WO2019092850A1 - Ground fault point locating system and ground fault point locating method - Google Patents

Ground fault point locating system and ground fault point locating method Download PDF

Info

Publication number
WO2019092850A1
WO2019092850A1 PCT/JP2017/040607 JP2017040607W WO2019092850A1 WO 2019092850 A1 WO2019092850 A1 WO 2019092850A1 JP 2017040607 W JP2017040607 W JP 2017040607W WO 2019092850 A1 WO2019092850 A1 WO 2019092850A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
zero
current
sensor
surge
Prior art date
Application number
PCT/JP2017/040607
Other languages
French (fr)
Japanese (ja)
Inventor
大原 久征
松本 隆治
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2017/040607 priority Critical patent/WO2019092850A1/en
Priority to JP2018506642A priority patent/JP6327411B1/en
Publication of WO2019092850A1 publication Critical patent/WO2019092850A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the present invention relates to a ground fault localization system and a ground fault localization method.
  • Patent Document 1 is known as a system for locating a ground fault point when a ground fault occurs in a power line.
  • the system disclosed in Patent Document 1 is obtained from a plurality of slave stations including a plurality of slave stations having voltage current sensors disposed at predetermined intervals with respect to a power line and detecting zero-phase voltage and zero-phase current. And a master station that receives information indicating an accident direction and a surge waveform relating to a ground fault. Then, when a ground fault occurs on the power line, the master station first identifies an accident section based on information obtained from a plurality of slave stations, and then, a pair of slave stations in an arrangement relationship sandwiching the accident section Next, ground fault localization in multiple pairs of slave stations is performed based on data of surge arrival time and power line length detected from data of surge waveforms obtained from multiple pairs of slave stations.
  • the surge propagation speed at which the variation in position is minimized is calculated, and then the ground fault points in the plurality of slave stations are calculated based on the data of the surge propagation speed, the surge arrival time, and the power line length, and then A value obtained by averaging the ground fault points is output as a ground fault point localization position.
  • Patent Document 1 since it is necessary to select a plurality of pairs of substations sandwiching a ground fault point, there is a possibility that the equipment cost for installing a plurality of substations may become high.
  • an object of this invention is to provide the ground fault point localization system and the ground fault point localization method which held down the installation cost.
  • the main present invention for solving the problems described above is, as a ground fault localization system, comprising: a first sensor for detecting a first current and a first voltage of each phase of the power line at a first position of the power line; The first zero phase current and the first zero phase at the time of occurrence of the accident based on the detection result of the second sensor that detects the second current and the second voltage of each phase of the power line at two positions.
  • a second calculation device for calculating a second zero-phase current and a second zero-phase voltage at the time of occurrence of an accident based on a first calculation device for calculating a voltage, and a detection result of the second sensor;
  • the first information in which the current and the first zero-phase voltage are associated with the current time
  • the second information in which the second zero-phase current and the second zero-phase voltage and the current time are associated with each other
  • a third calculation device for calculating a difference, and a surge propagation velocity between the first position and the second position the second surge propagation velocity being faster than the first surge propagation velocity and the first surge propagation velocity And a distance between the first position and the second position, the surge arrival time difference, the first surge propagation speed, and the second surge propagation speed.
  • a ground fault localization device that locates a ground fault based on the information.
  • FIG. 1 is a diagram showing a ground fault localization system according to the present embodiment.
  • the ground fault point determination system will be described below as a system for locating a ground fault point when, for example, a ground fault occurs on a distribution line.
  • the distribution line has three phases, for convenience of explanation, only one line will be shown.
  • the ground fault localization system 1 is a system for locating a point (ground fault point P) at which a ground fault occurs when a ground fault occurs in a power system (for example, a 6 kV distribution system in the present embodiment).
  • the ground fault localization system 1 includes a first sensor 100, a second sensor 200, measurement terminals 300 and 400, and a ground fault localization device 500 as means for locating the ground fault P. .
  • the first sensor 100 is a sensor that detects the voltage and current at the first position of the distribution line 10. As shown in FIG. 2, the first sensor 100 includes a core 100 ⁇ / b> A disposed to surround the distribution line 10 and a coil 100 ⁇ / b> B wound around the core 100 ⁇ / b> A.
  • the second sensor 200 is a sensor that detects the voltage and current at the second position of the distribution line 10. As shown in FIG. 2, the second sensor 200 also includes a core 200 ⁇ / b> A disposed to surround the distribution line 10 and a coil 200 ⁇ / b> B wound around the core 200 ⁇ / b> A. Details of the first sensor 100 and the second sensor 200 will be described later.
  • the first position is, for example, a position where the first sensor 100 surrounds the distribution line 10 supported by the utility pole 20 erected at the predetermined position.
  • the second position is a position where the second sensor 200 surrounds the distribution line 10 supported by the utility pole 30 erected at a position separated by a predetermined distance from the utility pole 20.
  • the installation position of the measurement terminal 300 is the first position.
  • the installation position can be regarded as the second position.
  • the first sensor 100 is housed in a storage box 40 of a high-speed automatic switch mounted on a metal arm on the utility pole 20.
  • the second sensor 200 is housed in a storage box 50 of a high-speed automatic switch mounted on a metal arm on the utility pole 30.
  • Measurement terminal 300 calculates the zero-phase current and zero-phase voltage from the values of the current and voltage detected by first sensor 100, and associates the information with the current time information acquired from GPS satellite 600, via communication line 700. It transmits to ground fault point localization apparatus 500.
  • the measurement terminal 400 calculates the zero-phase current or zero-phase voltage from the values of the current or voltage detected by the second sensor 200, associates the zero-phase current or zero-phase voltage with the information of the current time acquired from the GPS satellite 600, It transmits to the ground fault localization apparatus 500 via 700.
  • the ground fault localization apparatus 500 calculates the surge arrival time to the first position from the information acquired from the measurement terminal 300, and further calculates the surge arrival time to the second position from the information acquired from the measurement terminal 400. Then, the surge arrival time difference between the first position and the second position is calculated.
  • the ground fault localization apparatus 500 has a storage device 800 that stores the actual value of the surge propagation speed calculated in the past.
  • the surge propagation speed can be determined, for example, by a known method as disclosed in Japanese Patent No. 4039576.
  • the storage device 800 stores information on the plurality of surge propagation speeds obtained in this manner as actual values.
  • the ground fault localization apparatus 500 measures the surge arrival time difference between the first position and the second position, the distance between the first position and the second position, and the surge propagation stored in the storage device 800.
  • the ground fault point P is located based on the information indicating the maximum and minimum surge propagation speeds among the speeds.
  • the core 100A is formed such that the magnetic flux density B of the magnetic flux generated when the ground fault current flows in the distribution line 10 is equal to or less than a predetermined value.
  • the range of the ground fault current detectable by the first sensor 100 can be expanded. For example, even if the grounding method of the transformer of the 6 kV distribution system is either the resistive grounding method or the non-grounding method, it is possible to reliably detect the ground fault current.
  • FIG. 3 is a graph showing the relationship between the relative magnetic permeability ⁇ r of the core 100A and the magnetic flux density B of the magnetic flux generated in the core 100A.
  • FIG. 3 exemplifies a characteristic curve in the case where the winding core 100A is a permalloy core, it is understood that the value of the relative magnetic permeability ⁇ r largely differs depending on the magnetic flux density B.
  • the magnetic flux density B in a range in which the fluctuation of the relative permeability ⁇ r becomes as small as possible is generated in the winding core 100A.
