの零相電流センサの計測値と、仮想の漏電を追加したことによるベクトルのシフト量のそれぞれのベクトル演算によって所定のベクトル演算で求めた。   In the present invention, the leakage detector adds a resistance leakage current I0r, an apparent virtual leakage current to the zero-phase current sensor, and does not add a virtual leakage current in a three-phase three circuit with one phase grounded. The measured value of the zero-phase current sensor when the virtual leakage is detected, the measured value of the zero-phase current sensor when the virtual leakage is added, and the vector calculation of the vector shift amount due to the addition of the virtual leakage Obtained by calculation.

漏電検出において必要な抵抗分漏電電流I0rを各相の位相を用いることなくベクトル演算して求めるようにしたため、従来のように、位相の検出における誤差の発生を防ぐことができる。   Since the resistance leakage current I0r required for leakage detection is obtained by vector calculation without using the phase of each phase, it is possible to prevent the occurrence of errors in phase detection as in the prior art.

その結果、構成が簡単でありながら、精度の高い漏電検出器を提供できる。   As a result, it is possible to provide a highly accurate leakage detector with a simple configuration.

3相3線Δ結線でR相、T相が漏電した場合の回路図である。It is a circuit diagram when the R phase and the T phase leak in the three-phase three-wire Δ connection. 図1をベクトル図で表した図である。It is the figure which represented FIG. 1 by the vector diagram. Vrs基準のベクトル図である。It is a vector diagram based on Vrs. I0r_Rを基準としたI0のベクトル図である。It is a vector diagram of I0 on the basis of I0r_R. I0c_Rを基準としたI0のベクトル図である。It is a vector diagram of I0 on the basis of I0c_R. 仮想抵抗分漏れ電流注入時の漏電回路図である。It is a leakage circuit diagram at the time of virtual resistance leakage current injection. 仮想抵抗分漏れ電流注入時のベクトル図である。It is a vector diagram at the time of virtual resistance leakage current injection. I0r_Rを基準としたI0とI0_R1のベクトル図である。It is a vector diagram of I0 and I0_R1 with reference to I0r_R. I0、I0_R1、I0r_R1の三角形を示す図である。It is a figure which shows the triangle of I0, I0_R1, and I0r_R1. 位相角θを求める手順を示す図である。It is a figure which shows the procedure which calculates | requires phase angle (theta). 第1実施例のI0r注入方式の回路図である。It is a circuit diagram of the I0r injection system of the first embodiment. 第2実施例のブロック図である。It is a block diagram of 2nd Example. 第3実施例のブロック図である。It is a block diagram of 3rd Example. 第4実施例を説明するための図である。It is a figure for demonstrating 4th Example. 第4実施例を説明するための図である。It is a figure for demonstrating 4th Example. 第4実施例を説明するための図である。It is a figure for demonstrating 4th Example.

まず、この発明に係る、3相3線Δ結線での抵抗分漏電電流I0rを求める原理について説明する。ここでは各電路の対地間静電容量は平衡したものとして考える。   First, the principle of obtaining the resistance leakage current I0r in the three-phase three-wire Δ connection according to the present invention will be described. Here, it is assumed that the capacitance between each circuit is grounded.

S相が接地された3相3線式Δ結線で、R相、T相が漏電した場合の回路10を図1に示す。図1を参照して、抵抗分漏電電流I0rをI0r漏電監視機器10aで監視する。図1における、それぞれの電圧、R相およびT相の漏電電流のベクトル図をまとめると図2になる。   FIG. 1 shows a circuit 10 in the case where the R phase and the T phase are leaked in a three-phase three-wire Δ connection in which the S phase is grounded. Referring to FIG. 1, resistance leakage current I0r is monitored by I0r leakage monitoring device 10a. FIG. 2 is a summary of the vector diagrams of the leakage current of each voltage, R phase and T phase in FIG.

