JP2012198134A - Fault point locating device and program - Google Patents

Fault point locating device and program Download PDF

Info

Publication number
JP2012198134A
JP2012198134A JP2011063025A JP2011063025A JP2012198134A JP 2012198134 A JP2012198134 A JP 2012198134A JP 2011063025 A JP2011063025 A JP 2011063025A JP 2011063025 A JP2011063025 A JP 2011063025A JP 2012198134 A JP2012198134 A JP 2012198134A
Authority
JP
Japan
Prior art keywords
zero
fault
transmission line
current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011063025A
Other languages
Japanese (ja)
Inventor
Yuichi Gonda
Masaaki Yasuhara
正明 安原
優一 権田
Original Assignee
Chugoku Electric Power Co Inc:The
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc:The, 中国電力株式会社 filed Critical Chugoku Electric Power Co Inc:The
Priority to JP2011063025A priority Critical patent/JP2012198134A/en
Publication of JP2012198134A publication Critical patent/JP2012198134A/en
Application status is Withdrawn legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management
    • Y04S10/522Fault detection or location

Abstract

PROBLEM TO BE SOLVED: To provide a fault point locating device capable of accurately locating a fault point even when both of a zero-phase current flowing in a sound line and a zero-phase current flowing in a fault line cannot be measured in a parallel two-line power transmission line.SOLUTION: An electric power system provided with first and second bus lines, a parallel two-line transmission line including first and second transmission lines and disposed between the first and second bus lines, and a neutral point ground resistor disposed on the second bus line comprises: a current measuring part for measuring a first zero-phase current flowing from the first bus line to the first transmission line; a voltage measuring part for measuring a zero-phase voltage of the first bus line or the first transmission line; a calculation part for calculating a second zero-phase current flowing from the second bus line to the transmission line where a fault occurs among the first and second transmission lines, based on a first current and the first zero-phase current flowing through the neutral point ground resistor according to the zero-phase voltage, when a ground fault accident occurs in the first or second transmission line; and a locating part for locating a fault point where the ground fault accident occurs based on the first zero-phase current and the second zero-phase current.

Description

本発明は、事故点標定装置、プログラムに関する。 The present invention, the fault point locating system, a program.

送電線で発生した地絡事故の事故点を標定する方法としては、例えば、分流比演算方式(I 方式)やリアクタンス演算方式(R方式)が知られている(例えば、特許文献1参照)。 As a method for locating a fault point of ground fault generated in the transmission line, for example, shunt ratio calculation method (I 0 system) and reactance arithmetic mode (R mode) is known (e.g., see Patent Document 1) .

特開2003−14810号公報 JP 2003-14810 JP

一般に、中性点接地抵抗が設けられた平行2回線送電線における事故点(故障点)を標定する際には、リアクタンス演算方式より分流比演算方式の方が精度良く事故点を標定できる。 Generally, when the orientation of the fault point (point of failure) in the neutral grounding resistors parallel two-circuit transmission lines provided, towards the flow ratio calculation method than the reactance calculation method can locating accurately the fault point. しかしながら、分流比演算方式を用いる際には、平行2回線送電線の事故が発生した事故回線に流れる零相電流と、健全回線に流れる零相電流との両方の電流を測定する必要がある。 However, when using the shunt ratio calculation method, it is necessary to measure the zero-phase current flowing in the accident line accident parallel two-circuit transmission line has occurred, both the current and zero-phase current flowing in the healthy line. このため、事故回線及び健全回線の両方の零相電流を測定できない場合には、精度良く事故点を標定できないという問題があった。 Therefore, if it can not measure the zero-phase current of both accidents lines and healthy lines, making it impossible locating accurately the fault point.

本発明は上記課題を鑑みてなされたものであり、平行2回線送電線における健全回線に流れる零相電流及び事故回線に流れる零相電流の両方が測定できない場合であっても、精度良く事故点を標定することが可能な事故点標定装置を提供する。 The present invention has been made in view of the above problems, even in the case where both of the zero-phase current flowing through the zero-phase current and fault lines flowing through the sound channel in the parallel two-circuit transmission line can not be measured, accurately fault point to Standardize provide fault point locating system capable.

