JP5418219B2 - High voltage insulation monitoring device - Google Patents

High voltage insulation monitoring device Download PDF

Info

Publication number
JP5418219B2
JP5418219B2 JP2009297923A JP2009297923A JP5418219B2 JP 5418219 B2 JP5418219 B2 JP 5418219B2 JP 2009297923 A JP2009297923 A JP 2009297923A JP 2009297923 A JP2009297923 A JP 2009297923A JP 5418219 B2 JP5418219 B2 JP 5418219B2
Authority
JP
Japan
Prior art keywords
zero
current
value
phase
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009297923A
Other languages
Japanese (ja)
Other versions
JP2011137718A (en
Inventor
力 八木
保広 杉本
正俊 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2009297923A priority Critical patent/JP5418219B2/en
Publication of JP2011137718A publication Critical patent/JP2011137718A/en
Application granted granted Critical
Publication of JP5418219B2 publication Critical patent/JP5418219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、非接地系の電路の電気設備において、前記電路における高圧ケーブルの負荷側の零相電流を検出する零相電流検出手段と、その零相電流検出手段の検出情報に基づいて地絡電流を検出する地絡電流検出手段とが備えられた高圧絶縁監視装置に関する。   The present invention relates to a zero-phase current detecting means for detecting a zero-phase current on a load side of a high-voltage cable in the electric circuit, and a ground fault based on detection information of the zero-phase current detecting means in the electrical equipment of the non-grounded electric circuit. The present invention relates to a high voltage insulation monitoring apparatus provided with a ground fault current detecting means for detecting current.

かかる高圧絶縁監視装置は、非接地系電路の電気設備において発生する地絡事故を検出するための装置である。
非接地系電路の地絡電流を検出するための手法としては、下記特許文献1にも記載のように、電路の零相電流と零相電圧とを検出して、それらの検出情報から地絡電流を求める手法がよく用いられている。
Such a high-voltage insulation monitoring device is a device for detecting a ground fault that occurs in an electrical facility of a non-grounded electric circuit.
As a method for detecting the ground fault current of the non-grounded circuit, as described in Patent Document 1 below, the zero-phase current and zero-phase voltage of the circuit are detected, and the ground fault is detected from the detected information. A method for obtaining a current is often used.

特開平11−271384号公報JP-A-11-271384

しかしながら、従来からの零相電圧と零相電流とを検出する手法では、零相電流は比較的に安価な零相変流器によって検出でき、設置作業も簡単な作業で行えるものの、零相電圧を検出するための零相変圧器は高価な装置である上、それの設置工事や撤去工事には停電を伴う大がかりな工事を必要とし、全体として地絡電流の検出に要するコストが非常に大きなものとなっていた。又、間歇地絡の場合、地絡事故が構内か構外かの判断が困難な場合があった。
本発明は、かかる実情に鑑みてなされたものであって、その目的は、地絡電流の検出に要するコストを可及的に低減し、地絡事故が構内か構外かも正確に判断できるようにする点にある。
However, in the conventional method for detecting the zero-phase voltage and the zero-phase current, the zero-phase current can be detected by a relatively inexpensive zero-phase current transformer, and the installation work can be performed by a simple operation. The zero-phase transformer for detecting the fault is an expensive device, and installation and removal of the transformer requires a large-scale construction with a power failure, and the overall cost for detecting the ground fault current is very large. It was a thing. In the case of an intermittent ground fault, it may be difficult to determine whether the ground fault is on-site or off-site.
The present invention has been made in view of such circumstances, and its purpose is to reduce the cost required for detecting a ground fault current as much as possible, and to accurately determine whether a ground fault is on-site or off-site. There is in point to do.

本出願の第1の発明は、非接地系の電路の電気設備において、前記電路における高圧ケーブルの負荷側の零相電流を検出する零相電流検出手段と、その零相電流検出手段の検出情報に基づいて地絡電流を検出する地絡電流検出手段とが備えられた高圧絶縁監視装置において、前記電路の各相の線と容量性部材を介して接続されている接地線に流れる接地線電流を検出する接地線電流検出手段が備えられ、前記地絡電流検出手段は、前記電路に地絡が発生していない状態での前記接地線電流の値と前記負荷側の零相電流の値との比率を予め求めて記憶手段に記憶しておき、測定時点における前記負荷側の零相電流の値から、測定時点における前記接地線電流の値と前記記憶手段に記憶されている前記比率とによって求まる前記負荷側の零相電流の推定値を減算することによって地絡電流の電流値を検出するように構成されている。   According to a first aspect of the present application, there is provided a zero-phase current detecting means for detecting a zero-phase current on the load side of the high-voltage cable in the electric circuit, and detection information of the zero-phase current detecting means. In the high voltage insulation monitoring device provided with the ground fault current detecting means for detecting the ground fault current based on the ground line current flowing in the ground line connected to the line of each phase of the electric circuit via the capacitive member A ground line current detecting means for detecting the ground line current detecting means, wherein the ground fault current detecting means includes a value of the ground line current and a value of the zero-phase current on the load side when no ground fault occurs in the electric circuit. Is obtained in advance and stored in the storage means, and from the value of the zero-phase current on the load side at the time of measurement, the value of the ground line current at the time of measurement and the ratio stored in the storage means The obtained zero-phase current on the load side It is configured to detect the current value of the ground fault current by subtracting the estimated value.

すなわち、地絡電流の検出のための基本的な考え方として、測定時点の負荷側の零相電流から平常時(すなわち地絡事故が発生していない状態)であるとしたときの負荷側の零相電流を減算することで地絡電流を求める。
但し、絶縁監視の対象箇所で地絡事故が発生していない状態でも負荷側の零相電流は種々の環境条件によって時間的に変動するものであり、平常時に測定した負荷側の零相電流を記憶しておき、測定時点の負荷側の零相電流からその記憶値を減算したのでは正確に地絡電流を求めたことにはならない。
つまり、仮に測定時点において地絡事故が発生しているとして、その測定時点において地絡事故が発生していなければ負荷側の零相電流がどれだけの量であるかを求めて、それを測定時点の負荷側の零相電流から減算する必要がある。
That is, as a basic idea for detecting the ground fault current, the load side zero when the load side zero phase current at the time of measurement is normal (that is, no ground fault has occurred). The ground fault current is obtained by subtracting the phase current.
However, the zero-phase current on the load side fluctuates over time due to various environmental conditions even when there is no ground fault at the location subject to insulation monitoring. If the stored value is subtracted from the zero-phase current on the load side at the time of measurement, the ground fault current is not accurately obtained.
In other words, assuming that a ground fault has occurred at the time of measurement, if there is no ground fault at the time of measurement, determine the amount of zero-phase current on the load side and measure it. It is necessary to subtract from the zero-phase current on the load side at the time.