ここで、I0r_RはR相抵抗分漏れ電流であり、I0c_RはR相静電容量分漏れ電流であり、I0_RはR相の漏れ電流(I0)であり、I0r_TはT相抵抗分漏れ電流であり、I0c_TはT相静電容量分漏れ電流であり、I0_TはT相の漏れ電流(I0)であり、I0はR相およびT相の合成漏れ電流(I0)である。   Where I0r_R is the R-phase resistance leakage current, I0c_R is the R-phase capacitance leakage current, I0_R is the R-phase leakage current (I0), and I0r_T is the T-phase resistance leakage current. , I0c_T is the T-phase capacitance leakage current, I0_T is the T-phase leakage current (I0), and I0 is the combined R-phase and T-phase leakage current (I0).

次に、I0rの求めかたについて説明する。まずはI0rを算出するための基準となる電圧相を設定する。R相およびT相の合成漏れ電流I0とこの基準電圧相からの位相差θを使ってI0rを算出する。また、ここではVrsを基準とするが、どの相を基準としても良い。わかりやすいようVrsを基準としたベクトル図へ図2を240°回転すると図3となる。   Next, how to obtain I0r will be described. First, a voltage phase that is a reference for calculating I0r is set. I0r is calculated using the combined leakage current I0 of the R phase and the T phase and the phase difference θ from this reference voltage phase. Here, Vrs is used as a reference, but any phase may be used as a reference. For easy understanding, when FIG. 2 is rotated by 240 ° to the vector diagram based on Vrs, FIG. 3 is obtained.

まず、I0r_Rを基準としたI0ベクトルを求める。ZCT11で算出するI0は図4、図5のベクトル成分で構成され、I0と位相差θより次の式が成り立つ。   First, an I0 vector based on I0r_R is obtained. I0 calculated by the ZCT 11 is composed of the vector components shown in FIGS. 4 and 5, and the following equation is established from I0 and the phase difference θ.

まず、I0r_Rを基準とした場合は図8を参照してI0×sinθとして次の式が成り立つ。   First, when I0r_R is used as a reference, the following formula is established as I0 × sin θ with reference to FIG.

Figure 2013195093
Figure 2013195093

なお、I0r_Rの値を変動しても上記の値(I0sinθ)は変化しない。   Note that even if the value of I0r_R is changed, the above value (I0sinθ) does not change.

次に、I0c_Rを基準とした場合について説明する。   Next, a case where I0c_R is used as a reference will be described.

図5を参照して、I0cosθについて次の式が成り立つ。   Referring to FIG. 5, the following equation holds for I0 cos θ.

Figure 2013195093
Figure 2013195093

なお、I0c_Rの値を変動しても上記の値(I0cosθ)は変化しない。また、各電路の対地間静電容量は平衡したものと考えるため、I0c_T=I0c_Rとすると、式(1),式(2)より、   Note that the value (I0cos θ) does not change even if the value of I0c_R is changed. In addition, since the electrostatic capacitance between each circuit is considered to be balanced, if I0c_T = I0c_R, from Equation (1) and Equation (2),

Figure 2013195093
となり、式(3)をI0c_Rについて解くと、
Figure 2013195093
And solving equation (3) for I0c_R,

Figure 2013195093
が得られ、式(4)に式(5)を代入すると、
Figure 2013195093
And substituting equation (5) into equation (4),

Figure 2013195093
となり、I0r=I0r_R+I0r_Tなので、
Figure 2013195093
Since I0r = I0r_R + I0r_T,

Figure 2013195093
が成り立つ。
Figure 2013195093
Holds.

以上から、I0とI0-Vrsの位相角θがわかれば、I0rを算出可能である。   From the above, if the phase angle θ between I0 and I0-Vrs is known, I0r can be calculated.

次に、図1の回路にVrsと同位相となる既知のI0r_R1(仮想抵抗分漏れ電流)を別に設けた機器21からZCT11に注入したときの、仮想抵抗分漏れ電流注入時の漏電回路20を図6に示す。ここで、機器21は仮想漏電追加手段、および、挿入手段として作動する。   Next, the leakage circuit 20 at the time of injecting the virtual resistance leakage current when the device 21 provided with the known I0r_R1 (virtual resistance leakage current) having the same phase as Vrs is injected into the ZCT 11 in the circuit of FIG. As shown in FIG. Here, the device 21 operates as virtual leakage adding means and insertion means.