上記目的を達成するため、本発明の一つの側面に係る、第1及び第2母線と、第1及び第2送電線を含み前記第1及び第2母線の間に設けられた平行2回線送電線と、前記第2母線に設けたれた中性点接地抵抗と、を備える電力系統における事故点標定装置であって、前記第1母線から前記第1送電線に流れる第1零相電流を測定する電流測定部と、前記第1母線または前記第1送電線の零相電圧を測定する電圧測定部と、前記第1または第2送電線に第1地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧に応じた前記中性点接地抵抗に流れる第1電流と、前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流とに基づいて、前記第1または第2送電線のうち、前記第2母線から前記第1地絡事故 To achieve the above object, according to one aspect of the present invention, the first and second bus bars, feeding two parallel lines provided between said includes first and second transmission line first and second bus bars a fault point locating system in a power system comprising a wire, a neutral grounding resistor having drip provided on the second bus, and measuring a first zero-phase current flowing from the first bus to the first transmission line said voltage measurement and current measurement unit, when a voltage measuring section for measuring a zero phase voltage of the first bus bar or said first transmission line, the first ground fault in the first or second transmission line has occurred to a first current flowing through the neutral grounding resistors corresponding to said measured zero-phase voltage in parts, the said first earth fault is measured by the current measuring unit when the generated first zero-phase current based on the bets, the one of the first or the second transmission line, the first earth fault from the second bus 発生した発生した送電線に流れる第2零相電流を算出する算出部と、前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流と、前記第2零相電流とに基づいて、前記第1地絡事故が発生した事故点を標定する標定部と、を備える。 A calculation unit for calculating a second zero-phase current flowing to the generated generated transmission lines, and the first zero-phase current measured in the current measuring unit when the first earth fault has occurred, the second based on the zero-phase current, and a plotting unit for the first ground fault to locating an accident point occurred.

平行2回線送電線における健全回線に流れる零相電流及び事故回線に流れる零相電流の両方が測定できない場合であっても、精度良く事故点を標定することが可能な事故点標定装置を提供することができる。 Even if both the zero-phase current flowing through the zero-phase current and fault lines flowing through the sound channel in the parallel two-circuit transmission line can not be measured, to provide a fault point locating system capable of locating accurately fault point be able to.

本発明の一実施形態である事故点標定装置45が設けられた電力系統10を示した図である。 Diagrams fault point locating system 45 according to an embodiment of the present invention showed power system 10 provided. 事故点標定装置45に実現される機能ブロックを示す図である。 It is a diagram illustrating a functional block realized in an accident point locating system 45. 事故点標定装置45が実行する処理の一例を示すフローチャートである。 Fault point locating system 45 is a flowchart illustrating an example of processing to be executed. 送電線31に地絡事故が発生した際の零相電流を説明するための図である。 It is a diagram for explaining a zero-phase current when the ground fault occurs in the transmission line 31.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 The description of this specification and the accompanying drawings, at least the following matters will be made clear.
図1は、本発明の一実施形態である事故点標定装置45が設けられた電力系統10の構成例を示す図である。 Figure 1 is a diagram illustrating a configuration example of an embodiment in which the fault point the power system 10 that locating system 45 is provided in the present invention.

電力系統10は、いわゆる平行2回線の送電系統であり、電力系統10には、電気所A,B、及び送電線30,31が設けられている。 Power system 10 is a transmission system of the so-called two parallel lines, the power system 10, the substation A, B, and transmission lines 30, 31 are provided.

電気所Aの母線20(第1母線)と、電気所Bの母線21(第2母線)との間は、送電線30,31で接続されており、母線21には、中性点接地抵抗35が接続されている。 A generating line of the substation A 20 (first bus), between the bus 21 of the substation B (second bus) is connected by transmission lines 30 and 31, the bus 21 is neutral grounding resistor 35 are connected. なお、母線20,21、送電線30,31の夫々は例えば3本の電線を含むが、便宜上、図1においては1本の線で記載している。 Incidentally, bus 20 and 21, each of the transmission lines 30 and 31 including three wires for example, for convenience, are described by a single line in FIG. 1.

電気所Aには、変流器40、零相電圧検出装置41、及び事故点標定装置45が設けられている。 The substation A, current transformer 40, zero-phase voltage measuring device 41, and an accident point locating system 45 is provided.

変流器40は、いわゆる零相変流器であり、送電線30,31に地絡事故が発生した際に、母線20から送電線31(第1送電線)に流れる零相電流Ioxを検出する。 Current transformer 40 is a so-called zero-phase current transformer, when the earth fault in the transmission line 30, 31 has occurred, detecting the zero-phase current Iox flowing from the bus 20 to the transmission line 31 (first transmission line) to. 零相電圧検出装置41は、母線20の零相電圧Voを検出する。 Zero-phase voltage detecting device 41 detects the zero-phase voltage Vo of the bus 20.