この「測定時点において地絡事故が発生していなければ負荷側の零相電流がどれだけの量であるか」を、電路の各相の線と容量性部材を介して接続されている接地線に流れる接地線電流を検出することによって推測するのである。
これを、電源Eから構内に引込んだ高圧ケーブル1に負荷101を接続し、零相変流器102等の検出手段を設置した状態を簡略的に示す図2に基づいて詳細に説明する。
図2では、容量性部材をコンデンサCa10,Cb10,Cc10として示し、それを介して電路2の各線と接地線104が接続されているものとして示している。
又、負荷101の対地静電容量をCa,Cb,Ccで示している。
どのような配線がこの接地線104に該当するかは後述する。
This “ground wire that is connected to each phase line of the circuit via a capacitive member” indicates the amount of zero-phase current on the load side if no ground fault has occurred at the time of measurement. It is estimated by detecting the ground line current flowing through
This will be described in detail with reference to FIG. 2 schematically showing a state in which the load 101 is connected to the high-voltage cable 1 drawn from the power source E to the premises and the detecting means such as the zero-phase current transformer 102 is installed.
In FIG. 2, the capacitive members are shown as capacitors Ca 10 , Cb 10 , and Cc 10 , and each line of the electric circuit 2 is connected to the ground line 104 through the capacitive members.
The ground capacitance of the load 101 is indicated by Ca 2 , Cb 2 , and Cc 2 .
What kind of wiring corresponds to the ground line 104 will be described later.

負荷の対地静電容量Ca,Cb,Ccを経て流れる電流と、コンデンサCa10,Cb10,Cc10を経て接地線104に流れる電流との関係は、対地静電容量Ca,Cb,Ccの容量値とコンデンサCa10,Cb10,Cc10の容量値との比で決まる比例関係にある。
負荷の対地静電容量Ca,Cb,Ccを経て流れる電流は上述の負荷側の零相電流に相当するものであり、上述のように時間的に変動するものであるが、負荷の対地静電容量Ca,Cb,Ccを経て流れる電流(すなわち、負荷側の零相電流)と、コンデンサCa10,Cb10,Cc10を経て接地線104に流れる電流との比は、夫々の容量値が変化しないので一定である。
The current flowing through the earth capacity Ca 2, Cb 2, Cc 2 load, the capacitor Ca 10, Cb 10, the relationship between the current through Cc 10 flows to the ground line 104, the capacitance to ground Ca 2, Cb 2 and Cc 2 and the capacitance values of the capacitors Ca 10 , Cb 10 and Cc 10 are in a proportional relationship.
The current flowing through the ground capacitances Ca 2 , Cb 2 , and Cc 2 of the load corresponds to the above-described zero-phase current on the load side and varies with time as described above. The ratio of the current flowing through the ground capacitances Ca 2 , Cb 2 , Cc 2 (that is, the zero-phase current on the load side) and the current flowing through the capacitors Ca 10 , Cb 10 , Cc 10 to the ground line 104 is Since each capacitance value does not change, it is constant.

そこで、監視対象の電路に地絡が発生していない状態で、接地線電流(接地線104に流れる電流)の値を零相変流器103等で測定すると共に、負荷側の零相電流の値を零相変流器102で測定し、両者の比率を予め求めて記憶手段に記憶しておく。
そして、その比率と測定時点の接地線電流の測定値(零相変流器103による測定値)とからその測定時点における「平常時における負荷側の零相電流」を推定し、測定時点の負荷側の零相電流の測定値(零相変流器102による測定値)から前記推定値を減算して地絡電流を求める。
具体的には、例えば、電路に地絡が発生していない状態での接地線電流の値に対する負荷側の零相電流の値の比率を予め求めて記憶手段に記憶しておき、測定時点における負荷側の零相電流の測定値から、測定時点における接地線電流の測定値と記憶手段に記憶されている前記比率の積で求まる負荷側の零相電流の推定値を減算する。
尚、図2では、接地線104が零相変流器102内を高圧ケーブル1に沿って構外側に向けて通過するように配線しているが、これは、コンデンサCa10,Cb10,Cc10が、零相変流器102よりも負荷101側に位置する状態を例示しているため、零相変流器102が負荷101側の零相電流のみを検出するように、検出接地線104に流れる電流を予め減算させるためのものである。
もちろん、上記のような配線の取り回しを行わず、零相変流器102の検出情報から零相変流器103の検出情報を演算処理で減算することで負荷側の零相電流を求めても良い。
Therefore, the ground line current (current flowing through the ground line 104) is measured by the zero-phase current transformer 103 or the like while no ground fault has occurred in the monitored electric circuit, and the zero-phase current on the load side is measured. The value is measured by the zero-phase current transformer 102, and the ratio between the two is obtained in advance and stored in the storage means.
Then, from the ratio and the measured value of the ground line current at the time of measurement (measured value by the zero-phase current transformer 103), the “zero-phase current on the load side at normal time” at the time of measurement is estimated, and the load at the time of measurement is estimated. The ground fault current is obtained by subtracting the estimated value from the measured value of the zero-phase current on the side (measured value by the zero-phase current transformer 102).
Specifically, for example, the ratio of the value of the zero-phase current on the load side to the value of the ground line current in a state where no ground fault has occurred in the electric circuit is obtained in advance and stored in the storage means, and at the time of measurement From the measured value of the load-side zero-phase current, the estimated value of the load-side zero-phase current obtained by the product of the measured value of the ground line current at the time of measurement and the ratio stored in the storage means is subtracted.
In FIG. 2, the ground wire 104 is wired so as to pass through the zero-phase current transformer 102 along the high-voltage cable 1 toward the outer side of the construction, but this is because the capacitors Ca 10 , Cb 10 , Cc 10 exemplifies a state of being located closer to the load 101 than the zero-phase current transformer 102. Therefore, the detection ground line 104 is detected so that the zero-phase current transformer 102 detects only the zero-phase current on the load 101 side. This is for subtracting in advance the current flowing through the.
Of course, the load-side zero-phase current can be obtained by subtracting the detection information of the zero-phase current transformer 103 from the detection information of the zero-phase current transformer 102 by the arithmetic processing without performing the wiring arrangement as described above. good.