なお、ここには、図1で示した右矢印と左矢印も示している。   Here, the right arrow and the left arrow shown in FIG. 1 are also shown.

ここで、I0r_R1注入後のI0をI0_R1とおくと、図7に示すように、I0_R1はI0からI0r_R1分並行してベクトル移動する。   Here, if I0 after injection of I0r_R1 is set to I0_R1, I0_R1 moves in vector from I0 by I0r_R1 in parallel as shown in FIG.

図7をわかりやすいよう前項の図5、6のようにベクトル分解図で表すと、図8となる。図8より、I0、I0_R1、I0r_R1で三角形ができ、それぞれの角度をα、β、γとおく。わかりやすいようI0=a、I0r_R1=b、I0_R1=cとおく。すると図9のようになる。   If FIG. 7 is represented by a vector exploded view as shown in FIGS. 5 and 6 in the previous section for easy understanding, FIG. 8 is obtained. From FIG. 8, a triangle is formed with I0, I0_R1, and I0r_R1, and the angles are set to α, β, and γ, respectively. For simplicity, I0 = a, I0r_R1 = b, and I0_R1 = c. Then, as shown in FIG.

図9において三角形の余弦定理より、3辺がわかっていれば以下式が成り立つ。   If the three sides are known from the triangular cosine theorem in FIG.

Figure 2013195093
よって、以下により、角度も求めることかできる。
Figure 2013195093
Therefore, the angle can also be obtained by the following.

Figure 2013195093
Figure 2013195093

なお、ここで、Acosθはアークコサインのことである。   Here, Acos θ is an arc cosine.

図8の位相角θを求めれば、下記の原理式(1)を使ってI0rを求めることが可能なため、図8より位相角θを算出する。   If the phase angle θ shown in FIG. 8 is obtained, I0r can be obtained using the following principle equation (1). Therefore, the phase angle θ is calculated from FIG.

次に、具体的な算出方法について説明する。図9において、I0からVrsに平行に線を引いた図が図10となる。ここで、I0=a、I0r_R1=b、I0_R1=cである。   Next, a specific calculation method will be described. In FIG. 9, a diagram in which a line is drawn in parallel from I0 to Vrs is shown in FIG. Here, I0 = a, I0r_R1 = b, and I0_R1 = c.

図10より、θ=180°−γ…式(12)でθを求めることができる。   From FIG. 10, θ can be obtained by θ = 180 ° −γ (12).

次に、I0rを位相角θを求めることなく計測する方法について説明する。   Next, a method for measuring I0r without obtaining the phase angle θ will be described.

式(11)を原理式(1)に当てはめると、   When equation (11) is applied to principle equation (1),

Figure 2013195093
となる。
Figure 2013195093
It becomes.

三角形の公式(余角と補角の三角関数)より、   From the triangle formula (trigonometric function of complementary angle and complementary angle),

Figure 2013195093
のため、式(13)に式(14),(15)を代入すると、
Figure 2013195093
Therefore, when substituting (14) and (15) into (13),

Figure 2013195093
となる。
Figure 2013195093
It becomes.

ここで、三角形の公式(三角関数の相互関係)により、   Here, according to the triangle formula (trigonometric correlation)

Figure 2013195093
が成り立つため、
Figure 2013195093
Because

Figure 2013195093
が成り立つ。
式(18)を式(16)へ代入すると、
Figure 2013195093
Holds.
Substituting equation (18) into equation (16),

Figure 2013195093
式(19)に式(8)を代入すると、
Figure 2013195093
Substituting equation (8) into equation (19),

Figure 2013195093
Figure 2013195093

但し、I0=a、I0r_R1=b、I0_R1=cである。   However, I0 = a, I0r_R1 = b, and I0_R1 = c.

以上から、既知のI0r_R1を注入し、I0とI0_R1を計測することで、位相角θを計測することなくI0rを算出することができる。   From the above, by injecting known I0r_R1 and measuring I0 and I0_R1, I0r can be calculated without measuring the phase angle θ.