事故点標定装置45は、例えば、フォルトロケータやオシロシステムであり、零相電流Iox及び零相電圧Voに基づいて、送電線30,31に発生した地絡事故の事故点を標定する。 Fault point locating system 45 is, for example, a fault locator and oscilloscope system, based on the zero-phase current Iox and zero-phase voltage Vo, Standardize fault point of ground fault occurred in the transmission line 30, 31. 事故点標定装置45は、地絡過電圧継電器50、地絡方向継電器51、記憶装置52、マイコン53、及び表示部54を含んで構成される。 Fault point locating system 45 is configured earth fault over voltage relay 50, earth fault directional relay 51, storage device 52, including a microcomputer 53 and a display unit 54,. なお、記憶装置52、マイコン53、表示部54のそれぞれは、バスを介して通信可能に接続される。 The storage device 52, the microcomputer 53, each of the display unit 54 are communicatively connected via the bus.

地絡過電圧継電器50は、零相電圧Voに基づいて、送電線30,31に地絡事故が発生したか否かを検出する。 Ground fault over-voltage relay 50, based on zero-phase voltage Vo, ground fault detecting whether generated in the transmission line 30, 31.

地絡方向継電器51は、零相電流Iox及び零相電圧Voに基づいて、送電線30,31のうち、地絡事故が発生した送電線を判定する。 Earth fault directional relay 51 determines based on the zero-phase current Iox and zero-phase voltage Vo, of the transmission lines 30 and 31, a transmission line a ground fault accident occurs. なお、地絡過電圧継電器50の検出結果や、地絡方向継電器51の判定結果は、マイコン53に入力される。 The detection results and ground fault over-voltage relay 50, the determination result of the ground fault directional relay 51 is input to the microcomputer 53.

記憶装置52は、例えばハードディスク装置であり、マイコン53が実行するプログラムや、送電線30,31に完全地絡事故(所定の第2地絡事故)が発生した際の零相電圧Voの電圧値Vmや、中性点接地抵抗35の電流値Im(第2電流)を記憶する。 Storage device 52 is, for example, a hard disk device, or a program the microcomputer 53 executes a voltage value of the zero-phase voltage Vo when fully ground fault in the transmission line 30, 31 (a predetermined second earth fault) occurs storing Vm and the current value of the neutral grounding resistor 35 Im (second current).

マイコン53は、記憶装置52に記憶されたプログラムを実行することにより、送電線30,31に発生した事故点を標定する。 The microcomputer 53 executes a program stored in the storage device 52, for orientation the fault point that occurred in the transmission line 30, 31.

表示装置54は、液晶ディスプレイ等であり、例えば、算出された事故点等を表示する。 Display device 54 is a liquid crystal display or the like, for example, displays the calculated fault point or the like.

==事故点標定装置45に実現される機能ブロックについて== The function blocks implemented in == fault point locating system 45 ==
図2は、マイコン53がプログラムを実行することにより、事故点標定装置45に実現される機能ブロックを示す図である。 2, by the microcomputer 53 executes the program, a diagram illustrating a functional block realized in an accident point locating system 45. 事故点標定装置45には、地絡検出部80、電流測定部81、電圧測定部82、算出部83、及び標定部84が実現される。 The fault point locating system 45, the ground fault detection unit 80, current measurement unit 81, the voltage measuring unit 82, calculation unit 83, and the orientation section 84 is realized.

地絡検出部80は、地絡過電圧継電器50の出力に基づいて、送電線30,31に地絡事故が発生したか否かを検出する。 Earth fault detection unit 80 based on the output of the earth fault over voltage relay 50, ground fault detecting whether generated in the transmission line 30, 31.

電流測定部81は、地絡検出部80で地絡事故の発生が検出されると、変流器40で検出された零相電流Iox(第1零相電流)を測定し、記憶装置52に格納する。 Current measuring unit 81, the occurrence of earth fault is detected by the ground fault detector 80 measures the zero-phase current Iox detected (first zero-phase current) by current transformer 40, the storage device 52 Store. なお、地絡検出部80で検出される地絡事故は、実際に送電線30,31に発生する地絡事故であり、第1地絡事故に相当する。 Incidentally, ground fault detected by the ground fault detector 80 is a ground fault actually occurs in the transmission line 30 and 31, corresponding to the first earth fault.

電圧測定部82は、地絡検出部80で地絡事故の発生が検出されると、零相電圧検出装置41で検出された零相電圧Voを測定し、測定結果を記憶装置52に格納する。 Voltage measuring unit 82, the occurrence of earth fault is detected by the ground fault detector 80 measures the zero-phase voltage Vo detected by the zero-phase voltage detector 41, and stores the measurement result in the storage device 52 .

算出部83は、地絡事故が検出された後に、記憶装置52に記憶された零相電圧Vo及び零相電流Ioxや、電圧値Vm、電流値Imに基づいて、中性点接地抵抗35に流れる電流Io(第1電流)と、母線21から事故が発生した送電線に流れる零相電流Ioy(第2零相電流)とを算出する。 Calculating unit 83, after the ground fault is detected, the zero-phase and the voltage Vo and zero-phase current Iox stored in the storage device 52, the voltage value Vm, based on the current value Im, the neutral grounding resistor 35 a current flows Io (first current) to calculate a zero-phase current Ioy flowing through the transmission line fault from the bus 21 has occurred (second zero-phase current).