又、本出願の第2の発明は、上記第1の発明の構成に加えて、前記電路に接続される負荷の対地静電容量が各相間で不平衡であることによる不平衡の零相電流を検出する不平衡零相電流検出手段が備えられ、前記地絡電流検出手段は、測定時点における前記負荷側の零相電流の値から、前記不平衡の零相電流の値を更に減算することによって地絡電流の電流値を検出するように構成されている。
すなわち、図2に示す負荷の対地静電容量Ca,Cb,Ccが各相間でアンバランスである場合には、そのアンバランスに起因した零相電流が流れる。
従って、そのアンバランスに起因した零相電流の値が大きくなって地絡電流の測定誤差として効いてくるような場合には、それを負荷側の零相電流の測定値から除去して地絡電流の測定精度を向上させる。
尚、この負荷の対地静電容量のアンバランスに起因する零相電流は、各相毎に求めたアドミタンスと電圧との積のベクトル和をとることで求まる。
In addition to the configuration of the first invention, the second invention of the present application provides an unbalanced zero-phase current due to the unbalanced ground capacitance of the load connected to the electric circuit between the phases. Unbalanced zero-phase current detection means is provided, and the ground fault current detection means further subtracts the unbalanced zero-phase current value from the load-side zero-phase current value at the time of measurement. Is configured to detect the current value of the ground fault current.
That is, when the ground capacitances Ca 2 , Cb 2 , and Cc 2 of the load shown in FIG. 2 are unbalanced between the phases, a zero-phase current caused by the unbalance flows.
Therefore, if the value of the zero-phase current due to the unbalance becomes large and works as a measurement error of the ground fault current, it is removed from the measured value of the zero-phase current on the load side and Improve current measurement accuracy.
Note that the zero-phase current resulting from the unbalance of the ground capacitance of the load is obtained by taking the vector sum of the products of the admittance and voltage obtained for each phase.

又、本出願の第3の発明は、上記第1又は第2の発明の構成に加えて、前記地絡電流検出手段は、設定時間の間の前記零相電流検出手段の検出情報と前記接地線電流検出手段の検出情報とを記憶手段に記憶し、その記憶情報に基づいて位相情報を含むベクトル計算によって前記負荷側の零相電流の値と前記接地線電流の値とを求めるように構成されている。
すなわち、交流回路における電流値等に関する演算処理は、位相情報を含めてベクトル演算によって計算するのが一般的にであり、そのような演算処理が可能となる時間分の測定電流の時系列データを収集記憶して、精度良く電流値の計算を行う。
According to a third invention of the present application, in addition to the configuration of the first or second invention, the ground fault current detecting means includes the detection information of the zero phase current detecting means and the grounding during a set time. The detection information of the line current detection means is stored in the storage means, and the zero-phase current value on the load side and the ground line current value are obtained by vector calculation including phase information based on the storage information. Has been.
That is, the calculation processing related to the current value in the AC circuit is generally calculated by vector calculation including phase information, and the time series data of the measured current for the time that allows such calculation processing is obtained. Collect and store and calculate the current value with high accuracy.

又、本出願の第4の発明は、上記第1又は第2の発明の構成に加えて、前記地絡電流検出手段は、測定時点における前記負荷側の零相電流の値と前記接地線電流の測定値として、測定時点の瞬時値を用いるように構成されている。
すなわち、従来の零相電圧と零相電流とによる地絡電流の検出には、位相情報を用いる演算が必須であり、アーク地絡や間歇地絡のような突発的な地絡電流の発生を高速に検出して必要な対応をとるというのには必ずしも向いていない。
その点、負荷側の零相電流の測定値から平常時における負荷側の零相電流の推定値を減算する手法では、瞬時値によるリアルタイム処理が可能となり、アーク地絡や間歇地絡のような突発的な地絡電流の検出にも効果的に対応できる。
According to a fourth invention of the present application, in addition to the configuration of the first or second invention, the ground fault current detecting means includes a value of the zero-phase current on the load side and the ground line current at the time of measurement. As the measured value, an instantaneous value at the time of measurement is used.
In other words, in order to detect a ground fault current using a conventional zero phase voltage and zero phase current, an operation using phase information is indispensable, and sudden ground fault currents such as arc ground faults and intermittent ground faults are generated. It is not necessarily suitable for detecting at high speed and taking necessary actions.
On the other hand, the method of subtracting the estimated value of the load-side zero-phase current from the measured value of the load-side zero-phase current enables real-time processing using instantaneous values, such as an arc ground fault or intermittent ground fault. It can effectively cope with detection of sudden ground fault current.

又、本出願の第5の発明は、上記第1〜第4のいずれかの発明の構成に加えて、前記接地線として、前記高圧ケーブルのシースアース線を用いる。
すなわち、高圧ケーブルでは、高圧ケーブルの各相の線とシースとそれらの間に存在する絶縁部材とによって等価的にコンデンサを形成し、容量性の部材となっている。
シースアース線は、この容量性の部材を介して各相の線と接続されている接地線である。
シースアース線は、電気設備(受電設備)において一般的に設置される配線であり、その配線を利用して上記の接地線電流を検出できる。
The fifth invention of the present application uses a sheath ground wire of the high-voltage cable as the ground wire in addition to the configuration of any one of the first to fourth inventions.
That is, in the high-voltage cable, a capacitor is equivalently formed by the wire of each phase of the high-voltage cable, the sheath, and the insulating member existing between them, thereby forming a capacitive member.
The sheath ground wire is a ground wire connected to the wire of each phase through this capacitive member.
The sheath ground line is a wiring generally installed in an electric facility (power receiving facility), and the ground line current can be detected using the wiring.

又、本出願の第6の発明は、上記第1〜第4のいずれかの発明の構成に加えて、前記接地線として、前記電路に接続された零相変圧器の接地線を用いる。
すなわち、地絡電流の検出のために特別に零相変圧器を設置するのは設備コストを著しく上昇させて好ましくないが、何らかの別の目的のために零相変圧器が電気設備に設置されるのであれば、それを利用して地絡電流を求めることができる。
但し、零相変圧器が出力する零相電圧を地絡電流の検出に用いるのではなく、零相変圧器の接地線を利用して上記の接地線電流を検出する。
零相変圧器を電路に接続した状態を示す図3のように、零相変圧器105には、電路の各相の線と接続するためのコンデンサCa12,Cb12,Cc12が備えられている。
従って、この零相変圧器105の接地線106は、電路2の各相の線と容量性部材(コンデンサCa12,Cb12,Cc12)を介して接続されている接地線に相当する回路構成となっており、これの接地線106に流れる電流を上記接地線電流として検出できる。
The sixth invention of the present application uses a ground wire of a zero-phase transformer connected to the electric circuit as the ground wire in addition to the configuration of any of the first to fourth inventions.
In other words, it is not preferable to install a zero-phase transformer specially for detecting the ground fault current because it significantly increases the equipment cost, but the zero-phase transformer is installed in the electrical equipment for some other purpose. If it is, ground fault current can be calculated | required using it.
However, the zero-phase voltage output from the zero-phase transformer is not used for the detection of the ground fault current, but the above-described ground line current is detected using the ground line of the zero-phase transformer.
As shown in FIG. 3 showing a state in which the zero-phase transformer is connected to the electric circuit, the zero-phase transformer 105 is provided with capacitors Ca 12 , Cb 12 , and Cc 12 for connecting to the lines of each phase of the electric circuit. Yes.
Therefore, the ground line 106 of the zero-phase transformer 105 is a circuit configuration corresponding to the ground line connected to the lines of each phase of the electric circuit 2 via the capacitive members (capacitors Ca 12 , Cb 12 , Cc 12 ). The current flowing through the ground line 106 can be detected as the ground line current.