以上のように、位相角θを計測することなく、I0rを算出できることから、位相角θを計測する回路が不要になる。また、I0r_R1を注入したI0_R1はI0と同一回路で計測することで、計測回路が共用化できる。   As described above, since I0r can be calculated without measuring the phase angle θ, a circuit for measuring the phase angle θ becomes unnecessary. Also, the measurement circuit can be shared by measuring I0_R1 into which I0r_R1 has been injected with the same circuit as I0.

次に、仮想抵抗漏れ電流を注入するI0rの回路の実施例について説明する。   Next, an embodiment of the I0r circuit for injecting the virtual resistance leakage current will be described.

(1)第1実施例
第1実施例は抵抗接続方式である。具体的な回路例を図11に示す。図11を参照して、I0rを注入する機器21は注入するか否かを切り替えるSW1と抵抗R6とを含む。SW1はI0計測時はOFFとし、I0r_R1計測時はONとする。
(1) First Embodiment The first embodiment is a resistance connection method. A specific circuit example is shown in FIG. Referring to FIG. 11, device 21 for injecting I0r includes SW1 for switching whether or not to inject and resistor R6. SW1 is turned off when measuring I0, and turned on when measuring I0r_R1.

(2)第2実施例
第2実施例は定電流方式である。具体的な回路例を図12に示す。図12を参照して、I0rを注入する機器21は定電流回路22を含む。定電流回路22は電圧と同位相の電流を形成し出力する方式である。
(2) Second Embodiment The second embodiment is a constant current method. A specific circuit example is shown in FIG. Referring to FIG. 12, device 21 for injecting I0r includes a constant current circuit 22. The constant current circuit 22 is a system that generates and outputs a current having the same phase as the voltage.

(3)第3実施例
第3実施例は内部回路方式である。具体的な回路例を図13に示す。図13を参照して、I0rを注入する機器21はR相とS相とからの電圧を測定する電圧測定回路23と電流を測定する電流測定回路24とを含む。電圧測定回路23は、入力回路23aと、フィルター回路23bと、フィルター回路23bにパラレルに接続された電圧計測回路23cおよびI0r生成回路23dと、I0r生成回路23dに接続された加算/非加算切替制御回路23eとを含む。電圧計測回路23cからの出力はCPU25に入力される。CPU25からの信号はと加算/非加算切替制御回路23eに入力される。なお、ここで、加算/非加算切替制御回路23eは無くてもよい。
(3) Third Embodiment The third embodiment is an internal circuit system. A specific circuit example is shown in FIG. Referring to FIG. 13, device 21 for injecting Ir includes a voltage measurement circuit 23 that measures the voltage from the R phase and the S phase, and a current measurement circuit 24 that measures the current. The voltage measurement circuit 23 includes an input circuit 23a, a filter circuit 23b, a voltage measurement circuit 23c and an I0r generation circuit 23d connected in parallel to the filter circuit 23b, and an addition / non-addition switching control connected to the I0r generation circuit 23d. Circuit 23e. The output from the voltage measurement circuit 23c is input to the CPU 25. A signal from the CPU 25 is input to the addition / non-addition switching control circuit 23e. Here, the addition / non-addition switching control circuit 23e may be omitted.

一方、電流測定回路24は、入力回路24aと、フィルタ回路24bと、増幅回路24cと、増幅回路24cにパラレルに接続された加算回路24dおよびLレンジ増幅回路24eと、CPU25から出力され加算回路24eに信号を入力するH/Lレンジ切替回路24fとを含む。加算/非加算切替制御回路23eの出力は加算回路24dに入力される。加算回路24dおよびLレンジ増幅回路からの出力はCPU25に入力される。   On the other hand, the current measuring circuit 24 includes an input circuit 24a, a filter circuit 24b, an amplifier circuit 24c, an adder circuit 24d and an L range amplifier circuit 24e connected in parallel to the amplifier circuit 24c, and an output circuit 24e output from the CPU 25. And an H / L range switching circuit 24f for inputting a signal. The output of the addition / non-addition switching control circuit 23e is input to the addition circuit 24d. Outputs from the adder circuit 24d and the L range amplifier circuit are input to the CPU 25.

なお、この構成によって、上記したa(増幅回路24cからの信号),b(加算/非加算切替制御回路23eからの信号),c(加算回路24dからの信号)の全ての変数を求めることができる。   With this configuration, all of the variables a (signal from the amplifier circuit 24c), b (signal from the addition / non-addition switching control circuit 23e), and c (signal from the addition circuit 24d) are obtained. it can.