標定部84は、変流器40で測定された零相電流Ioxと、算出部83が算出した零相電流Ioyとに基づいて、事故点の標定を行う。 Orientation section 84, a zero-phase current Iox measured by current transformer 40, based on the zero-phase current Ioy the calculating unit 83 is calculated, performs orientation of the fault point. 具体的には、標定部84は、零相電流Iox,Ioyを用いた分流比演算方式を実行して事故点の標定を行う。 Specifically, orientation section 84, the zero-phase current Iox, performs orientation of the fault point by running the flow ratio calculation method using the IOy.

==事故点標定装置45が実行する処理の一例== == an example of processing fault point locating system 45 executes ==
図3は、送電線30,31に地絡事故が発生した際に、事故点標定装置45が実行する処理の一例である。 3, when the ground fault in the transmission line 30, 31 has occurred, which is an example of a process of fault point locating system 45 performs. なお、図3のフローチャートの主体は、図2で示した各機能ブロックである。 Incidentally, mainly in the flow chart of FIG. 3 is a respective functional blocks shown in FIG. また、図4は、送電線31に地絡事故が発生した際の発生する零相電流を模式的に示す図であり、適宜参照する。 Further, FIG. 4 is a diagram schematically showing a zero-phase current occurring when earth fault in the transmission line 31 has occurred, appropriately referring.

まず、地絡検出部80は、送電線30,31の地絡事故が発生したか否かを検出する(S100)。 First, the ground fault detection unit 80, ground fault of the transmission line 30 and 31 to detect whether or not occurred (S100). そして、地絡事故の発生が検出されると(S100:YES)、電流測定部81は零相電流Ioxを測定して記憶装置52に格納し、電圧測定部82は零相電圧Voを測定して記憶装置52に格納する(S101)。 When the occurrence of the ground fault is detected (S100: YES), the current measuring unit 81 is stored in the storage device 52 by measuring the zero-phase current Iox, voltage measurement unit 82 measures the zero-phase voltage Vo stored in the storage device 52 Te (S101).

算出部83は、地絡事故が発生した際に記憶装置52に記憶された零相電圧Voの値と、電圧値Vmとの比αを算出する(S102)。 Calculator 83 calculates the value of the stored zero-phase voltage Vo in the storage device 52 when the ground fault occurs, the α ratio of the voltage value Vm (S102). 具体的には、式(1)に示す演算を実行する。 Specifically, performing the calculation shown in Equation (1).
α=Vo/Vm・・・(1) α = Vo / Vm ··· (1)
なお、送電線30,31に地絡事故が発生していな場合には、零相電圧Voの値はゼロとなり、送電線30,31に完全地絡事故が発生している場合には、零相電圧Voの値は電圧値Vmとなる。 Note that when a ground fault in the transmission line 30, 31, such has occurred, the value of the zero-phase voltage Vo is zero, when the completely ground fault in the transmission line 30, 31 has occurred, zero the value of the phase voltage Vo is a voltage value Vm. したがって、比αは、いわゆる地絡度合いを示す値となり0〜1の範囲で変化する。 Thus, the ratio α is varied in the range of 0 to 1 is the value that indicates the so-called ground fault degree. また、比αの値が大きいほど地絡事故が完全地絡事故に近づくことになる。 Also, the higher ground fault values ​​of the ratio α is large becomes closer to full ground fault.

そして、算出部83は、算出した地絡度合いを示す比αと、完全地絡時における中性点接地抵抗35に流れる電流Imとの積を計算することにより、地絡事故が発生した際に中性点接地抵抗35に流れる電流Ioを算出する(S103)。 Then, calculating unit 83, the ratio α indicating the ground fault degree of calculated, by calculating the product of the current Im flowing through the neutral grounding resistor 35 in the complete ground fault, when a ground fault occurs calculating the current Io flowing through the neutral grounding resistor 35 (S103). 具体的には、式(2)に示す演算を実行する。 Specifically, performing the calculation shown in Equation (2).
Io=α×Im・・・(2) Io = α × Im ··· (2)
中性点接地抵抗35に流れる電流Ioは、地絡度合い(すなわち、零相電圧Vo)に比例して大きくなる。 Current Io flowing through the neutral grounding resistor 35, the ground fault degree (i.e., zero-phase voltage Vo) increases in proportion to the. したがって、本実施形態では、式(2)の演算を実行することにより、実際に電流Ioを測定することなく電流Ioを算出できる。 Therefore, in the present embodiment, by performing the calculation of the equation (2) can be calculated current Io without measuring the actual current Io.