上記第1の発明によれば、低コストで容易に検出できる電流検出を主体として地絡電流を求める構成であるため、地絡電流の検出に要するコストを可及的に低減できるものとなった。又、負荷の対地静電容量に流入する零相電流を同じ性質を有する別の対地静電容量に流入する接地線電流と比較し、所定の演算をすることにより、外乱による影響を完全にキャンセルできる。従って、構外の地絡事故や誘導雷により零相電圧及び零相電流が大きく且つ不規則に変動しても、高い精度で構内の地絡事故を検出することができる。換言すると、構外の地絡事故を検出対象から的確に除外して地絡電流を検出することで、地絡事故が構内か構外かも正確に判断できる。
又、上記第2の発明によれば、負荷の対地静電容量が各相間でアンバランスであることも考慮して地絡電流を求めるため、地絡電流の検出精度を一層向上させることができる。
又、上記第3の発明によれば、地絡電流を求めるための演算を位相情報を含むベクトル演算にて行うため、精度良く地絡電流を求めることができる。
According to the first aspect of the invention, since the ground fault current is obtained mainly by current detection that can be easily detected at low cost, the cost required for detecting the ground fault current can be reduced as much as possible. . In addition, the zero-phase current flowing into the ground capacitance of the load is compared with the ground line current flowing into another ground capacitance having the same properties, and the influence of the disturbance is completely canceled by performing a predetermined calculation. it can. Therefore, even if the zero-phase voltage and the zero-phase current are large and irregularly fluctuate due to an off-ground ground fault or induced lightning, a ground fault on the premises can be detected with high accuracy. In other words, it is possible to accurately determine whether the ground fault is on-site or off-site by accurately excluding the off-ground ground fault from the detection target and detecting the ground fault current.
According to the second aspect of the invention, since the ground fault current is obtained in consideration of the fact that the load capacitance to ground is unbalanced between the phases, the ground fault current detection accuracy can be further improved. .
According to the third aspect of the invention, since the calculation for obtaining the ground fault current is performed by the vector calculation including the phase information, the ground fault current can be obtained with high accuracy.

又、上記第4の発明によれば、リアルタイムに地絡電流を求めることができるため、アーク地絡や間歇地絡も的確に検出できる。
又、上記第5の発明によれば、一般的に設置されるシースアース線を利用して上記接地線電流を検出できるため、装置構成を一層低コスト化することができる。
又、上記第6の発明によれば、他の目的で零相変圧器が設置される場合には、その零相変圧器の接地線を利用して、平常時における負荷側の零相電流の推定値を求めるための上記接地線電流を検出できる。
この場合、接地線と電路の各相の線との間に介在する容量性部材はコンデンサそのものであり、容量値が既知であるうえに極めて安定しているので、地絡電流の検出精度の向上に寄与するものとなる。
According to the fourth aspect of the invention, since the ground fault current can be obtained in real time, an arc ground fault or an intermittent ground fault can be accurately detected.
Further, according to the fifth aspect, since the ground line current can be detected using a generally installed sheath ground line, the cost of the apparatus configuration can be further reduced.
According to the sixth aspect of the present invention, when a zero-phase transformer is installed for another purpose, the zero-phase current on the load side in the normal state is utilized by using the ground wire of the zero-phase transformer. The ground line current for obtaining the estimated value can be detected.
In this case, the capacitive member interposed between the ground wire and the wire of each phase of the electric circuit is the capacitor itself, and since the capacitance value is known and extremely stable, the detection accuracy of the ground fault current is improved. It will contribute to.

本発明の実施の形態にかかる高圧絶縁監視装置の全体構成を示す図The figure which shows the whole high voltage insulation monitoring apparatus concerning embodiment of this invention 本発明の基本的な考え方を説明するための図Diagram for explaining the basic concept of the present invention 零相変圧器を使用した場合の本発明の構成を示す図The figure which shows the structure of this invention at the time of using a zero phase transformer

以下、本発明の高圧絶縁監視装置の実施の形態を図面に基づいて説明する。
本実施の形態の高圧絶縁監視装置は、電力需要家側の電気設備(受電設備)を概略的に示す図1のように、電力会社の変電設備から供給される高圧の電源E(例えば6.6kV)を電路2によって負荷8へ供給するいわゆる非接地系の電路の電気設備を監視対象とする。尚、実際には、負荷の要求電圧に下げるための変圧器も設置され、電路2によってその変圧器まで高電圧が引込まれるがここでは記載を省略している。又、本発明における「構外」とは図1の受電点の電源E側を言い、「構内」とは図1の受電点の負荷8側を言う。
Embodiments of the high voltage insulation monitoring apparatus of the present invention will be described below with reference to the drawings.
The high-voltage insulation monitoring apparatus of the present embodiment is a high-voltage power source E (for example, 6.5) supplied from a substation facility of an electric power company, as schematically shown in FIG. 6 kV) is an object to be monitored for electrical equipment of a so-called non-grounded circuit that supplies the load 8 via the circuit 2. In practice, a transformer for lowering to the required voltage of the load is also installed, and a high voltage is drawn to the transformer by the electric circuit 2, but the description is omitted here. Further, “external” in the present invention refers to the power source E side of the power receiving point in FIG. 1, and “premises” refers to the load 8 side of the power receiving point in FIG.