(4)第4実施例
第4実施例はソフト演算方式である。具体的な演算方法を図17〜図19に示す。図17を参照して、電圧のゼロクロス点と周波数を計測する。具体的には1波の時間を計測し、周波数を求める。
(4) Fourth Embodiment The fourth embodiment is a software calculation method. A specific calculation method is shown in FIGS. With reference to FIG. 17, the zero crossing point and frequency of the voltage are measured. Specifically, the time of one wave is measured and the frequency is obtained.

図18に示すように、電圧のゼロクロス点と周波数をベースにソフトで任意の値の疑似波形(Ior_R1)を作り、計測したIoと重ね合わせ、加算演算を行うと、Io_R1ができる。   As shown in FIG. 18, Io_R1 can be obtained by creating a pseudo waveform (Ior_R1) of an arbitrary value with software based on the zero cross point and frequency of the voltage, overlaying the measured Io, and performing addition operation.

具体的なソフト処理の例としては、ソフトでAD値ベースで瞬時値を加算することで、合成Io_R1を生成することができる。図19に、瞬時値をベースに加算したときの3つ波形I0r_R1(疑似波形)と、I0と、I0_R1(加算波形)とを示す。   As a specific example of the software processing, the combined Io_R1 can be generated by adding instantaneous values based on an AD value by software. FIG. 19 shows three waveforms I0r_R1 (pseudo waveform), I0, and I0_R1 (addition waveform) when the instantaneous values are added as a base.

上記のように、仮想の漏電を追加するのは、具体的な回路(ハード)に限らず、ソフトウエアの処理も可能である。   As described above, the addition of virtual leakage is not limited to a specific circuit (hardware), and software processing is also possible.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明に係る漏電検出器は、構成が簡単でありながら、精度が高いため、漏電検出器として有利に使用される。   The leakage detector according to the present invention is advantageously used as a leakage detector because it has a simple configuration and high accuracy.

10 R相、T相が漏電した場合の回路、11 ZCT(零相電流センサ)、20 仮想抵抗分漏れ電流注入時の漏電回路、21 機器、25 CPU。   10 Circuit when R phase and T phase are leaked, 11 ZCT (zero phase current sensor), 20 Leakage circuit when injecting virtual resistance leakage current, 21 device, 25 CPU.

Claims (13)