また、地絡事故が発生した際に中性点接地抵抗35に流れる電流Ioは、図4に例示するように、母線20から送電線31に流れる零相電流Ioxと、母線21から送電線31に流れる零相電流Ioyとの和になる。 The current Io flowing through the neutral grounding resistor 35 when the ground fault occurs, as illustrated in FIG. 4, the zero-phase current Iox flowing through the transmission line 31 from the bus 20, the transmission line from the bus 21 31 the sum of the zero-phase current Ioy flowing through. このため、算出部83は、算出された電流Ioから、地絡事故発生の際の零相電流Ioxを減算し、零相電流Ioyを算出する(S104)。 Therefore, calculation unit 83, the calculated current Io, subtracts the zero-phase current Iox during ground fault accident, to calculate the zero-phase current Ioy (S104). 具体的には、式(3)に示す演算を実行する。 Specifically, performing the calculation shown in Equation (3).
Ioy=Io−Iox・・・(3) Ioy = Io-Iox ··· (3)
このように、本実施形態では、零相電流Ioyの値を算出できる。 Thus, in the present embodiment, it calculates the value of the zero-phase current IOy. そして、標定部84は、地絡方向継電器51の判定結果から事故回線を特定し、記憶装置52に記憶された零相電流Ioxと、算出された零相電流Ioyとに基づいて、事故回線の事故点を標定する(S105)。 The orientation section 84 identifies the fault line from the judgment result of the ground fault directional relay 51, and the zero-phase current Iox stored in the storage unit 52, based on the zero-phase current Ioy calculated, the accident line the orientation of the fault point (S105).

具体的には、例えば図4において、送電線30,31の長さを便宜上“1”とし、母線20から事故点Aまでの距離を“X”とすると、零相電流Iox、Ioyの間には、式(4)のような関係式が成立する。 Specifically, in FIG. 4, for example, the length of the transmission line 30 and 31 for convenience "1", when the "X" the distance to the fault point A from the bus 20, the zero-phase current Iox, during Ioy the relational expression of equation (4) is satisfied.
Ioy:Iox=1/(1−X):1/(1+X)・・・(4) Ioy: Iox = 1 / (1-X): 1 / (1 + X) ··· (4)
なお、上記式(4)の関係は、一般的な分流比演算方式に基づいて得られる関係である。 The relationship of the above formula (4) is a relationship which is obtained based on the general flow ratio arithmetic method. また、母線20から事故点Aまでの距離を“X”は、式(5)で表される。 The distance from the bus 20 to the fault point A "X" is expressed by Equation (5).
X=(Ioy−Iox)/(Iox+Ioy)・・・(5) X = (Ioy-Iox) / (Iox + Ioy) ··· (5)
このため、標定部84は、処理S105において、式(5)の演算を実行することにより、事故点Aの標定が可能となる。 Therefore, orientation section 84, in the processing S105, by executing calculation of Equation (5), it is possible to orientation of the accident point A.
そして、事故点Aが標定されると、標定部84は、事故点Aの位置を表示部54に表示する(S106)。 When the fault point A is orientation, orientation section 84 displays the position of the fault point A on the display unit 54 (S106).

以上、本発明の一実施形態である事故点標定装置45について説明した。 This completes the description of the accident point locating system 45 according to an embodiment of the present invention. 事故点標定装置45は、平行2回線送電線における健全回線に流れる零相電流(図4の例では、零相電流Iox)、事故回線に流れる零相電流(図4の例では、零相電流Ioy)のうち、零相電流Ioyを算出している。 Fault point locating system 45, (in the example of FIG. 4, the zero-phase current Iox) parallel two lines the zero-phase current flowing through the sound channel in the transmission line, in the example of the zero-phase current flowing to the accident line (Fig. 4, the zero-phase current IOy) of, and calculates the zero-phase current IOy. したがって、事故点標定装置45では、零相電流Iox,Ioyの両方を測定できない場合であっても、精度の良い分流比演算方式に基づいて事故点を標定することができる。 Therefore, the fault point locating system 45, zero-phase current Iox, even if it is not possible to measure both IOy, it is possible to orientation the fault point on the basis of a good diversion ratio arithmetic method accuracy. この結果、利用者は、例えば中性点接地抵抗35が設けられておらず、零相電流Iox,Ioyの両方を測定できない電気所Aであっても、事故点標定装置45を設置することができる。 As a result, the user, for example neutral grounding resistor 35 is not provided, zero-phase current Iox, even substation A can not be measured both IOy, be placed an accident point locating system 45 it can.