上述のような設備において、電力需要家側で絶縁監視を行うために、高圧ケーブル1の負荷8側の零相電流を検出するための零相電流検出手段3として零相変流器ZCT2が高圧ケーブル1の外周を取り囲むように取り付けられ、高圧ケーブル1における負荷8側の端部から引き出されたシースアース線4(接地線)にそのシースアース線4に流れる電流(接地線電流)を検出するための接地線電流検出手段5である零相変流器ZCT1が取り付けられている。
シースアース線4は、高圧ケーブル1から引き出された後、零相変流器ZCT2内を構外側に向けて高圧ケーブル1に沿って通過させる(巻き戻す)ことで、シースアース線4に流れる電流が零相変流器ZCT2を往復通過して打ち消し合うように配線している。つまり、零相変流器ZCT2が高圧ケーブル1のケーブル地絡を検出しないように配線している。
In the above-described equipment, the zero-phase current transformer ZCT2 is a high-voltage as the zero-phase current detection means 3 for detecting the zero-phase current on the load 8 side of the high-voltage cable 1 in order to perform insulation monitoring on the power consumer side. It is attached so as to surround the outer periphery of the cable 1, and a current (ground line current) flowing through the sheath ground line 4 is detected in the sheath ground line 4 (ground line) drawn from the end of the high-voltage cable 1 on the load 8 side. A zero-phase current transformer ZCT1, which is a grounding line current detection means 5 for this purpose, is attached.
The sheath ground wire 4 is drawn from the high-voltage cable 1 and then passed through the zero-phase current transformer ZCT2 toward the outside of the construction along the high-voltage cable 1 (rewinding), whereby a current flowing through the sheath ground wire 4 Are routed so as to cancel each other through the zero-phase current transformer ZCT2. That is, the zero-phase current transformer ZCT2 is wired so as not to detect the cable ground fault of the high-voltage cable 1.

電路2には、更に、負荷8の対地静電容量がアンバランスであることに起因する零相電流を検出するために使用する基準電圧検出回路6が接続されている。
この基準電圧検出回路6の回路構成は、1次側を電路2にV結線した2個のトランス11,12と、その2個のトランス11,12の二次側にスター結線した3個の抵抗13,14,15とによって構成されており、抵抗13,14,15の夫々の両端電圧からa,b,cの各相の電圧を基準電圧として得る。尚、図1においては、基準電圧検出回路6を電路2に接続した場合を示しているが、図示を省略している変圧器にて低圧に変換された後の電源ラインから上記の基準電圧を得るように構成しても良い。
The electric circuit 2 is further connected to a reference voltage detection circuit 6 used for detecting a zero-phase current caused by the unbalanced capacitance of the load 8 to the ground.
The circuit configuration of the reference voltage detection circuit 6 includes two transformers 11 and 12 whose primary side is V-connected to the electric circuit 2, and three resistors that are star-connected to the secondary side of the two transformers 11 and 12. 13, 14, and 15, and the voltages of the respective phases a, b, and c are obtained as reference voltages from the voltages at both ends of the resistors 13, 14, and 15. Although FIG. 1 shows the case where the reference voltage detection circuit 6 is connected to the electric circuit 2, the reference voltage is supplied from the power line after being converted to a low voltage by a transformer not shown. You may comprise so that it may obtain.

零相変流器ZCT1,ZCT2の出力信号及び基準電圧検出回路6による検出基準電圧は、高圧絶縁監視装置の主要部である地絡検出装置7へ入力される。
地絡検出装置7は、汎用のコンピュータ(より具体的にはパーソナルコンピュータ)にて構成されており、零相変流器ZCT1,ZCT2の出力信号及び基準電圧検出回路6による検出基準電圧に基づいて地絡電流を演算によって求める。
この演算はソフトウェア処理として実行されるのであるが、機能的には、不平衡零相電流検出部7aと地絡電流演算部7bとによって構成されている。
又、図示を省略するが、不平衡零相電流検出部7aに入力される基準電圧信号や、地絡電流演算部7bに入力される零相変流器ZCT1,ZCT2の検出信号をA/D変換するA/Dコンバータが備えられている。
The output signals of the zero-phase current transformers ZCT1 and ZCT2 and the reference voltage detected by the reference voltage detection circuit 6 are input to the ground fault detection device 7 which is the main part of the high voltage insulation monitoring device.
The ground fault detection device 7 is constituted by a general-purpose computer (more specifically, a personal computer), and is based on the output signals of the zero-phase current transformers ZCT1 and ZCT2 and the reference voltage detected by the reference voltage detection circuit 6. The ground fault current is obtained by calculation.
Although this calculation is executed as software processing, it is functionally composed of an unbalanced zero-phase current detection unit 7a and a ground fault current calculation unit 7b.
Although not shown, the reference voltage signal input to the unbalanced zero-phase current detection unit 7a and the detection signals of the zero-phase current transformers ZCT1 and ZCT2 input to the ground fault current calculation unit 7b are A / D. An A / D converter for conversion is provided.

不平衡零相電流検出部7aは、電路2に接続される負荷8の対地静電容量(図2において、Ca,Cb,Ccとして示す容量)が各相間で不平衡であることにによる不平衡の零相電流を検出する不平衡零相電流検出手段UCであり、基準電圧検出回路6が検出した基準電圧と、地絡検出装置7に備えられている記憶手段MEであるメモリ7cに予め記憶されている負荷8の各相のアドミタンスの値とから、前記不平衡の零相電流を求める。尚、メモリ7cに記憶されているアドミタンスは、実用上、容量成分のみによるアドミタンスと見なして良い。
上記の不平衡の零相電流は、各相について基準電圧とアドミンタスとの積を求め、それらのベクトル和をとることによって求める。
Zero-phase current detecting portion 7a disequilibrium (in FIG. 2, the capacitance shown as Ca 2, Cb 2, Cc 2) the earth capacitance of the load 8 connected to the path 2 that is unbalanced between phases Is an unbalanced zero-phase current detection means UC for detecting an unbalanced zero-phase current due to the reference voltage detected by the reference voltage detection circuit 6 and a memory 7c which is a storage means ME provided in the ground fault detection device 7. The unbalanced zero-phase current is obtained from the admittance value of each phase of the load 8 stored in advance. Note that the admittance stored in the memory 7c may be practically regarded as admittance due to only the capacitive component.
The unbalanced zero-phase current is obtained by calculating the product of the reference voltage and the admittance for each phase and taking the vector sum thereof.