  • the relationship between the change in relative permeability ⁇ r and the change in magnetic flux density B is linear, that is, the rate of increase in magnetic flux density B and the rate of increase in relative permeability ⁇ r when the ground fault current flows through the distribution line 10 coincide. If related, the change of the relative magnetic permeability ⁇ r is stabilized against the change of the magnetic flux density B. Then, the range of the magnetic flux density B in which the relative magnetic permeability ⁇ r is stabilized is an area where the variation in measurement by the first sensor 100 installed in each phase of the distribution line 10 is small.
  • the range in which the relative magnetic permeability ⁇ r linearly increases with the increase in the magnetic flux density B is a range in which the magnetic flux density B is 1000 gausses or less. That is, it is understood that forming the winding core 100A in the range where the magnetic flux density B is 1000 gausses or less is desirable in terms of suppressing the variation of the measurement by the first sensor 100 and performing accurate measurement.
  • the first sensor 100 is formed such that the magnetic flux density B is an appropriate value within the range of 1000 gauss or less.
  • the magnetic flux density B of the magnetic flux generated in the core 100A is proportional to the magnetic flux but inversely proportional to the cross-sectional area S and the length (circumferential length) L of the core 100A. Therefore, the core 100A is formed to have a cross-sectional area S and a length L such that the magnetic flux density B of the magnetic flux generated in the core 100A is suppressed to 1000 gausses or less when the ground current is generated. Just do it.
  • the number of turns of the coil 100B according to the present embodiment is set such that the magnetic flux density B is, for example, 1000 gauss or less. As a result, even a weak ground fault current can be detected by increasing the level of the secondary current, so that the detectable range of the ground fault current can be expanded.
  • the second sensor 200 is also configured in the same manner as the first sensor 100, so the description of the second sensor 200 is omitted.
  • FIG. 5 is a view showing an installation example of the ground fault localization system according to the present embodiment.
  • FIG. 6 is a figure which shows the example of another installation of the ground fault point localization system which concerns on this embodiment.
  • a storage box 40 (50) for a high-speed automatic switch is installed in an arm metal mounted in a horizontal direction with respect to the electric pole 20 (30).
  • the first sensor 100 (second sensor 200) is installed.
  • the measurement terminal 300 (400) is installed in the other arm metal attached to the horizontal direction with respect to the telephone pole 20 (30).
  • the remote control station 900 (1000) is attached to the other arm metal attached in the horizontal direction with respect to the electric pole 20 (30).
  • the first sensor 100 (second sensor 200) and the measurement terminal 300 (400) are connected by the communication line 1100 (1200) for signal transmission, the measurement terminal 300 (400) and the ground fault localization device 500 are , And is connected by a communication line 1300 (1400) for the remote control station 900 (1000).
  • FIG. 7 is a view for explaining the positioning method of the ground fault localization system according to the present embodiment.
  • the position (first position) of the measurement terminal 300 is G1
  • the position (second position) of the measurement terminal 400 is G2
  • the distance between the measurement terminal 300 and the measurement terminal 400 is 2941 m, for example.
  • the ground fault localization apparatus 500 calculates the surge arrival time TA to the measuring terminal 300 based on the information obtained from the measuring terminal 300, and the surge to the measuring terminal 400 based on the information obtained from the measuring terminal 400.
  • the ground fault localization apparatus 500 indicates the surge propagation velocity VMIN indicating the minimum value and the maximum value from among a plurality of data representing the surge propagation velocity as the actual value stored in advance in the storage device 800. Read out two values of the surge propagation velocity VMAX.
  • the ground fault localization apparatus 500 uses the calculation formula (1) to determine the ground when the surge propagation speed is VMIN.
  • An operation is performed to locate the junction point P1 and the ground junction point P2 when the surge propagation velocity is VMAX.
  • VMAX 200 m / ⁇ sec
  • VMIN 120 m / ⁇ sec.
  • These surge propagation speeds VMAX and VMIN are highly reliable values because they are past actual values.
  • An actual ground fault point P is an example where it is a point of 504 m from the measuring terminal 300, for example.
  • the ground fault point P1 to be measured is 630 m from the measuring terminal 300, and the positioning error is 126 m.
  • the ground fault point P2 to be measured is 70 m from the measuring terminal 300, and the positioning error is 434 m.
  • the positioning error of the ground fault point is about several hundred meters even if the maximum value of the surge propagation speed is used. It becomes possible to hold down. This makes it possible to detect the cause of the blackout due to the ground fault at an early stage and solve it at an early stage.
  • the ground fault localization system 1 includes the first sensor 100 that detects the current and voltage of each phase of the distribution line 10 at the first position G1 of the distribution line 10, and the distribution line At the second position G2 of 10, based on the detection result of the second sensor 200 for detecting the current and voltage of each phase of the distribution line 10 and the first sensor 100, the first zero-phase current and Based on the detection result of the measurement terminal 300 (first calculation device) that calculates the zero phase voltage and the detection result of the second sensor 200, the measurement terminal 400 that calculates the second zero phase current and the second zero phase voltage when an accident occurs Second calculation device), first information in which the first zero-phase current and the first zero-phase voltage are associated with the current time, and the second zero-phase current and the second zero-phase voltage and the current time are associated The first position G1 and the second position G2 based on the second information Ground propagation point localization apparatus 500 (third calculation apparatus) for calculating the surge arrival time difference TB-TA between these, and the surge
  • ground fault point localization system 1 it becomes possible to provide a system with a reduced installation cost as a permanent installation type system.
  • the value obtained as the actual value as the surge propagation speed is read out from the storage device to locate the ground fault point, it becomes possible to locate the ground fault point by a simple calculation.
  • the first surge propagation velocity is the minimum value VMIN among the plurality of actual values calculated in the past
  • the second surge propagation velocity is the largest among the plurality of actual values calculated in the past. It is a value VMAX.
  • the first sensor 100 is housed in the storage box 40 of the high-speed automatic switch installed at the first position G1, and the second sensor 200 is installed at the second position G2. It is stored in a storage box 50 on the wall.
  • the first sensor 100 and the second sensor 200 are protected by the storage boxes 40 and 50, respectively, they can be protected from deterioration caused by external factors, and the ground fault point can be maintained for a long time. It will be possible to continue accurate positioning of
  • the first sensor 100 detects an annular core 100A disposed so as to surround the distribution line 10 at the first position G1, and a ground fault current generated when the distribution line 10 has a ground fault.
  • the second sensor 200 includes an annular winding core 200A disposed to surround the distribution line 10 at the second position G2, and the distribution line 10 And a coil 200B wound around a core 200A to detect a ground fault current generated when a ground fault occurs, wherein the core 100A, 200A is a magnetic flux generated when the ground fault current flows in the distribution line 10
  • the magnetic flux density B is formed to be, for example, 1000 gausses or less based on the ratio of the magnetic permeability ⁇ r to the magnetic flux density B.
  • the magnetic flux density B of 1000 gausses or less is a value such that the ratio of the change of the magnetic permeability to the change of the magnetic flux density B is constant. Therefore, the variation in the measurement values of the first sensor 100 and the second sensor 200 can be reduced, and the ground fault current can be accurately measured in a wide band. That is, the accuracy of the ground fault point P calculated and positioned using the surge propagation velocity which is the actual value with respect to the information of the two points of the first position G1 and the second position G2 becomes high.
  • the cross-sectional area S and the length L of the winding cores 100A and 200A may be set as values inversely proportional to the magnetic flux density B in order to increase the accuracy of the determination of the ground fault point P. .
  • Ground fault point determination system 10 Distribution line 20, 30 Power pole 40, 50 Storage box 100 1st sensor 100A Core 100B Coil 200 2nd sensor 200A Core 200B Coil 300, 400 Measurement terminal 500 Ground point localization device 600 GPS satellite 700 communication line 800 storage unit 900, 1000 distance control station 1100, 1200, 1300, 1400 communication line