また、事故点標定装置45は、地絡事故が発生した際の零相電圧Voと、電圧値Vmとから地絡度合い(比α)を求めた後、地絡事故が発生した際の中性点接地抵抗35に流れる電流Ioを求めている。 Further, the fault point locating system 45 includes a zero-phase voltage Vo when the ground fault occurs, after determining the ground fault degree from the voltage value Vm (ratio alpha), neutral when the ground fault occurs seeking current Io flowing to the point ground resistance 35. 中性点接地抵抗35に流れる電流Ioは、地絡度合いに比例して大きくなる。 Current Io flowing through the neutral grounding resistor 35 is increased in proportion to the ground fault degree. このため、本実施形態では、電流Ioを測定することなく、電流Ioを精度よく算出することができる。 Therefore, in the present embodiment, without measuring the current Io, it can be calculated better current Io accuracy.

また、一般に、完全地絡が発生した際の電圧値Vmは、電気学会の電気規格調査会における標準規格で、例えば110Vと定まっている。 Also, in general, the voltage value Vm when the full ground fault has occurred, are definite in the standard, for example, 110V in electrical standards Committee of the Institute of Electrical Engineers. また、完全地絡が発生した際の電流Imは、中性点接地抵抗35の抵抗値によって定まる。 The current Im when the complete ground fault occurs is determined by the resistance value of the neutral grounding resistor 35. このため、利用者は、事前に特別な計算等を行うことなく、記憶装置52に記憶させる電圧値Vm、Imを定めることができる。 Thus, the user beforehand without performing any special calculation or the like, the voltage value Vm to be stored in the storage device 52, it can be determined Im.

なお、上記実施例は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。 The above examples are intended to facilitate understanding of the present invention and are not to be construed as limiting the present invention. 本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 The present invention, without departing from the spirit thereof, modifications and improvements to the present invention includes equivalents thereof.

本実施形態では、完全地絡事故(いわゆる、100%の地絡事故)が発生した際の、零相電圧Voと電流Ioの値のそれぞれを電圧値Vm、電流値Imとしたが、これに限られない。 In this embodiment, complete ground fault when the (so-called 100% ground fault) occurs, the voltage value Vm the respective values ​​of the zero-phase voltage Vo and current Io, although the current value Im, to not limited. 前述のように、中性点接地抵抗35に流れる電流Ioは、地絡度合いに比例して大きくなる。 As described above, the current Io flowing through the neutral grounding resistor 35 is increased in proportion to the ground fault degree. このため、例えば、50%の地絡事故が発生した際の、零相電圧Voと電流Ioの値のそれぞれを電圧値Vm、電流値Imとしても良い。 Thus, for example, when 50% of the ground fault occurs, the voltage value Vm the respective values ​​of the zero-phase voltage Vo and current Io, or as a current value Im. この場合、比αが0から2まで変化することになるが、本実施形態と同様に事故点を精度良く標定できる。 In this case, the ratio α although will vary from 0 to 2, as in the present embodiment the fault point can be accurately orientation.

また、事故点標定装置45は、処理S102,S103で電流Ioを演算して算出したがこれに限られるものでは無い。 Further, the fault point locating system 45 includes a processing S102, S103 are not intended has been calculated by calculating the current Io is not limited thereto at. 例えば、電流Ioと零相電圧Voとの間には、Io=α×Im=(Vo/Vm)×Imとの関係がある。 For example, between the current Io and the zero-phase voltage Vo, relationship with Io = α × Im = (Vo / Vm) × Im. つまり、実際の地絡事故が発生した際の電流Ioは、零相電圧Voに応じて変化する。 In other words, the actual current Io when the ground fault occurs, varies depending on the zero-phase voltage Vo. このため、事前に記憶装置52に電流Ioと零相電圧Voとの相関を示すデータを記憶させ、マイコン53に、前述したデータ及び測定された零相電圧Voを用いて、零相電圧Voに応じた電流Ioを適宜選択させることとしても良い。 Therefore, pre-stores the data indicating the correlation between the current Io and the zero-phase voltage Vo in the storage device 52, the microcomputer 53, using the zero-phase voltage Vo which is the data described above and the measurement, the zero-phase voltage Vo the current Io corresponding may be appropriately selected.

また、零相電圧検出装置41は、母線20の零相電圧Voを検出したが、例えば、母線20側の送電線31(母線20の近傍の送電線31)の零相電圧であっても良い。 Further, zero-phase voltage detecting device 41 has been detected the zero-phase voltage Vo of the bus 20, for example, may be a zero-phase voltage of the transmission line 31 of the bus 20 side (transmission line 31 in the vicinity of the bus bar 20) . この場合であっても、事故点標定装置45は、本実施形態と同様に事故点を標定することができる。 Even in this case, the fault point locating system 45 can be orientation the fault point as with this embodiment.