地絡電流演算部7bは、零相変流器ZCT2の検出情報に基づいて地絡電流を検出する地絡電流検出手段GSであり、零相変流器ZCT1,ZCT2の検出情報と不平衡零相電流検出部7aにて求めた上記の不平衡の零相電流とから地絡電流を演算処理によって求める。
地絡電流演算部7bによる地絡電流の検出のための基本的な考え方は、測定時点の負荷8側の零相電流(その測定時点での測定値)から平常時(すなわち地絡事故が発生していない状態)であるとしたときの負荷8側の零相電流を減算することで地絡電流を求める。
地絡事故が発生していない状態としたときの負荷8側の零相電流は、この零相電流が時間的に変動すること、及び、零相電流が変動しても負荷8側の零相電流とシースアース線4に流れる接地線電流との比率は一定であることを考慮して、予めその比率を求めてメモリ7cに記憶しておき、測定時点の上記接地線電流の測定値とメモリ7cに記憶されている前記比率とから、地絡事故が発生していない状態としたときの負荷8側の零相電流を推定する。
The ground fault current calculation unit 7b is a ground fault current detection means GS that detects a ground fault current based on the detection information of the zero phase current transformer ZCT2, and the detection information of the zero phase current transformers ZCT1 and ZCT2 and the unbalanced zero. A ground fault current is obtained by arithmetic processing from the unbalanced zero-phase current obtained by the phase current detector 7a.
The basic idea for detecting the ground fault current by the ground fault current calculation unit 7b is that the zero phase current (measured value at the time of measurement) on the load 8 side at the time of measurement is normal (that is, a ground fault occurs). The ground fault current is obtained by subtracting the zero-phase current on the load 8 side when the current state is not.
The zero-phase current on the load 8 side when no ground fault has occurred is that the zero-phase current fluctuates in time and the zero-phase current on the load 8 side even if the zero-phase current fluctuates. Considering that the ratio between the current and the ground line current flowing through the sheath ground wire 4 is constant, the ratio is obtained in advance and stored in the memory 7c, and the measured value of the ground line current at the time of measurement and the memory Based on the ratio stored in 7c, the zero-phase current on the load 8 side when no ground fault has occurred is estimated.

このようにして求めた「地絡事故が発生していない状態としたときの負荷8側の零相電流の推定値」を測定時点の負荷8側の零相電流の測定値から減算し、地絡電流を求める。
更に、上述の負荷8の対地静電容量が各相間でばらつき、地絡電流の算出に誤差として影響するものであるときは、更に不平衡零相電流検出部7aで求めた不平衡の零相電流の値を減算する。
The "estimated value of the zero-phase current on the load 8 side when no ground fault has occurred" thus obtained is subtracted from the measured value of the zero-phase current on the load 8 side at the time of measurement. Find the fault current.
Further, when the ground capacitance of the load 8 varies between the phases and affects the calculation of the ground fault current as an error, the unbalanced zero-phase obtained by the unbalanced zero-phase current detector 7a is further obtained. Subtract the current value.

地絡電流演算部7bは、以上の処理を位相情報を含むベクトル演算と瞬時値を用いた演算との双方を並行して実行処理している。
この実行処理のために、地絡電流演算部7bは、設定時間の間(少なくとも1周期分の間)の零相変流器ZCT1,ZCT2から送られてくる測定信号(検出情報)をA/D変換してメモリ7cへ記憶させる。
更に、地絡電流演算部7bは、メモリ7cから読み出した電流値の時系列データをソフトウェア処理によるDFT(離散フーリエ変換)にかけて位相情報を含むベクトル量として抽出し、ベクトル計算によって上述の演算処理を行う。
The ground fault current calculation unit 7b performs the above processing in parallel with both the vector calculation including the phase information and the calculation using the instantaneous value.
For this execution process, the ground fault current calculation unit 7b sends the measurement signals (detection information) sent from the zero-phase current transformers ZCT1 and ZCT2 during the set time (for at least one cycle) to A / D-convert and store in memory 7c.
Further, the ground fault current calculation unit 7b extracts time-series data of the current value read from the memory 7c as a vector quantity including phase information by performing DFT (Discrete Fourier Transform) by software processing, and performs the above arithmetic processing by vector calculation. Do.

式によって説明すると、大文字の「I」はベクトル量を表現するものとして、先ず構内側で地絡事故が発生していない状況において、零相変流器ZCT2の検出信号から負荷8側の零相電流の電流値Io0を求め、更に、零相変流器ZCT1の検出信号からシースアース線4に流れる上記接地線電流の値Ie0を求める。
そして、接地線電流Ie0に対する負荷8側の零相電流Io0の比率Kを、K=Io0/Ie0(Kはスカラー量)として求めてメモリ7cへ記憶しておく。
Explaining by the equation, the capital letter “I” represents the vector quantity. First, in the situation where no ground fault has occurred on the premises, the zero phase on the load 8 side is detected from the detection signal of the zero phase current transformer ZCT2. The current value Io0 of the current is obtained, and further, the value Ie0 of the ground line current flowing through the sheath ground wire 4 is obtained from the detection signal of the zero-phase current transformer ZCT1.
Then, the ratio K of the zero-phase current Io0 on the load 8 side to the ground line current Ie0 is obtained as K = Io0 / Ie0 (K is a scalar amount) and stored in the memory 7c.

このような準備を予め行った上で、所定の測定タイミングで測定時点の負荷8側の零相電流の値Io1と、シースアース線4に流れる接地線電流の値Ie1とを位相情報を含むベクトル量としてメモリ7cの記憶データから求める。
そして、地絡電流Igを、Ig=Io1−K*Ie1(*は積を意味する演算子、以下において同様)として求める。
更に、負荷8の対地静電容量が各相間でばらつき前記不平衡の零相電流が無視をできない程度の値になる場合には、負荷8側の零相電流の値Io1から、更に、不平衡零相電流検出部7aにて求めた上記不平衡の零相電流の値Ixを減算する。
すなわち、地絡電流Igを、Ig=Io1−K*Ie1−Ixとして求める。
After making such a preparation in advance, a vector including phase information includes the zero-phase current value Io1 on the load 8 side at the time of measurement at the predetermined measurement timing and the ground line current value Ie1 flowing through the sheath ground wire 4. The amount is obtained from the data stored in the memory 7c.
And ground fault current Ig is calculated | required as Ig = Io1-K * Ie1 (* is an operator which means a product and it is the same in the following).
Furthermore, when the ground capacitance of the load 8 varies between phases and the unbalanced zero-phase current becomes a value that cannot be ignored, the unbalanced value is further calculated from the zero-phase current value Io1 on the load 8 side. The unbalanced zero-phase current value Ix obtained by the zero-phase current detector 7a is subtracted.
That is, the ground fault current Ig is obtained as Ig = Io1-K * Ie1-Ix.