一相が接地された3相3線電路において、零相電流センサを用いて抵抗分漏電電流I0rを求める漏電検出器であって、
仮想の漏電を追加する仮想漏電追加手段と、
前記零相電流センサの計測値と、仮想の漏電を追加したときの前記零相電流センサの計測値と、前記仮想漏電のそれぞれのベクトル演算によって、抵抗分漏電電流I0rを、所定のベクトル演算で求める、漏電検出器。
In a three-phase three-wire circuit in which one phase is grounded, a leakage detector for obtaining a resistance leakage current I0r using a zero-phase current sensor,
A virtual leakage adding means for adding a virtual leakage,
The measured value of the zero-phase current sensor, the measured value of the zero-phase current sensor when a virtual leakage is added, and the vector calculation of the virtual leakage, respectively, the resistance leakage current I0r is calculated by a predetermined vector calculation. What is a leak detector?
前記ベクトル演算はベクトル加算のみを行う、請求項1に記載の漏電検出器。 The leakage detector according to claim 1, wherein the vector calculation performs only vector addition. 前記仮想の漏電を追加する仮想漏追加手段は前記零相電流センサに見かけ上の仮想の漏電を追加することを特徴とする、請求項1または2に記載の漏電検出器。 The leakage detector according to claim 1 or 2, wherein the virtual leakage adding means for adding the virtual leakage adds an apparent virtual leakage to the zero-phase current sensor. ベクトル演算は、以下のa,b,cパラメータと式(1)を用いて行う請求項1〜3のいずれかに記載の漏電検出器。
Figure 2013195093
但し、a=前記零相電流センサの計測値、b=前記仮想漏電、c=前記仮想の漏電を追加したときの前記零相電流センサの計測値である。
The leakage detector according to any one of claims 1 to 3, wherein the vector calculation is performed using the following a, b, and c parameters and equation (1).
Figure 2013195093
However, a = measured value of the zero phase current sensor, b = measured value of the zero phase current sensor when the virtual leakage is added, and c = the virtual leakage.
前記bのパラメータは所定の挿入手段によって挿入され、
前記挿入手段は抵抗接続回路である、請求項4に記載の漏電検出器。
The parameter b is inserted by predetermined insertion means,
The leakage detector according to claim 4, wherein the insertion unit is a resistance connection circuit.
前記bのパラメータは所定の挿入手段によって挿入され、
前記挿入手段は定電流回路である、請求項4に記載の漏電検出器。
The parameter b is inserted by predetermined insertion means,
The leakage detector according to claim 4, wherein the insertion means is a constant current circuit.
前記仮想の漏電を追加する仮想漏電追加手段は、別途準備された内部回路上で、見かけ上の仮想の漏電を追加することを特徴とする、請求項1または2に記載の漏電検出器。 3. The leakage detector according to claim 1, wherein the virtual leakage adding unit that adds the virtual leakage adds an apparent virtual leakage on an separately prepared internal circuit. 4. 前記漏電検出器は、仮想の漏電を追加する仮想漏電追加手段と、前記零相電流センサの計測値と、仮想の漏電を追加したときの前記零相電流センサの計測値と、前記仮想漏電を同時に計測することを特徴とする、請求項7に記載の漏電検出器。 The leakage detector includes a virtual leakage adding means for adding a virtual leakage, a measured value of the zero phase current sensor, a measured value of the zero phase current sensor when a virtual leakage is added, and the virtual leakage. The leakage detector according to claim 7, wherein measurement is performed simultaneously. 前記ベクトル演算は、以下のa,b,cのパラメータと式(2)を用いて行う、請求項7または8に記載の漏電検出器。
Figure 2013195093
但し、a=前記零相電流センサの計測値、b=前記仮想漏電、c=前記零相電流センサの計測値と前記仮想漏電とで合成された計測値である。
The leakage detector according to claim 7 or 8, wherein the vector calculation is performed using the following parameters a, b, and c and equation (2).
Figure 2013195093
However, a = measured value of the zero-phase current sensor, b = virtual leakage, c = measured value synthesized by the measured value of the zero-phase current sensor and the virtual leakage.
一相が接地された3相3線電路において、零相電流センサを用いて抵抗分漏電電流I0rを求める漏電検出器であって、
前記零相電流センサの計測値と、
基準電圧のゼロクロス点と、その周波数を計測し、その計測値を元に仮想の漏電を生成する仮想漏電生成手段と、
前記零相電流センサの計測値と前記仮想漏電生成手段で生成した値を合成した値のそれぞれのベクトル演算によって抵抗分漏電電流I0rを所定のベクトル演算で求める漏電検出器。
In a three-phase three-wire circuit in which one phase is grounded, a leakage detector for obtaining a resistance leakage current I0r using a zero-phase current sensor,
The measured value of the zero-phase current sensor;
A virtual leakage generating means for measuring a zero-crossing point of the reference voltage and its frequency and generating a virtual leakage based on the measured value;
A leakage detector that obtains a resistance leakage current I0r by a predetermined vector calculation by a vector calculation of a value obtained by combining the measurement value of the zero-phase current sensor and the value generated by the virtual leakage generation unit.
前記ベクトル演算はベクトル加算のみを行う、請求項10に記載の漏電検出器。 The leakage detector according to claim 10, wherein the vector calculation performs only vector addition. 前記ベクトル演算は、以下のa,b,cのパラメータと式(3)を用いて行う、請求項11に記載の漏電検出器。
Figure 2013195093
但し、a=前記零相電流センサの計測値、b=前記仮想漏電、c=前記零相電流センサの計測値と前記仮想漏電生成手段で生成した値を合成した値である。
The leakage detector according to claim 11, wherein the vector calculation is performed using the following parameters a, b, and c and Equation (3).
Figure 2013195093
However, a = measured value of the zero-phase current sensor, b = virtual leakage, c = measured value of the zero-phase current sensor and a value generated by the virtual leakage generation means.
前記bのパラメータは所定の挿入手段によって挿入され、
前記挿入手段はソフトウエアによって準備され、前記cはソフトウエアによって合成されることを特徴とする、請求項10〜12のいずれかに記載の漏電検出器。
The parameter b is inserted by predetermined insertion means,
The leakage detector according to claim 10, wherein the insertion unit is prepared by software, and the c is synthesized by software.
JP2012059490A 2012-03-15 2012-03-15 Earth leakage detector Active JP5942506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059490A JP5942506B2 (en) 2012-03-15 2012-03-15 Earth leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059490A JP5942506B2 (en) 2012-03-15 2012-03-15 Earth leakage detector

Publications (2)

Publication Number Publication Date
JP2013195093A true JP2013195093A (en) 2013-09-30
JP5942506B2 JP5942506B2 (en) 2016-06-29

Family

ID=49394246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059490A Active JP5942506B2 (en) 2012-03-15 2012-03-15 Earth leakage detector

Country Status (1)

Country Link
JP (1) JP5942506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161362A (en) * 2016-03-09 2017-09-14 オムロン株式会社 Leakage current calculation device and leakage current calculation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405407B2 (en) * 2000-10-16 2003-05-12 財団法人 関西電気保安協会 Earth leakage detector, earth leakage alarm and earth leakage breaker using the same
JP2008175696A (en) * 2007-01-18 2008-07-31 Nakajo Engineering Co Ltd Insulation level monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405407B2 (en) * 2000-10-16 2003-05-12 財団法人 関西電気保安協会 Earth leakage detector, earth leakage alarm and earth leakage breaker using the same
JP2008175696A (en) * 2007-01-18 2008-07-31 Nakajo Engineering Co Ltd Insulation level monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161362A (en) * 2016-03-09 2017-09-14 オムロン株式会社 Leakage current calculation device and leakage current calculation method
US10782359B2 (en) 2016-03-09 2020-09-22 Omron Corporation Leakage current calculation device and leakage current calculation method

Also Published As

Publication number Publication date
JP5942506B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5140012B2 (en) Electric leakage test device, electric leakage circuit breaker, circuit breaker, and electric leakage monitoring device provided with the same
JP3405407B2 (en) Earth leakage detector, earth leakage alarm and earth leakage breaker using the same
KR101407864B1 (en) Impedance calculation appratus and sinusoidal insulation monitoring apparatus comprising the voltage sensing
KR102293345B1 (en) Leakage current detection device, method and program for detecting leakage current
KR101952063B1 (en) Leakage current detection device
JP5942506B2 (en) Earth leakage detector
JP5627326B2 (en) Ground resistance meter and method for measuring ground resistance
Ghazizadeh-Ahsaee Accurate NHIF locator utilizing two-end unsynchronized measurements
JP2006234402A (en) Power source line measuring instrument
JP6289846B2 (en) Leakage current detection apparatus and method
JP2008032633A (en) Insulation monitoring device and method of electric installation
JP2009069065A (en) Device for measuring effective leakage current
KR100771939B1 (en) Measuring instrument for an electric current leakage
JP7094190B2 (en) How to adjust the negative feedback circuit in the impedance measuring device and the impedance measuring device
JP6018895B2 (en) Ground resistance meter, ground resistance measurement method, and program
JP4734177B2 (en) Three-phase three-wire circuit leakage detection device and leakage detection method
WO2022131086A1 (en) Inspecting device, inspection method, and inspection program
JP2015014469A (en) Resistance measurement device and resistance measurement method
JP2003270277A (en) Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
JP5394945B2 (en) Synchronous verification device
JP6240918B1 (en) Leakage current measuring method and leakage current measuring device
JP7080757B2 (en) Impedance measuring device and impedance measuring method
Šíra et al. Uncertainty analysis of non-coherent sampling phase meter with four parameter sine wave fitting by means of Monte Carlo
KR102622919B1 (en) Apparatus for measuring line parameter
WO2022131087A1 (en) Inspection device, inspection method, and inspection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5942506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250