Abstract

This ground fault point locating system comprises: a first sensor that detects first currents and first voltages for each phase of a power line at a first position on the power line, a second sensor that detects second currents and second voltages for each phase of the power line at a second position on the power line, a first calculation device for calculating a first zero-phase current and first zero-phase voltage at the time of a fault on the basis of the detection results of the first sensor, a second calculation device for calculating a second zero-phase current and second zero-phase voltage at the time of the fault on the basis of the detection results of the second sensor, a third calculation device for calculating the surge arrival time difference between the first position and second position on the basis of first information associating the first zero-phase current and first zero-phase voltage with the current time and second information associating the second zero-phase current and second zero-phase voltage with the current time, a storage device in which information indicating a first surge propagation speed from the first position to the second position and a second surge propagation speed from the first position to the second position that is faster than the first surge propagation speed are stored beforehand, and a ground fault point locating device for locating the ground fault on the basis of information indicating the distance between the first position and the second position, the surge arrival time difference, the first surge propagation speed, and the second surge propagation speed.

Description

地絡点標定システム、地絡点標定方法Earth fault localization system, earth fault localization method
 本発明は、地絡点標定システム、地絡点標定方法に関する。 The present invention relates to a ground fault localization system and a ground fault localization method.
 電力線に地絡事故が発生した場合の地絡点を標定するシステムとして、例えば以下の特許文献1が知られている。 For example, Patent Document 1 below is known as a system for locating a ground fault point when a ground fault occurs in a power line.
 特許文献1に開示されたシステムは、電力線に対して所定の間隔を介して配置され、零相電圧及び零相電流を検出する電圧電流センサを有する複数の子局と、複数の子局から得られる地絡事故に係る事故方向やサージ波形を示す情報を受け取る親局と、を含んで構成されている。そして、電力線に地絡事故が発生した場合、親局は、先ず、複数の子局から得られる情報に基づいて事故区間を特定し、次に、事故区間を挟む配置関係にある一対の子局の組合せを複数対選定し、次に、複数対の子局から得られるサージ波形のデータから検出されるサージ到達時間と電力線路長のデータに基づいて、複数対の子局における地絡点標定位置のばらつきが最小になるサージ伝搬速度を算出し、次に、サージ伝搬速度とサージ到達時間と電力線路長のデータに基づいて、複数対の子局における地絡点を算出し、次に、地絡点に対して平均処理を施した値を地絡点標定位置として出力している。 The system disclosed in Patent Document 1 is obtained from a plurality of slave stations including a plurality of slave stations having voltage current sensors disposed at predetermined intervals with respect to a power line and detecting zero-phase voltage and zero-phase current. And a master station that receives information indicating an accident direction and a surge waveform relating to a ground fault. Then, when a ground fault occurs on the power line, the master station first identifies an accident section based on information obtained from a plurality of slave stations, and then, a pair of slave stations in an arrangement relationship sandwiching the accident section Next, ground fault localization in multiple pairs of slave stations is performed based on data of surge arrival time and power line length detected from data of surge waveforms obtained from multiple pairs of slave stations. The surge propagation speed at which the variation in position is minimized is calculated, and then the ground fault points in the plurality of slave stations are calculated based on the data of the surge propagation speed, the surge arrival time, and the power line length, and then A value obtained by averaging the ground fault points is output as a ground fault point localization position.
特許第4039576号公報Patent No. 4039576
 しかし、上記の特許文献1の場合、地絡点を挟む複数対の子局を選定する必要があるため、複数の子局を設置するための設備コストが高くなる虞があった。 However, in the case of Patent Document 1 described above, since it is necessary to select a plurality of pairs of substations sandwiching a ground fault point, there is a possibility that the equipment cost for installing a plurality of substations may become high.
そこで、本発明は、設備コストを抑えた地絡点標定システム及び地絡点標定方法を提供することを目的とする。 Then, an object of this invention is to provide the ground fault point localization system and the ground fault point localization method which held down the installation cost.
 前述した課題を解決する主たる本発明は、地絡点標定システムとして、電力線の第1位置において、前記電力線の各相の第1電流及び第1電圧を検出する第1センサと、前記電力線の第2位置において、前記電力線の各相の第2電流及び第2電圧を検出する第2センサと、前記第1センサの検出結果に基づいて、事故発生時の第1零相電流及び第1零相電圧を算出する第1算出装置と、前記第2センサの検出結果に基づいて、事故発生時の第2零相電流及び第2零相電圧を算出する第2算出装置と、前記第1零相電流及び前記第1零相電圧と現在時刻とが対応付けられた第1情報と、前記第2零相電流及び前記第2零相電圧と現在時刻とが対応付けられた第2情報と、に基づいて、前記第1位置と前記第2位置との間におけるサージ到達時間差を算出する第3算出装置と、前記第1位置と前記第2位置との間におけるサージ伝搬速度であって、第1サージ伝搬速度と前記第1サージ伝搬速度よりも速い第2サージ伝搬速度とを示す情報が予め記憶される記憶装置と、前記第1位置と前記第2位置との間の距離、前記サージ到達時間差、前記第1サージ伝搬速度、前記第2サージ伝搬速度のそれぞれを示す情報に基づいて、地絡点を標定する地絡点標定装置と、を備える。 The main present invention for solving the problems described above is, as a ground fault localization system, comprising: a first sensor for detecting a first current and a first voltage of each phase of the power line at a first position of the power line; The first zero phase current and the first zero phase at the time of occurrence of the accident based on the detection result of the second sensor that detects the second current and the second voltage of each phase of the power line at two positions. A second calculation device for calculating a second zero-phase current and a second zero-phase voltage at the time of occurrence of an accident based on a first calculation device for calculating a voltage, and a detection result of the second sensor; The first information in which the current and the first zero-phase voltage are associated with the current time, and the second information in which the second zero-phase current and the second zero-phase voltage and the current time are associated with each other At the time of surge arrival between the first position and the second position based on A third calculation device for calculating a difference, and a surge propagation velocity between the first position and the second position, the second surge propagation velocity being faster than the first surge propagation velocity and the first surge propagation velocity And a distance between the first position and the second position, the surge arrival time difference, the first surge propagation speed, and the second surge propagation speed. And a ground fault localization device that locates a ground fault based on the information.
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 Other features of the present invention will become apparent from the accompanying drawings and the description of the present specification.
 本発明によれば、設備コストを抑えるとともに一定の標定精度を確保できる地絡点標定システム及び地絡点標定方法を提供することが可能になる。 According to the present invention, it is possible to provide a ground fault localization system and a ground fault localization method capable of reducing equipment cost and securing a certain level of positioning accuracy.
本実施形態に係る地絡点標定システムを示す図である。It is a figure showing a ground fault point locating system concerning this embodiment. 本実施形態に係る第1及び第2センサを示す図である。It is a figure showing the 1st and 2nd sensor concerning this embodiment. 本実施形態に係る第1及び第2センサの巻芯の特性を示す図である。It is a figure which shows the characteristic of the core of the 1st and 2nd sensor concerning this embodiment. 本実施形態に係る第1及び第2センサの巻芯の特性の一部を示す図である。It is a figure which shows a part of characteristic of the winding core of the 1st and 2nd sensor concerning this embodiment. 本実施形態に係る地絡点標定システムの設置例を示す図である。It is a figure which shows the example of installation of the ground fault point localization system which concerns on this embodiment. 本実施形態に係る地絡点標定システムの他の設置例を示す図である。It is a figure which shows the other example of installation of the ground fault point localization system which concerns on this embodiment. 本実施形態に係る地絡点標定方法を説明するための図である。It is a figure for demonstrating the ground fault point localization method which concerns on this embodiment.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 At least the following matters will be made clear by the present specification and the description of the accompanying drawings.
===地絡点標定システム===
 図1は、本実施形態に係る地絡点標定システムを示す図である。尚、本実施形態において、地絡点標定システムは、例えば配電線に地絡事故が発生した場合の地絡点を標定するシステムであることとして、以下説明する。又、配電線は3相であるが、説明の便宜上、1本のみを示すこととする。
=== Ground fault localization system ===
FIG. 1 is a diagram showing a ground fault localization system according to the present embodiment. In the present embodiment, the ground fault point determination system will be described below as a system for locating a ground fault point when, for example, a ground fault occurs on a distribution line. In addition, although the distribution line has three phases, for convenience of explanation, only one line will be shown.