一方、零相変流器ZCT1,ZCT2の測定データの瞬時値を用いる処理では、小文字の「i」が瞬時値を表現するものとして、所定の測定タイミングで測定時点の負荷8側の零相電流の値ioと、シースアース線4に流れる接地線電流の値ieとを、夫々零相変流器ZCT1,ZCT2の検出情報(出力信号)をA/D変換することで得る。
そして、地絡電流igを、ig=io−K*ieとして求める。
尚、瞬時値によって地絡電流を求める場合でも、上述の不平衡の零相電流を考慮しても良いが、瞬時値で検出の対象とするのは、アーク地絡や間歇地絡のパルス状の地絡電流であり、非常に大きな地絡電流値となるため、上記不平衡の零相電流は特に考慮しなくても良い。
On the other hand, in the process using the instantaneous value of the measurement data of the zero-phase current transformers ZCT1 and ZCT2, the lower-case “i” represents the instantaneous value, and the zero-phase current on the load 8 side at the time of measurement at a predetermined measurement timing. And io of the ground line current flowing in the sheath ground wire 4 are obtained by A / D converting the detection information (output signals) of the zero-phase current transformers ZCT1 and ZCT2, respectively.
Then, the ground fault current ig is obtained as ig = io−K * ie.
Note that even when the ground fault current is obtained from the instantaneous value, the above-described unbalanced zero-phase current may be taken into account, but the target of detection by the instantaneous value is that of an arc ground fault or intermittent ground fault pulse shape. Therefore, the unbalanced zero-phase current need not be particularly considered.

以上のようにして、ベクトル計算で求めた地絡電流Ig、あるいは、瞬時値によって求めた地絡電流igが、夫々について設定されている警報発生用の設定値を超えると、ブザー等を備えた警報部7dから警報を出力する。   As described above, when the ground fault current Ig obtained by the vector calculation or the ground fault current Ig obtained by the instantaneous value exceeds the set value for alarm generation set for each, a buzzer or the like is provided. An alarm is output from the alarm unit 7d.

〔別実施形態〕
以下、本発明の別実施形態を列記する。
(1)上記実施の形態では、上記接地線電流を得るためにシースアース線4に流れる電流を零相変流器ZCT1にて検出しているが、他の目的で電路に零相変圧器が設置されている場合には、その零相変圧器の接地線を利用して上述の接地線電流を求めるようにしても良い。
具体的には、図3に示すように、零相変圧器105を電路2の各相の線に接続し、零相変圧器105の接地線106に取り付けた零相変流器103を接地線電流検出手段5として用いる。
この場合でも、地絡電流を求める演算処理は上記実施の形態と全く同様で、零相変流器103の出力信号を、上記実施の形態における零相変流器ZCT1の出力信号と置き換えるだけで良く、同様の演算処理で地絡電流を求めることができる。
[Another embodiment]
Hereinafter, other embodiments of the present invention will be listed.
(1) In the above embodiment, the current flowing through the sheath ground wire 4 is detected by the zero-phase current transformer ZCT1 in order to obtain the ground line current. However, for other purposes, a zero-phase transformer is provided in the electric circuit. If installed, the above-described ground line current may be obtained using the ground line of the zero-phase transformer.
Specifically, as shown in FIG. 3, the zero-phase transformer 105 is connected to each phase line of the electric circuit 2, and the zero-phase current transformer 103 attached to the ground line 106 of the zero-phase transformer 105 is connected to the ground line. Used as current detection means 5.
Even in this case, the calculation process for obtaining the ground fault current is exactly the same as in the above embodiment, and the output signal of the zero phase current transformer 103 is simply replaced with the output signal of the zero phase current transformer ZCT1 in the above embodiment. Well, the ground fault current can be obtained by the same arithmetic processing.

(2)上記実施の形態では、ベクトル計算で求めた地絡電流Ig、あるいは、瞬時値によって求めた地絡電流igが、夫々について設定されている警報発生用の設定値を超えると、ブザー等を備えた警報部7dから警報を出力する場合を例示しているが、地絡検出装置7からの警報の出力の態様としては、警報部7dからの報知ではなく、あるいは、警報部7dからの報知と並行して、別途備えた通信手段によって上述の電気設備を遠隔監視している監視センター等に通報するように構成しても良い。 (2) In the above embodiment, when the ground fault current Ig obtained by vector calculation or the ground fault current Ig obtained by an instantaneous value exceeds a set value for alarm generation set for each, a buzzer or the like Although the case where the alarm is output from the alarm unit 7d having the above is illustrated, the alarm output mode from the ground fault detection device 7 is not the notification from the alarm unit 7d, or the alarm unit 7d In parallel with the notification, a separate communication means may be used to notify the monitoring center or the like that remotely monitors the above-described electrical equipment.

1 高圧ケーブル
2 電路
3 零相電流検出手段
4 シースアース線
5 接地線電流検出手段
8 負荷
105 零相変圧器
106 接地線
GS 地絡電流検出手段
ME 記憶手段
UC 不平衡零相電流検出手段
DESCRIPTION OF SYMBOLS 1 High voltage cable 2 Electric circuit 3 Zero phase current detection means 4 Sheath earth wire 5 Ground line current detection means 8 Load 105 Zero phase transformer 106 Ground wire GS Ground fault current detection means ME Storage means UC Unbalanced zero phase current detection means

Claims (6)