10 電力系統 20,21 母線 30,31 送電線 40 変流器 41 零相電圧検出装置 45 事故点標定装置 50 地絡過電圧継電器 51 地絡方向継電器 52 記憶装置 53 マイコン 54 表示部 80 地絡検出部 81 電流測定部 82 電圧測定部 83 算出部 84 標定部 10 power system 20, 21 bus 30, 31 power lines 40 current transformer 41 zero-phase voltage measuring device 45 the fault point locating system 50 locations fault over voltage relay 51 ground directional relay 52 storage device 53 microcomputer 54 display unit 80 ground fault detector 81 current measuring section 82 the voltage measuring unit 83 calculating unit 84 orientation section

Claims (4)

  1. 第1及び第2母線と、第1及び第2送電線を含み前記第1及び第2母線の間に設けられた平行2回線送電線と、前記第2母線に設けたれた中性点接地抵抗と、を備える電力系統における事故点標定装置であって、 First and second bus bars, parallel 2-circuit transmission lines provided between said includes first and second transmission line first and second bus bars, neutral grounding resistor drip provided on the second bus When, a fault point locating system in a power system comprising,
    前記第1母線から前記第1送電線に流れる第1零相電流を測定する電流測定部と、 A current measuring unit for measuring a first zero-phase current flowing from said first bus to said first transmission line,
    前記第1母線または前記第1送電線の零相電圧を測定する電圧測定部と、 A voltage measuring unit for measuring the zero phase voltage of the first bus bar or said first transmission line,
    前記第1または第2送電線に第1地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧に応じた前記中性点接地抵抗に流れる第1電流と、前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流とに基づいて、前記第1または第2送電線のうち、前記第2母線から前記第1地絡事故が発生した発生した送電線に流れる第2零相電流を算出する算出部と、 A first current flowing through said voltage the neutral grounding resistors corresponding to said measured zero-phase voltage measurement unit when the first earth fault in the first or second transmission line has occurred, the first based on the first zero-phase current ground fault it is measured by the current measuring unit upon occurrence of said first or second transmission line, said first earth fault from the second bus a calculation unit for calculating a second zero-phase current flowing to the generated transmission line occurs,
    前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流と、前記第2零相電流とに基づいて、前記第1地絡事故が発生した事故点を標定する標定部と、 And said current first zero-phase current measured by the measuring unit when the first earth fault has occurred, based on the second zero-phase current, the fault point to the first earth fault has occurred and the orientation section for orientation,
    を備えることを特徴とする事故点標定装置。 Fault point locating system, characterized in that it comprises a.
  2. 請求項1に記載の事故点標定装置であって、 A fault point locating system according to claim 1,
    前記算出部は、 The calculating unit,
    所定の第2地絡事故が発生した際の前記零相電圧及び前記第2地絡事故が発生した際の前記中性点接地抵抗に流れる第2電流と、前記第1地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧と、に基づいて前記第1電流を算出した後、算出された前記第1電流から前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流を減算して前記第2零相電流を算出すること、 A second current flowing through the neutral grounding resistor when the zero-phase voltage and the second ground fault when the predetermined second ground fault has occurred has occurred, the first earth fault has occurred and said voltage the zero-phase voltage measured by the measuring unit when the current measured when after calculating the first current, from the calculated said first current the first earth fault has occurred on the basis of the measured first zero-phase current is subtracted in part by calculating the second zero-phase current,
    を特徴とする事故点標定装置。 Fault point locating system according to claim.
  3. 請求項2に記載の事故点標定装置であって、 A fault point locating system according to claim 2,
    前記第2地絡事故は、完全地絡事故であること、 Said second ground fault is fully ground fault,
    を特徴とする事故点標定装置。 Fault point locating system according to claim.
  4. 第1及び第2母線と、第1及び第2送電線を含み前記第1及び第2母線の間に設けられた平行2回線送電線と、前記第2母線に設けたれた中性点接地抵抗と、を備える電力系統において、 First and second bus bars, parallel 2-circuit transmission lines provided between said includes first and second transmission line first and second bus bars, neutral grounding resistor drip provided on the second bus in power system comprising, when,
    コンピュータに、 On the computer,
    前記第1母線から前記第1送電線に流れる第1零相電流を測定する機能と、 A function of measuring the first zero-phase current flowing from said first bus to said first transmission line,
    前記第1母線または前記第1送電線の零相電圧を測定する機能と、 A function of measuring the zero-phase voltage of the first bus bar or said first transmission line,
    前記第1または第2送電線に地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧に応じた前記中性点接地抵抗に流れる電流と、前記地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流とに基づいて、前記第1または第2送電線のうち、前記第2母線から前記地絡事故が発生した発生した送電線に流れる第2零相電流を算出する機能と、 The current flowing in the voltage the neutral grounding resistors corresponding to said measured zero-phase voltage measurement unit when the first or ground fault on the second transmission line occurs, the ground fault has occurred on the basis of the said measured by the current measuring unit first zero-phase current in time, one of the first or the second transmission line, flowing in the transmission line generated for the ground fault from the second bus bar is generated a function of calculating a second zero-phase current,
    前記地絡事故が発生した際に測定された前記第1零相電流と、前記第2零相電流とに基づいて、前記地絡事故が発生した事故点を標定する機能と、 Said first zero-phase current measured when the ground fault occurs, the function based on the second zero-phase current, the ground fault to locating an accident point occurred,
    を実現させるためのプログラム。 Program for realizing.
JP2011063025A 2011-03-22 2011-03-22 Fault point locating device and program Withdrawn JP2012198134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063025A JP2012198134A (en) 2011-03-22 2011-03-22 Fault point locating device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063025A JP2012198134A (en) 2011-03-22 2011-03-22 Fault point locating device and program

Publications (1)

Publication Number Publication Date
JP2012198134A true JP2012198134A (en) 2012-10-18

Family

ID=47180505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063025A Withdrawn JP2012198134A (en) 2011-03-22 2011-03-22 Fault point locating device and program

Country Status (1)

Country Link
JP (1) JP2012198134A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792468A (en) * 2014-03-05 2014-05-14 莱芜钢铁集团有限公司 Electric power line fault position location conforming method and device
CN104101813A (en) * 2013-04-12 2014-10-15 南京南瑞继保电气有限公司 Centralized fault area discrimination method
CN104198891A (en) * 2014-09-15 2014-12-10 昆明理工大学 Instantaneous-fault identification method for beat frequency detection adopting recovery-voltage delay one-half cycle superposition
CN105929302A (en) * 2016-04-13 2016-09-07 上海交通大学 Sequence component relation based range finding method for single-end fault of power transmission line
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
CN104101813A (en) * 2013-04-12 2014-10-15 南京南瑞继保电气有限公司 Centralized fault area discrimination method
CN103792468A (en) * 2014-03-05 2014-05-14 莱芜钢铁集团有限公司 Electric power line fault position location conforming method and device
CN104198891A (en) * 2014-09-15 2014-12-10 昆明理工大学 Instantaneous-fault identification method for beat frequency detection adopting recovery-voltage delay one-half cycle superposition
CN105929302A (en) * 2016-04-13 2016-09-07 上海交通大学 Sequence component relation based range finding method for single-end fault of power transmission line
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus

Similar Documents

Publication Publication Date Title
CA2527086C (en) Method and device for the detection of fault current arcing in electric circuits
CN101571567B (en) System and method for determining location of phase-to-phase fault or three-phase fault
CN103782509B (en) Fault detection system for inner winding of the synchronous generator, a computer program product and method
CN1355585A (en) Failure type selecting system for identificating failure in electric system
JP3966251B2 (en) DC current detection circuit and the DC ground fault current detecting circuit
GB2435384A (en) Method for detecting earth-fault conditions in motor a controller
CN101251568B (en) System and method for determining location of phase-to-earth fault
CN102707197B (en) Distance measuring method and type diagnostic method of single-phase grounding fault of electric transmission line
EP2474076B1 (en) A method of fault phase selection and fault type determination
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
US20080284447A1 (en) Method for determining location of phase-to earth fault
JP5255554B2 (en) Characteristic monitor device for current transformer or transformers
CN102224427B (en) Method and apparatus for detecting a phase-to-earth fault
CN102317800A (en) Device for detecting insulation degradation
KR20130080579A (en) Circuit for measuring insulatioin resistance
US8942954B2 (en) Fault location in a non-homogeneous electric power line
RU2505824C2 (en) Directed detection of ground short-circuit
CN101320073B (en) Method for determining location of phase-to-earth fault
JP5514842B2 (en) A monitoring method DC Nonreferenced paths of insulation monitoring device
JP2006343267A (en) Insulation resistance measuring instrument of dc circuit, electrostatic capacitance measuring instrument, insulation resistance measuring method and electrostatic capacitance measuring method
JP2012129527A (en) Method and system for monitoring transformer health
US8649130B2 (en) Motor driving apparatus having fault diagnostic function
CN102460191A (en) Detecting faults in a wiring harness
US9007733B2 (en) Travelling-wave based fault protection of high-voltage transmission lines
RU2014103243A (en) The system and method of detecting faults and power cabling system for direct electric heating subsea pipelines

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603