 地絡点標定システム1は、電力系統(本実施形態では例えば6kV配電系統)において地絡が発生した場合に、地絡が発生した箇所(地絡点P)を標定するためのシステムである。 The ground fault localization system 1 is a system for locating a point (ground fault point P) at which a ground fault occurs when a ground fault occurs in a power system (for example, a 6 kV distribution system in the present embodiment).
 地絡点標定システム1は、地絡点Pの標定を行うための手段として、第1センサ100、第2センサ200、計測端末300、400、地絡点標定装置500を含んで構成されている。 The ground fault localization system 1 includes a first sensor 100, a second sensor 200, measurement terminals 300 and 400, and a ground fault localization device 500 as means for locating the ground fault P. .
 第1センサ100は、配電線10の第1位置における電圧と電流を検知するセンサである。第1センサ100は、図2に示すように、配電線10を取り囲むように配置される巻芯100Aと、巻芯100Aに巻回されるコイル100Bと、を含んで構成されている。又、第2センサ200は、配電線10の第2位置における電圧と電流を検知するセンサである。第2センサ200も、図2に示すように、配電線10を取り囲むように配置される巻芯200Aと、巻芯200Aに巻回されるコイル200Bと、を含んで構成されている。第1センサ100及び第2センサ200の詳細については後述する。 The first sensor 100 is a sensor that detects the voltage and current at the first position of the distribution line 10. As shown in FIG. 2, the first sensor 100 includes a core 100 </ b> A disposed to surround the distribution line 10 and a coil 100 </ b> B wound around the core 100 </ b> A. The second sensor 200 is a sensor that detects the voltage and current at the second position of the distribution line 10. As shown in FIG. 2, the second sensor 200 also includes a core 200 </ b> A disposed to surround the distribution line 10 and a coil 200 </ b> B wound around the core 200 </ b> A. Details of the first sensor 100 and the second sensor 200 will be described later.
 ここで、第1位置とは、例えば、所定の位置に立設されている電柱20に支持された配電線10を第1センサ100が取り囲む位置であることとする。又、第2位置とは、電柱20から所定の距離だけ離れた位置に立設されている電柱30に支持された配電線10を第2センサ200が取り囲む位置である。尚、計測端末300は第1センサ100の近傍に設置され、計測端末400は第2センサ200の近傍に設置されることとなるので、計測端末300の設置位置を第1位置、計測端末400の設置位置を第2位置とみなすことができる。 Here, the first position is, for example, a position where the first sensor 100 surrounds the distribution line 10 supported by the utility pole 20 erected at the predetermined position. Further, the second position is a position where the second sensor 200 surrounds the distribution line 10 supported by the utility pole 30 erected at a position separated by a predetermined distance from the utility pole 20. In addition, since the measurement terminal 300 is installed near the first sensor 100 and the measurement terminal 400 is installed near the second sensor 200, the installation position of the measurement terminal 300 is the first position. The installation position can be regarded as the second position.
 第1センサ100は、電柱20上の腕金に取り付けられた高速自動開閉器の収納箱40の中に収容されている。第2センサ200は、電柱30上の腕金に取り付けられた高速自動開閉器の収納箱50の中に収容されている。 The first sensor 100 is housed in a storage box 40 of a high-speed automatic switch mounted on a metal arm on the utility pole 20. The second sensor 200 is housed in a storage box 50 of a high-speed automatic switch mounted on a metal arm on the utility pole 30.
 計測端末300は、第1センサ100によって検出された電流や電圧の値から零相電流や零相電圧を算出し、GPS衛星600から取得する現在時刻の情報と対応付けて、通信線700を介して地絡点標定装置500に送信する。同様に、計測端末400は、第2センサ200によって検出された電流や電圧の値から零相電流や零相電圧を算出し、GPS衛星600から取得する現在時刻の情報と対応付けて、通信線700を介して地絡点標定装置500に送信する。 Measurement terminal 300 calculates the zero-phase current and zero-phase voltage from the values of the current and voltage detected by first sensor 100, and associates the information with the current time information acquired from GPS satellite 600, via communication line 700. It transmits to ground fault point localization apparatus 500. Similarly, the measurement terminal 400 calculates the zero-phase current or zero-phase voltage from the values of the current or voltage detected by the second sensor 200, associates the zero-phase current or zero-phase voltage with the information of the current time acquired from the GPS satellite 600, It transmits to the ground fault localization apparatus 500 via 700.
 地絡点標定装置500は、計測端末300から取得する情報から、第1位置へのサージ到達時間を算出し、更に、計測端末400から取得する情報から、第2位置へのサージ到達時間を算出し、第1位置と第2位置との間におけるサージ到達時間差を算出する。又、地絡点標定装置500は、過去に算出されたサージ伝搬速度の実績値を格納する記憶装置800を有している。このサージ伝搬速度は、例えば、特許第4039576号公報に開示されているような周知の方法によって求めることができる。記憶装置800には、このように求められた複数のサージ伝搬速度の情報が実績値として格納されている。そして、地絡点標定装置500は、第1位置と第2位置との間におけるサージ到達時間差と、第1位置と第2位置との間の距離と、記憶装置800に格納されているサージ伝搬速度のうち最大と最小のサージ伝搬速度と、を示す情報に基づいて、地絡点Pの標定を行う。 The ground fault localization apparatus 500 calculates the surge arrival time to the first position from the information acquired from the measurement terminal 300, and further calculates the surge arrival time to the second position from the information acquired from the measurement terminal 400. Then, the surge arrival time difference between the first position and the second position is calculated. In addition, the ground fault localization apparatus 500 has a storage device 800 that stores the actual value of the surge propagation speed calculated in the past. The surge propagation speed can be determined, for example, by a known method as disclosed in Japanese Patent No. 4039576. The storage device 800 stores information on the plurality of surge propagation speeds obtained in this manner as actual values. Then, the ground fault localization apparatus 500 measures the surge arrival time difference between the first position and the second position, the distance between the first position and the second position, and the surge propagation stored in the storage device 800. The ground fault point P is located based on the information indicating the maximum and minimum surge propagation speeds among the speeds.
===第1及び第2センサ===
 第1センサ100の場合、配電線10に地絡電流が流れると、巻芯100Aの磁束が変化し、それに伴って、コイル100Bを流れる電流が変化する。コイル100Bを流れる電流を不図示の検出器により検出することにより、配電線10を流れる地絡電流を検出することができる。
=== 1st and 2nd sensors ===
In the case of the first sensor 100, when a ground fault current flows in the distribution line 10, the magnetic flux of the core 100A changes, and the current flowing through the coil 100B changes accordingly. The ground fault current flowing through the distribution line 10 can be detected by detecting the current flowing through the coil 100B with a detector (not shown).
 ここで、巻芯100Aは、配電線10に地絡電流が流れたときに生じる磁束の磁束密度Bが所定値以下となるように形成されている。 Here, the core 100A is formed such that the magnetic flux density B of the magnetic flux generated when the ground fault current flows in the distribution line 10 is equal to or less than a predetermined value.
 巻芯100Aに生じる磁束の磁束密度Bがなるべく小さくなるように第1センサ100を形成することにより、第1センサ100が検出可能な地絡電流のレンジを広げることができる。例えば、6kV配電系統の変圧器の接地方式が抵抗接地方式や非接地方式の何れであったとしても、地絡電流を確実に検出することができるようになる。 By forming the first sensor 100 so that the magnetic flux density B of the magnetic flux generated in the winding core 100A becomes as small as possible, the range of the ground fault current detectable by the first sensor 100 can be expanded. For example, even if the grounding method of the transformer of the 6 kV distribution system is either the resistive grounding method or the non-grounding method, it is possible to reliably detect the ground fault current.
 巻芯100Aに生じる磁束密度Bが所定値以下となるように小さくすることにより、配電線10の各相に装着される第1センサ100の計測値のばらつきを小さくすることができ、地絡電流を広帯域に計測することができるようになる。 By reducing the magnetic flux density B generated in the winding core 100A to be equal to or less than a predetermined value, it is possible to reduce the variation in the measured value of the first sensor 100 mounted on each phase of the distribution line 10 Can be measured in a wide band.
 図3は、巻芯100Aの比透磁率μrと、巻芯100Aに生じる磁束の磁束密度Bとの関係を示すグラフである。図3では、巻芯100Aがパーマロイコアである場合の特性曲線を例示するが、比透磁率μrの値は、磁束密度Bによって大きく異なることが分かる。 FIG. 3 is a graph showing the relationship between the relative magnetic permeability μr of the core 100A and the magnetic flux density B of the magnetic flux generated in the core 100A. Although FIG. 3 exemplifies a characteristic curve in the case where the winding core 100A is a permalloy core, it is understood that the value of the relative magnetic permeability μr largely differs depending on the magnetic flux density B.
 このため、配電線10における各相での第1センサ100Aの特性のばらつきを抑えるためには、できるだけ比透磁率μrの変動が小さくなるような範囲の磁束密度Bが巻芯100Aに発生するようにする必要がある。 For this reason, in order to suppress the variation in the characteristics of the first sensor 100A in each phase in the distribution line 10, the magnetic flux density B in a range in which the fluctuation of the relative permeability μr becomes as small as possible is generated in the winding core 100A. You need to
 図3を参照すると、磁束密度Bが小さいほど、比透磁率μrの変動が小さいことが分かる。そこで、磁束密度Bが3000ガウス以下の場合の磁束密度Bと比透磁率μrとの関係を拡大して図4に示す。 Referring to FIG. 3, it can be seen that the smaller the magnetic flux density B, the smaller the fluctuation of the relative magnetic permeability μr. Therefore, the relationship between the magnetic flux density B and the relative magnetic permeability μr when the magnetic flux density B is 3000 gausses or less is shown enlarged in FIG.
 比透磁率μrの変化と磁束密度Bの変化とが線形の関係、つまり、配電線10に地絡電流が流れたときの磁束密度Bの増加率と比透磁率μrの増加率とが一致する関係にあれば、磁束密度Bの変化に対して比透磁率μrの変化が安定する。そして、この比透磁率μrが安定する磁束密度Bの範囲が配電線10の各相に設置される第1センサ100による計測のばらつきが少ない領域となる。 The relationship between the change in relative permeability μr and the change in magnetic flux density B is linear, that is, the rate of increase in magnetic flux density B and the rate of increase in relative permeability μr when the ground fault current flows through the distribution line 10 coincide. If related, the change of the relative magnetic permeability μr is stabilized against the change of the magnetic flux density B. Then, the range of the magnetic flux density B in which the relative magnetic permeability μr is stabilized is an area where the variation in measurement by the first sensor 100 installed in each phase of the distribution line 10 is small.
 図4を参照すると、磁束密度Bの増加に伴って比透磁率μrがリニアに増加する範囲は、磁束密度Bが1000ガウス以下となる範囲となる。つまり、磁束密度Bが1000ガウス以下の範囲内で巻芯100Aを形成することが、第1センサ100による計測のばらつきを抑えるとともに正確な計測を行う点において望ましいことが分かる。本実施形態において、第1センサ100は、磁束密度Bが1000ガウス以下の範囲内の適宜な値となるように形成されることとする。 Referring to FIG. 4, the range in which the relative magnetic permeability μr linearly increases with the increase in the magnetic flux density B is a range in which the magnetic flux density B is 1000 gausses or less. That is, it is understood that forming the winding core 100A in the range where the magnetic flux density B is 1000 gausses or less is desirable in terms of suppressing the variation of the measurement by the first sensor 100 and performing accurate measurement. In the present embodiment, the first sensor 100 is formed such that the magnetic flux density B is an appropriate value within the range of 1000 gauss or less.
 又、巻芯100Aに生じる磁束の磁束密度Bは、磁束に比例するが、巻芯100Aの断面積S及び長さ(円周長)Lに反比例する。そのため、巻芯100Aは、地絡電流が発生した場合に巻芯100Aに生じる磁束の磁束密度Bが例えば1000ガウス以下に抑制されるような断面積S及び長さLを有するように形成されればよい。 Further, the magnetic flux density B of the magnetic flux generated in the core 100A is proportional to the magnetic flux but inversely proportional to the cross-sectional area S and the length (circumferential length) L of the core 100A. Therefore, the core 100A is formed to have a cross-sectional area S and a length L such that the magnetic flux density B of the magnetic flux generated in the core 100A is suppressed to 1000 gausses or less when the ground current is generated. Just do it.
 又、配電線10が地絡したときにコイル100Bに流れる電流は、コイル100Bの巻回数に反比例する。そのため、本実施形態に係るコイル100Bは、磁束密度Bが例えば1000ガウス以下となるような巻回数に定められる。これによって、微弱な地絡電流であっても、2次電流のレベルが増加することで検出することが可能となるため、地絡電流の検出可能なレンジを広げることが可能になる。 Further, when the distribution line 10 is grounded, the current flowing through the coil 100B is inversely proportional to the number of turns of the coil 100B. Therefore, the number of turns of the coil 100B according to the present embodiment is set such that the magnetic flux density B is, for example, 1000 gauss or less. As a result, even a weak ground fault current can be detected by increasing the level of the secondary current, so that the detectable range of the ground fault current can be expanded.
 尚、第2センサ200についても、第1センサ100と同様に構成されることとなるので、第2センサ200についての説明は省略する。 The second sensor 200 is also configured in the same manner as the first sensor 100, so the description of the second sensor 200 is omitted.
===地絡点標定システムの設置例===
 図5は、本実施形態に係る地絡点標定システムの設置例を示す図である。又、図6は、本実施形態に係る地絡点標定システムの他の設置例を示す図である。
=== Example of installation of ground fault localization system === =
FIG. 5 is a view showing an installation example of the ground fault localization system according to the present embodiment. Moreover, FIG. 6 is a figure which shows the example of another installation of the ground fault point localization system which concerns on this embodiment.
 図5において、電柱20(30)に対して水平方向に取り付けられた腕金には、高速自動開閉器の収納箱40(50)が設置されており、この収納箱40(50)の中に第1センサ100(第2センサ200)が設置されている。又、電柱20(30)に対して水平方向に取り付けられた他の腕金には、計測端末300(400)が設置されている。又、電柱20(30)に対して水平方向に取り付けられた他の腕金には、遠制子局900(1000)が取り付けられている。第1センサ100(第2センサ200)と計測端末300(400)は、信号送信用の通信線1100(1200)で接続されるが、計測端末300(400)と地絡点標定装置500とは、遠制子局900(1000)のための通信線1300(1400)によって接続されている。 In FIG. 5, a storage box 40 (50) for a high-speed automatic switch is installed in an arm metal mounted in a horizontal direction with respect to the electric pole 20 (30). In the storage box 40 (50) The first sensor 100 (second sensor 200) is installed. Moreover, the measurement terminal 300 (400) is installed in the other arm metal attached to the horizontal direction with respect to the telephone pole 20 (30). Further, the remote control station 900 (1000) is attached to the other arm metal attached in the horizontal direction with respect to the electric pole 20 (30). Although the first sensor 100 (second sensor 200) and the measurement terminal 300 (400) are connected by the communication line 1100 (1200) for signal transmission, the measurement terminal 300 (400) and the ground fault localization device 500 are , And is connected by a communication line 1300 (1400) for the remote control station 900 (1000).
 尚、図5の態様に限定されることなく、図6に示すように、計測端末300(400)と地絡点標定装置500との間を、無線通信によって接続してもよい。 In addition, it is not limited to the aspect of FIG. 5, As shown in FIG. 6, you may connect between measurement terminal 300 (400) and the ground fault point localization apparatus 500 by wireless communication.
===地絡点の標定方法===
 図7は、本実施形態に係る地絡点標定システムの標定方法を説明するための図である。
=== How to locate the ground point ====
FIG. 7 is a view for explaining the positioning method of the ground fault localization system according to the present embodiment.
 計測端末300の位置(第1位置)をG1、計測端末400の位置(第2位置)をG2とし、計測端末300と計測端末400との間の距離を例えば2941mとする。 The position (first position) of the measurement terminal 300 is G1, the position (second position) of the measurement terminal 400 is G2, and the distance between the measurement terminal 300 and the measurement terminal 400 is 2941 m, for example.
 先ず、計測端末300と計測端末400との間のどこかの位置において地絡事故が発生したとする。このとき、地絡点標定装置500は、計測端末300から得られる情報に基づいて計測端末300までのサージ到達時間TAを算出し、計測端末400から得られる情報に基づいて計測端末400までのサージ到達時間TBを算出し、更に、これらのサージ到達時間TA、TBから、計測端末300、400間におけるサージ到達時間差TB-TAを算出する。例えば、サージ到達時間TA=6.09999545秒、サージ到達時間TB=6.10000945秒とすると、サージ到達時間差TB-TA=14μ秒となる。 First, it is assumed that a ground fault has occurred at a position somewhere between the measurement terminal 300 and the measurement terminal 400. At this time, the ground fault localization apparatus 500 calculates the surge arrival time TA to the measuring terminal 300 based on the information obtained from the measuring terminal 300, and the surge to the measuring terminal 400 based on the information obtained from the measuring terminal 400. The arrival time TB is calculated, and the surge arrival time difference TB-TA between the measurement terminals 300 and 400 is calculated from the surge arrival times TA and TB. For example, assuming that the surge arrival time TA = 6.09999545 seconds and the surge arrival time TB = 6.10,000945 seconds, the surge arrival time difference TB-TA = 14 μsec.
 次に、地絡点標定装置500は、記憶装置800に予め格納されている実績値としてのサージ伝搬速度を表す複数のデータの中から、最小値を示すサージ伝搬速度VMINと、最大値を示すサージ伝搬速度VMAXの2つの値を読み出す。 Next, the ground fault localization apparatus 500 indicates the surge propagation velocity VMIN indicating the minimum value and the maximum value from among a plurality of data representing the surge propagation velocity as the actual value stored in advance in the storage device 800. Read out two values of the surge propagation velocity VMAX.
 地絡点Pを標定するには、以下の算出式(1)が用いられる。 In order to determine the ground fault point P, the following calculation formula (1) is used.
 P=(M/2)-(Δt・v/2)・・・(1)
 但し、M:計測端末300,400間の距離
    Δt:サージ到達時間差
    v:サージ伝搬速度
 そこで、地絡点標定装置500は、算出式(1)を用いて、サージ伝搬速度がVMINのときの地絡点P1と、サージ伝搬速度がVMAXのときの地絡点P2を標定するための演算を行う。例えば、サージ伝搬速度VMAX=200m/μ秒、サージ伝搬速度VMIN=120m/μ秒であることとする。これらのサージ伝搬速度VMAX,VMINは過去の実績値であることから信頼性の高い数値である。尚、実際の地絡点Pは、計測端末300から例えば504mの地点である場合を事例とする。
P = (M / 2)-(Δt · v / 2) (1)
However, M: distance between measurement terminals 300 and 400 Δt: surge arrival time difference v: surge propagation speed Therefore, the ground fault localization apparatus 500 uses the calculation formula (1) to determine the ground when the surge propagation speed is VMIN. An operation is performed to locate the junction point P1 and the ground junction point P2 when the surge propagation velocity is VMAX. For example, it is assumed that the surge propagation velocity VMAX = 200 m / μsec and the surge propagation velocity VMIN = 120 m / μsec. These surge propagation speeds VMAX and VMIN are highly reliable values because they are past actual values. An actual ground fault point P is an example where it is a point of 504 m from the measuring terminal 300, for example.
 先ず、サージ伝搬速度VMINを用いると、標定される地絡点P1は、計測端末300から630mとなり、標定誤差は126mとなる。 First, when the surge propagation velocity VMIN is used, the ground fault point P1 to be measured is 630 m from the measuring terminal 300, and the positioning error is 126 m.
 一方、サージ伝搬速度NMAXを用いると、標定される地絡点P2は、計測端末300から70mとなり、標定誤差は434mとなる。 On the other hand, when the surge propagation speed NMAX is used, the ground fault point P2 to be measured is 70 m from the measuring terminal 300, and the positioning error is 434 m.
 このように、サージ伝搬速度として過去の実績値を用いて地絡点Pの標定を行った場合、サージ伝搬速度の最大値を用いたとしても、地絡点の標定誤差を数百メートル程度に抑え込むことが可能になる。これにより、地絡に伴う停電の原因を早期に発見でき、早期に解決することが可能になる。 As described above, when the ground fault point P is determined using the past actual value as the surge propagation speed, the positioning error of the ground fault point is about several hundred meters even if the maximum value of the surge propagation speed is used. It becomes possible to hold down. This makes it possible to detect the cause of the blackout due to the ground fault at an early stage and solve it at an early stage.
===まとめ===
 以上説明したように、本実施形態に係る地絡点標定システム1は、配電線10の第1位置G1において、配電線10の各相の電流及び電圧を検出する第1センサ100と、配電線10の第2位置G2において、配電線10の各相の電流及び電圧を検出する第2センサ200と、第1センサ100の検出結果に基づいて、事故発生時の第1零相電流及び第1零相電圧を算出する計測端末300(第1算出装置)と、第2センサ200の検出結果に基づいて、事故発生時の第2零相電流及び第2零相電圧を算出する計測端末400(第2算出装置)と、第1零相電流及び第1零相電圧と現在時刻とが対応付けられた第1情報と、第2零相電流及び第2零相電圧と現在時刻とが対応付けられた第2情報と、に基づいて、第1位置G1と第2位置G2との間におけるサージ到達時間差TB-TAを算出する地絡点標定装置500(第3算出装置)と、第1位置G1と第2位置G2との間におけるサージ伝搬速度であって、第1サージ伝搬速度VMINと第1サージ伝搬速度VMINよりも速い第2サージ伝搬速度VMAXとを示す情報が予め記憶される記憶装置800と、第1位置G1と第2位置G2との間の距離L、サージ到達時間差TB-TA、サージ伝搬速度VMIN、VMAXのそれぞれを示す情報に基づいて、地絡点Pを標定する地絡点標定装置500と、を備えている。
=== Summary ===
As described above, the ground fault localization system 1 according to the present embodiment includes the first sensor 100 that detects the current and voltage of each phase of the distribution line 10 at the first position G1 of the distribution line 10, and the distribution line At the second position G2 of 10, based on the detection result of the second sensor 200 for detecting the current and voltage of each phase of the distribution line 10 and the first sensor 100, the first zero-phase current and Based on the detection result of the measurement terminal 300 (first calculation device) that calculates the zero phase voltage and the detection result of the second sensor 200, the measurement terminal 400 that calculates the second zero phase current and the second zero phase voltage when an accident occurs Second calculation device), first information in which the first zero-phase current and the first zero-phase voltage are associated with the current time, and the second zero-phase current and the second zero-phase voltage and the current time are associated The first position G1 and the second position G2 based on the second information Ground propagation point localization apparatus 500 (third calculation apparatus) for calculating the surge arrival time difference TB-TA between these, and the surge propagation speed between the first position G1 and the second position G2, which is the first surge propagation Storage device 800 in which information indicating the velocity VMIN and the second surge propagation velocity VMAX faster than the first surge propagation velocity VMIN is stored in advance, the distance L between the first position G1 and the second position G2, surge arrival A ground fault localization apparatus 500 for positioning the ground fault P based on information indicating each of the time difference TB-TA and the surge propagation speeds VMIN and VMAX.
 そして、本実施形態に係る地絡点標定システム1を採用することによって、常設型のシステムとして設備コストを抑えたシステムを提供することが可能になる。又、サージ伝搬速度として実績値として過去に求められた値を記憶装置から読み出して地絡点を標定するため、簡単な演算で地絡点を標定することが可能になる。 And by adopting the ground fault point localization system 1 according to the present embodiment, it becomes possible to provide a system with a reduced installation cost as a permanent installation type system. In addition, since the value obtained as the actual value as the surge propagation speed is read out from the storage device to locate the ground fault point, it becomes possible to locate the ground fault point by a simple calculation.
 又、本実施形態において、第1サージ伝搬速度は過去に算出された複数の実績値のうち最小の値VMINであり、第2サージ伝搬速度は過去に算出された複数の実績値のうち最大の値VMAXである。 Further, in the present embodiment, the first surge propagation velocity is the minimum value VMIN among the plurality of actual values calculated in the past, and the second surge propagation velocity is the largest among the plurality of actual values calculated in the past. It is a value VMAX.
そして、サージ伝搬速度としてVMAXを用いたとしても、標定誤差を数百メートルに抑え込むことができるため、設備コストが安く尚且つ標定精度の高い標定システムを提供することが可能になる。 And, even if VMAX is used as the surge propagation speed, since the positioning error can be suppressed to several hundred meters, it becomes possible to provide a positioning system with low facility cost and high positioning accuracy.
 又、本実施形態において、第1センサ100は、第1位置G1に設置される高速自動開閉器の収納箱40に収納され、第2センサ200は、第2位置G2に設置される高速自動界壁の収納箱50に収納される。 In the present embodiment, the first sensor 100 is housed in the storage box 40 of the high-speed automatic switch installed at the first position G1, and the second sensor 200 is installed at the second position G2. It is stored in a storage box 50 on the wall.
 このように、第1センサ100及び第2センサ200は、それぞれ、収納箱40、50によって保護されていることから、外的要因に起因する劣化から守ることができ、長期に亘って地絡点の正確な標定を継続することが可能になる。 As described above, since the first sensor 100 and the second sensor 200 are protected by the storage boxes 40 and 50, respectively, they can be protected from deterioration caused by external factors, and the ground fault point can be maintained for a long time. It will be possible to continue accurate positioning of
 又、本実施形態において、第1センサ100は、第1位置G1における配電線10を取り囲むように配置される環状の巻芯100Aと、配電線10が地絡したときに生じる地絡電流を検出するために巻芯100Aに巻回されるコイル100Bと、を含み、第2センサ200は、第2位置G2における配電線10を取り囲むように配置される環状の巻芯200Aと、配電線10が地絡したときに生じる地絡電流を検出するために巻芯200Aに巻回されるコイル200Bと、を含み、巻芯100A、200Aは、配電線10に地絡電流が流れたときに生じる磁束の磁束密度Bが、磁束密度Bに対する透磁率μrの割合に基づいて例えば1000ガウス以下となるように形成される。特に、1000ガウス以下の磁束密度Bは、磁束密度Bの変化に対する透磁率の変化の割合が一定となるような値である。従って、第1センサ100及び第2センサ200の計測値のばらつきを小さくすることができ、地絡電流を広帯域に正確に計測することができるようになる。つまり、第1位置G1及び第2位置G2という2点の情報に対して、実績値であるサージ伝搬速度を用いて算出して標定される地絡点Pの精度は高くなる。 Further, in the present embodiment, the first sensor 100 detects an annular core 100A disposed so as to surround the distribution line 10 at the first position G1, and a ground fault current generated when the distribution line 10 has a ground fault. And the second sensor 200 includes an annular winding core 200A disposed to surround the distribution line 10 at the second position G2, and the distribution line 10 And a coil 200B wound around a core 200A to detect a ground fault current generated when a ground fault occurs, wherein the core 100A, 200A is a magnetic flux generated when the ground fault current flows in the distribution line 10 The magnetic flux density B is formed to be, for example, 1000 gausses or less based on the ratio of the magnetic permeability μr to the magnetic flux density B. In particular, the magnetic flux density B of 1000 gausses or less is a value such that the ratio of the change of the magnetic permeability to the change of the magnetic flux density B is constant. Therefore, the variation in the measurement values of the first sensor 100 and the second sensor 200 can be reduced, and the ground fault current can be accurately measured in a wide band. That is, the accuracy of the ground fault point P calculated and positioned using the surge propagation velocity which is the actual value with respect to the information of the two points of the first position G1 and the second position G2 becomes high.
 又、本実施形態において、地絡点Pの標定の精度を高めるために、巻芯100A、200Aの断面積Sと長さLを、磁束密度Bに反比例する値として設定するようにしてもよい。 Further, in the present embodiment, the cross-sectional area S and the length L of the winding cores 100A and 200A may be set as values inversely proportional to the magnetic flux density B in order to increase the accuracy of the determination of the ground fault point P. .
 尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 The above embodiments are for the purpose of facilitating the understanding of the present invention, and are not for the purpose of limiting the present invention. The present invention can be modified and improved without departing from the gist thereof, and the present invention also includes the equivalents thereof.
1 地絡点標定システム
10 配電線
20、30 電柱
40,50 収納箱
100 第1センサ
100A 巻芯
100B コイル
200 第2センサ
200A 巻芯
200B コイル
300、400 計測端末
500 地絡点標定装置
600 GPS衛星
700 通信線
800 記憶装置
900、1000 遠制子局
1100、1200、1300、1400 通信線
DESCRIPTION OF SYMBOLS 1 Ground fault point determination system 10 Distribution line 20, 30 Power pole 40, 50 Storage box 100 1st sensor 100A Core 100B Coil 200 2nd sensor 200A Core 200B Coil 300, 400 Measurement terminal 500 Ground point localization device 600 GPS satellite 700 communication line 800 storage unit 900, 1000 distance control station 1100, 1200, 1300, 1400 communication line

Claims (10)

  1. 電力線の第1位置において、前記電力線の各相の第1電流及び第1電圧を検出する第1センサと、
    前記電力線の第2位置において、前記電力線の各相の第2電流及び第2電圧を検出する第2センサと、
    前記第1センサの検出結果に基づいて、事故発生時の第1零相電流及び第1零相電圧を算出する第1算出装置と、
    前記第2センサの検出結果に基づいて、事故発生時の第2零相電流及び第2零相電圧を算出する第2算出装置と、
    前記第1零相電流及び前記第1零相電圧と現在時刻とが対応付けられた第1情報と、前記第2零相電流及び前記第2零相電圧と現在時刻とが対応付けられた第2情報と、に基づいて、前記第1位置と前記第2位置との間におけるサージ到達時間差を算出する第3算出装置と、
    前記第1位置と前記第2位置との間におけるサージ伝搬速度であって、第1サージ伝搬速度と前記第1サージ伝搬速度よりも速い第2サージ伝搬速度とを示す情報が予め記憶される記憶装置と、
     前記第1位置と前記第2位置との間の距離、前記サージ到達時間差、前記第1サージ伝搬速度、前記第2サージ伝搬速度のそれぞれを示す情報に基づいて、地絡点を標定する地絡点標定装置と、
     を備えたことを特徴とする地絡点評定システム。
    A first sensor for detecting a first current and a first voltage of each phase of the power line at a first position of the power line;
    A second sensor that detects a second current and a second voltage of each phase of the power line at a second position of the power line;
    A first calculation device that calculates a first zero-phase current and a first zero-phase voltage at the time of occurrence of an accident based on the detection result of the first sensor;
    A second calculation device for calculating a second zero-phase current and a second zero-phase voltage at the time of occurrence of an accident based on the detection result of the second sensor;
    The first information in which the first zero-phase current and the first zero-phase voltage are associated with the current time, and the second zero-phase current and the second zero-phase voltage are associated with the current time A third calculation device that calculates a surge arrival time difference between the first position and the second position based on two pieces of information;
    A memory in which information indicating a surge propagation velocity between the first position and the second position, the first surge propagation velocity and a second surge propagation velocity faster than the first surge propagation velocity is stored in advance A device,
    A ground fault that locates a ground fault point based on information indicating the distance between the first position and the second position, the surge arrival time difference, the first surge propagation velocity, and the second surge propagation velocity. Point positioning device,
    The ground fault rating system characterized by having.
  2.  前記第1サージ伝搬速度は、過去に算出された複数の実績値のうち最小の値であり、
     前記第2サージ伝搬速度は、過去に算出された複数の実績値のうち最大の値である
     ことを特徴とする請求項1に記載の地絡点評定システム。
    The first surge propagation velocity is a minimum value among a plurality of actual values calculated in the past,
    The ground fault assessment system according to claim 1, wherein the second surge propagation velocity is a maximum value among a plurality of actual values calculated in the past.
  3.  前記第1センサは、前記第1位置に設置される第1開閉器に内蔵され、
     前記第2センサは、前記第2位置に設置される第2開閉器に内蔵される
     ことを特徴とする請求項1又は請求項2に記載の地絡点評定システム。
    The first sensor is built in a first switch installed at the first position,
    The ground fault assessment system according to claim 1 or 2, wherein the second sensor is built in a second switch installed at the second position.
  4.  前記第1センサは、前記第1位置における前記電力線を取り囲むように配置される環状の第1巻芯と、前記電力線が地絡したときに生じる地絡電流を検出するために前記第1巻芯に巻回される第1コイルと、を含み、
     前記第2センサは、前記第2位置における前記電力線を取り囲むように配置される環状の第2巻芯と、前記電力線が地絡したときに生じる地絡電流を検出するために前記第2巻芯に巻回される第2コイルと、を含み、
     前記第1巻芯及び前記第2巻芯は、前記電力線に地絡電流が流れたときに生じる磁束の磁束密度が、前記磁束密度に対する透磁率の割合に基づいて所定値以下となるように形成される
     ことを特徴とする請求項1~請求項3の何れか一項に記載の地絡点評定システム。
    The first sensor includes an annular first core disposed to surround the power line at the first position, and the first core to detect a ground fault current generated when the power line is grounded. And a first coil wound on the
    The second sensor includes an annular second core disposed to surround the power line at the second position, and the second core for detecting a ground fault current generated when the power line is grounded. And a second coil wound on the
    The first core and the second core are formed such that the magnetic flux density of the magnetic flux generated when the ground current flows through the power line is equal to or less than a predetermined value based on the ratio of the magnetic permeability to the magnetic flux density The ground fault rating system according to any one of claims 1 to 3, characterized in that:
  5.  前記所定値は、前記磁束密度に対する前記透磁率の割合が一定となる範囲内の値である
     ことを特徴とする請求項4に記載の地絡点評定システム。
    The ground fault evaluation system according to claim 4, wherein the predetermined value is a value within a range in which the ratio of the magnetic permeability to the magnetic flux density is constant.
  6.  前記第1及び第2巻芯は、それぞれ、前記磁束密度を前記所定値以下とする断面積及び長さを有する
     ことを特徴とする請求項4又は請求項5に記載の地絡点評定システム。
    The ground fault evaluation system according to claim 4 or 5, wherein each of the first and second cores has a cross-sectional area and a length such that the magnetic flux density is equal to or less than the predetermined value.
  7.  前記電力線は、6kVの配電系統に設置される配電線である
     ことを特徴とする請求項1~請求項6の何れか一項に記載の地絡点評定システム。
    The ground fault evaluation system according to any one of claims 1 to 6, wherein the power line is a distribution line installed in a 6 kV distribution system.
  8. 第1センサが、電力線の第1位置において、前記電力線の各相の第1電流及び第1電圧を検出し、
    第2センサが、前記電力線の第2位置において、前記電力線の各相の第2電流及び第2電圧を検出し、
    第1算出装置が、前記第1センサの検出結果に基づいて、事故発生時の第1零相電流及び第1零相電圧を算出し、
    前記第2算出装置が、前記第2センサの検出結果に基づいて、事故発生時の第2零相電流及び第2零相電圧を算出し、
    前記第3算出装置が、前記第1零相電流及び前記第1零相電圧と現在時刻とが対応付けられた第1情報と、前記第2零相電流及び前記第2零相電圧と現在時刻とが対応付けられた第2情報と、に基づいて、前記第1位置と前記第2位置との間におけるサージ到達時間差を算出し、
    記憶装置が、前記第1位置と前記第2位置との間におけるサージ伝搬速度であって、第1サージ伝搬速度と前記第1サージ伝搬速度よりも速い第2サージ伝搬速度とを示す情報を予め記憶し、
     地絡点評定装置が、前記第1位置と前記第2位置との間の距離、前記サージ到達時間差、前記第1サージ伝搬速度、前記第2サージ伝搬速度のそれぞれを示す情報に基づいて、地絡点を標定する
     ことを特徴とする地絡点評定方法。
    A first sensor detects a first current and a first voltage of each phase of the power line at a first position of the power line,
    A second sensor detects a second current and a second voltage of each phase of the power line at a second position of the power line,
    A first calculation device calculates a first zero-phase current and a first zero-phase voltage at the time of occurrence of an accident based on the detection result of the first sensor,
    The second calculation device calculates a second zero phase current and a second zero phase voltage at the time of occurrence of an accident based on the detection result of the second sensor,
    The third calculation device is configured to: first information in which the first zero phase current and the first zero phase voltage are associated with the current time; the second zero phase current and the second zero phase voltage; and the current time Calculating a surge arrival time difference between the first position and the second position, based on the second information associated with
    The storage device is a surge propagation velocity between the first position and the second position, and information indicating the first surge propagation velocity and the second surge propagation velocity faster than the first surge propagation velocity is provided in advance. Remember
    A ground fault assessment device is configured to determine the ground based on information indicating the distance between the first position and the second position, the surge arrival time difference, the first surge propagation velocity, and the second surge propagation velocity, respectively. A ground point assessment method characterized by specifying a junction point.
  9. 前記第1サージ伝搬速度は、過去に算出された複数の実績値のうち最小の値であり、
     前記第2サージ伝搬速度は、過去に算出された複数の実績値のうち最大の値である
     ことを特徴とする請求項8に記載の地絡点評定方法。
    The first surge propagation velocity is a minimum value among a plurality of actual values calculated in the past,
    The ground fault evaluation method according to claim 8, wherein the second surge propagation speed is the maximum value among a plurality of actual values calculated in the past.
  10.  前記電力線は、6kVの配電系統に設置される配電線である
     ことを特徴とする請求項8又は請求項9に記載の地絡点評定方法。
     
     
     
    The said power line is a distribution line installed in a 6 kV distribution system. The ground fault evaluation method according to claim 8 or 9 characterized by things.


PCT/JP2017/040607 2017-11-10 2017-11-10 Ground fault point locating system and ground fault point locating method WO2019092850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/040607 WO2019092850A1 (en) 2017-11-10 2017-11-10 Ground fault point locating system and ground fault point locating method
JP2018506642A JP6327411B1 (en) 2017-11-10 2017-11-10 Ground fault location system, ground fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040607 WO2019092850A1 (en) 2017-11-10 2017-11-10 Ground fault point locating system and ground fault point locating method

Publications (1)

Publication Number Publication Date
WO2019092850A1 true WO2019092850A1 (en) 2019-05-16

Family

ID=62186689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040607 WO2019092850A1 (en) 2017-11-10 2017-11-10 Ground fault point locating system and ground fault point locating method

Country Status (2)

Country Link
JP (1) JP6327411B1 (en)
WO (1) WO2019092850A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system
CN112733430A (en) * 2020-12-21 2021-04-30 国网安徽省电力有限公司宿州供电公司 Intelligent line selection and section positioning method and device for power distribution network fault
JP7378725B2 (en) 2019-10-16 2023-11-14 中国電力株式会社 Measurement terminal, measurement terminal setting method, ground fault location system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655339A (en) * 2021-08-20 2021-11-16 许继集团有限公司 Fault positioning method and device for direct-current transmission line protection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138013A (en) * 2014-01-24 2015-07-30 九電テクノシステムズ株式会社 Fault location system and method
JP2016142659A (en) * 2015-02-03 2016-08-08 中国電力株式会社 Failure point locating method and failure point locating system
JP2017173212A (en) * 2016-03-25 2017-09-28 中国電力株式会社 Sensor for current detection and ground fault locating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138013A (en) * 2014-01-24 2015-07-30 九電テクノシステムズ株式会社 Fault location system and method
JP2016142659A (en) * 2015-02-03 2016-08-08 中国電力株式会社 Failure point locating method and failure point locating system
JP2017173212A (en) * 2016-03-25 2017-09-28 中国電力株式会社 Sensor for current detection and ground fault locating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system
JP7378725B2 (en) 2019-10-16 2023-11-14 中国電力株式会社 Measurement terminal, measurement terminal setting method, ground fault location system
CN112733430A (en) * 2020-12-21 2021-04-30 国网安徽省电力有限公司宿州供电公司 Intelligent line selection and section positioning method and device for power distribution network fault

Also Published As

Publication number Publication date
JP6327411B1 (en) 2018-05-23
JPWO2019092850A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2019092850A1 (en) Ground fault point locating system and ground fault point locating method
US7821253B2 (en) Direct current measuring device having magnetic sensors for current generated magnetic fields
KR101753459B1 (en) System for monitoring electrical power usage of a structure and method of same
US7427856B2 (en) Current sensing apparatus
EP2472272A2 (en) Current measuring systems and methods of assembling the same
US20130234722A1 (en) High sensitivity differential current transformer for insulation health monitoring
US20100090684A1 (en) Method and apparatus for current measurement using hall sensors without iron cores
CN103852691A (en) Directional detection of a fault in a network of a grounding system with compensated or insulated neutral point
CA2898209A1 (en) Apparatus and method for ground-fault circuit interrupter for use in ground-return circuit
CN104769443A (en) Electric current detection device
CN105359365B (en) Method and apparatus for complexity, common ground error protection in high pressure electric system
JP6790405B2 (en) Current detection sensor and ground fault point positioning system
US20240044965A1 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
CN105510673A (en) Direct current measuring device
KR102350387B1 (en) Apparatus and method for detecting fault line
US10324140B2 (en) Zero sequence sensing apparatus and method
Antony et al. Suitability of Rogowski coil for DC shipboard protection
KR100821705B1 (en) Earth resistance measurement method by clamp-on type current comparison
JP6881044B2 (en) Ground fault point locating system, ground fault locating method and program
JP2019174343A (en) Electricity detection sensor, and ground fault point locating system
JP3232520U (en) Current detection sensor and ground fault identification system
JP2020072565A (en) Protection relay
CN111856208B (en) Device and method for positioning fault point of ultra-high voltage cable sheath
Sarwade et al. Fault diagnosis in distance protection scheme using Rogowski coil and artificial neural network
RU2652381C1 (en) Device for balance protection combined with transverse differential protection for three-phase high-voltage electrical installations

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506642

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931251

Country of ref document: EP

Kind code of ref document: A1