非接地系の電路の電気設備において、前記電路における高圧ケーブルの負荷側の零相電流を検出する零相電流検出手段と、その零相電流検出手段の検出情報に基づいて地絡電流を検出する地絡電流検出手段とが備えられた高圧絶縁監視装置であって、
前記電路の各相の線と容量性部材を介して接続されている接地線に流れる接地線電流を検出する接地線電流検出手段が備えられ、
前記地絡電流検出手段は、前記電路に地絡が発生していない状態での前記接地線電流の値と前記負荷側の零相電流の値との比率を予め求めて記憶手段に記憶しておき、測定時点における前記負荷側の零相電流の値から、測定時点における前記接地線電流の値と前記記憶手段に記憶されている前記比率とによって求まる前記負荷側の零相電流の推定値を減算することによって地絡電流の電流値を検出するように構成されている高圧絶縁監視装置。
In electrical equipment of a non-grounded electric circuit, zero-phase current detecting means for detecting a zero-phase current on the load side of the high-voltage cable in the electric circuit, and detecting a ground fault current based on detection information of the zero-phase current detecting means A high-voltage insulation monitoring device provided with a ground fault current detection means,
A ground line current detecting means for detecting a ground line current flowing in a ground line connected via a capacitive member to each phase line of the electric circuit;
The ground fault current detection means obtains in advance a ratio between the value of the ground line current and the value of the zero-phase current on the load side in a state where no ground fault has occurred in the electric circuit, and stores the ratio in the storage means. Then, an estimated value of the load-side zero-phase current obtained from the value of the load-side zero-phase current at the time of measurement and the value stored in the storage means and the value of the ground line current at the time of measurement is obtained. A high voltage insulation monitoring device configured to detect a current value of a ground fault current by subtraction.
前記電路に接続される負荷の対地静電容量が各相間で不平衡であることによる不平衡の零相電流を検出する不平衡零相電流検出手段が備えられ、
前記地絡電流検出手段は、測定時点における前記負荷側の零相電流の値から、前記不平衡の零相電流の値を更に減算することによって地絡電流の電流値を検出するように構成されている請求項1記載の高圧絶縁監視装置。
An unbalanced zero-phase current detecting means for detecting an unbalanced zero-phase current due to an unbalanced ground capacitance of the load connected to the electric circuit between the phases;
The ground fault current detecting means is configured to detect the current value of the ground fault current by further subtracting the value of the unbalanced zero phase current from the value of the zero phase current on the load side at the time of measurement. The high voltage insulation monitoring apparatus according to claim 1.
前記地絡電流検出手段は、設定時間の間の前記零相電流検出手段の検出情報と前記接地線電流検出手段の検出情報とを記憶手段に記憶し、その記憶情報に基づいて位相情報を含むベクトル計算によって前記負荷側の零相電流の値と前記接地線電流の値とを求めるように構成されている請求項1又は2記載の高圧絶縁監視装置。   The ground fault current detection means stores detection information of the zero-phase current detection means and detection information of the ground line current detection means during a set time in a storage means, and includes phase information based on the storage information. 3. The high voltage insulation monitoring apparatus according to claim 1, wherein the load-side zero-phase current value and the ground line current value are obtained by vector calculation. 前記地絡電流検出手段は、測定時点における前記負荷側の零相電流の値と前記接地線電流の値として、測定時点の瞬時値を用いるように構成されている請求項1又は2記載の高圧絶縁監視装置。   3. The high voltage according to claim 1, wherein the ground fault current detecting unit is configured to use an instantaneous value at a measurement time as a value of a zero-phase current on the load side and a value of the ground line current at the time of measurement. Insulation monitoring device. 前記接地線は、前記高圧ケーブルのシースアース線である請求項1〜4のいずれか1項に記載の高圧絶縁監視装置。   The high-voltage insulation monitoring apparatus according to claim 1, wherein the grounding wire is a sheath grounding wire of the high-voltage cable. 前記接地線は、前記電路に接続された零相変圧器の接地線である請求項1〜4のいずれか1項に記載の高圧絶縁監視装置。   The high-voltage insulation monitoring device according to any one of claims 1 to 4, wherein the ground line is a ground line of a zero-phase transformer connected to the electric circuit.
JP2009297923A 2009-12-28 2009-12-28 High voltage insulation monitoring device Expired - Fee Related JP5418219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297923A JP5418219B2 (en) 2009-12-28 2009-12-28 High voltage insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297923A JP5418219B2 (en) 2009-12-28 2009-12-28 High voltage insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2011137718A JP2011137718A (en) 2011-07-14
JP5418219B2 true JP5418219B2 (en) 2014-02-19

Family

ID=44349280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297923A Expired - Fee Related JP5418219B2 (en) 2009-12-28 2009-12-28 High voltage insulation monitoring device

Country Status (1)

Country Link
JP (1) JP5418219B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293985B2 (en) 2018-09-12 2022-04-05 Lg Energy Solution, Ltd. Switch diagnosing apparatus and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972097B2 (en) * 2012-08-08 2016-08-17 一般財団法人関東電気保安協会 High voltage insulation monitoring device and high voltage insulation monitoring method
JP5529300B1 (en) * 2013-01-23 2014-06-25 一般財団法人 関西電気保安協会 High voltage insulation monitoring method and high voltage insulation monitoring device
JP5889992B2 (en) * 2013-10-25 2016-03-22 一般財団法人 関西電気保安協会 High voltage insulation monitoring method and high voltage insulation monitoring device
JP5996709B1 (en) * 2015-04-23 2016-09-21 一般財団法人 関西電気保安協会 High voltage insulation monitoring device
JP6757868B1 (en) * 2020-06-03 2020-09-23 日本テクノ株式会社 High-voltage CV cable insulation deterioration information acquisition device
JP7169479B1 (en) * 2022-05-23 2022-11-10 セイコーソリューションズ株式会社 interface box
JP7353002B1 (en) 2023-05-08 2023-09-29 株式会社SoBrain Measuring device, measuring method and measuring program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091272A (en) * 1983-10-24 1985-05-22 Kansai Electric Power Co Inc:The Diagnosis of deterioration in insulating properties of power cable
JP3168394B2 (en) * 1995-07-21 2001-05-21 松下電器産業株式会社 Method of detecting insulation deterioration of high voltage equipment, method of determining degree of insulation deterioration, and insulation deterioration monitoring device thereof
JP2992615B2 (en) * 1998-03-19 1999-12-20 財団法人 関西電気保安協会 Line constant measuring device and ground fault monitoring device for ungrounded electric circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293985B2 (en) 2018-09-12 2022-04-05 Lg Energy Solution, Ltd. Switch diagnosing apparatus and method

Also Published As

Publication number Publication date
JP2011137718A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5418219B2 (en) High voltage insulation monitoring device
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
RU2557017C2 (en) Fault identification and directional detection in three-phase power system
JP7006237B2 (en) A system with a protective device for the power supply system
JP2008164374A (en) Device and method for measuring leakage current
JP2012251817A (en) Insulation deterioration monitoring system
KR101144276B1 (en) Power quality monitoring system and method thereof
JP4977481B2 (en) Insulation monitoring device
JP5743296B1 (en) Leakage location exploration method and apparatus
CN110275082B (en) Grounding diagnosis method, system and device for main circuit of converter
KR20180015566A (en) Leakage current measuring method and leakage current measuring apparatus
KR100920153B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
RU112525U1 (en) AUTOMATED DIAGNOSTIC AND MONITORING SYSTEM OF POWER CABLE LINES INSULATION
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
JP2010276377A (en) Ground fault detection system for dc circuit
JP4142608B2 (en) Tree contact monitoring device for distribution lines
JP5638289B2 (en) Measuring device for earth capacitance in power system
JP6567230B1 (en) Arc ground fault detection method
US20090116600A1 (en) Phase drift compensation for sampled signals
KR101075484B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
CN112098890B (en) Alternating-current grounding fault detection method for parallel auxiliary converters of motor train unit
JP2003202357A (en) Method and apparatus for insulation monitoring
CN103701092A (en) Insulation resistance detection and ground protection device of DC electric system
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees