JP6881044B2 - Ground fault point locating system, ground fault locating method and program - Google Patents

Ground fault point locating system, ground fault locating method and program Download PDF

Info

Publication number
JP6881044B2
JP6881044B2 JP2017110635A JP2017110635A JP6881044B2 JP 6881044 B2 JP6881044 B2 JP 6881044B2 JP 2017110635 A JP2017110635 A JP 2017110635A JP 2017110635 A JP2017110635 A JP 2017110635A JP 6881044 B2 JP6881044 B2 JP 6881044B2
Authority
JP
Japan
Prior art keywords
ground fault
fault current
current
magnetic flux
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017110635A
Other languages
Japanese (ja)
Other versions
JP2018205109A (en
Inventor
大原 久征
久征 大原
秀行 瀧澤
秀行 瀧澤
純也 狩野
純也 狩野
和博 小林
和博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2017110635A priority Critical patent/JP6881044B2/en
Publication of JP2018205109A publication Critical patent/JP2018205109A/en
Application granted granted Critical
Publication of JP6881044B2 publication Critical patent/JP6881044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

本発明は、地絡点標定システムに関する。 The present invention relates to a ground fault point determination system.

例えば、電力系統で地絡事故が発生したときに、地絡点を検出するための電流検出センサが知られている。(例えば特許文献1)。 For example, a current detection sensor for detecting a ground fault point when a ground fault occurs in an electric power system is known. (For example, Patent Document 1).

特開平5−268723号公報Japanese Unexamined Patent Publication No. 5-268723 特開2004−132762号公報Japanese Unexamined Patent Publication No. 2004-132762

特許文献1には、地絡検出単位区間において零相電流の位相を検出することにより、当該地絡検出単位区間に地絡が生じているか否かを判定する方法が開示されている。しかし、特許文献1に係る方法では、当該地絡検出単位区間で地絡事故が生じているか否かを判定できるものの、当該地絡検出単位区間のどの地点で地絡事故が生じているかを特定することができないため、地絡点の特定に時間を要する虞があった。 Patent Document 1 discloses a method of determining whether or not a ground fault has occurred in the ground fault detection unit interval by detecting the phase of the zero-phase current in the ground fault detection unit interval. However, in the method according to Patent Document 1, although it is possible to determine whether or not a ground fault has occurred in the ground fault detection unit section, it is possible to specify at which point in the ground fault detection unit section the ground fault has occurred. Therefore, it may take time to identify the ground fault point.

また、特許文献2には、送配電線路の零相電流および零相電圧を検出することにより、各地点におけるサージ到達時刻の差を算出することで地絡点を標定するシステムが開示されている。当該システムは、零相電流の波形データと零相電圧の急変を検出した時点を示す時刻データとに基づいてサージ到達時刻を算出する機能を有する。しかし、特許文献2に係るシステムでは、変電所の遮断器が動作するようなサージ電流の大きな地絡事故に対しては機能するものの、遮断器が動作しないようなサージ電流の小さな地絡事故に対しては地絡点の特定ができない虞があった。 Further, Patent Document 2 discloses a system for determining a ground fault point by calculating the difference in surge arrival time at each point by detecting the zero-phase current and the zero-phase voltage of the power transmission and distribution line. .. The system has a function of calculating the surge arrival time based on the waveform data of the zero-phase current and the time data indicating the time when a sudden change in the zero-phase voltage is detected. However, the system according to Patent Document 2 works for a ground fault with a large surge current such as a circuit breaker in a substation operates, but it works for a ground fault with a small surge current such that the circuit breaker does not operate. On the other hand, there was a risk that the ground fault point could not be identified.

前述した課題を解決する主たる本発明は、電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサと、前記複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する比較特定部と、前記比較特定部で特定された前記第2地絡電流に対応する地絡電流波形を増幅する増幅部と、前記増幅部で増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する地絡点標定部と、を備えることを特徴とする。 The main invention for solving the above-mentioned problems is a winding core formed in an annular shape so that the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or lower than a predetermined magnetic flux density value. A plurality of sensors having a coil wound around the winding core through which the power line penetrates to detect the ground fault current, and the largest current value among the ground fault currents detected by each of the plurality of sensors. Amplifies the ground fault current waveform corresponding to the second ground fault current specified by the comparative identification unit and the comparative identification unit that specifies the second ground fault current that indicates a current value smaller than the first ground fault current. In the amplification unit and the ground fault current waveform amplified by the amplification unit, a change point representing the generation time of the second ground fault current is specified, and the ground fault in the power system is based on the change point. It is characterized by including a ground fault point setting unit for defining a ground fault point indicating a point where an electric current is generated.

本発明の他の特徴については、添付図面および本明細書の記載により明らかとなる。 Other features of the invention will become apparent with reference to the accompanying drawings and the description herein.

本発明によれば、微小な地絡電流に対しても地絡点を特定することが可能となる。 According to the present invention, it is possible to specify the ground fault point even for a minute ground fault current.

本実施形態に係る地絡点標定システムを示す図である。It is a figure which shows the ground fault point setting system which concerns on this embodiment. 本実施形態に係るセンサ箱を示す図である。It is a figure which shows the sensor box which concerns on this embodiment. 本実施形態に係る電流検出用のセンサを示す図である。It is a figure which shows the sensor for current detection which concerns on this embodiment. 本実施形態に係る巻芯の特性を示す図である。It is a figure which shows the characteristic of the winding core which concerns on this embodiment. 本実施形態に係る巻芯の特性を示す図である。It is a figure which shows the characteristic of the winding core which concerns on this embodiment. 本実施形態に係る地絡点標定装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the ground fault point setting apparatus which concerns on this embodiment. 本実施形態に係る地絡点標定システムの動作フローを示す図である。It is a figure which shows the operation flow of the ground fault point setting system which concerns on this embodiment. 本実施形態に係る第1及び第2電流検出装置の地絡電流波形の一例を示す図である。It is a figure which shows an example of the ground fault current waveform of the 1st and 2nd current detection apparatus which concerns on this embodiment. 本実施形態に係る第2電流検出装置の地絡電流波形のゲインを増幅した一例を示す図である。It is a figure which shows an example which amplified the gain of the ground fault current waveform of the 2nd current detection apparatus which concerns on this embodiment. 本実施形態に係る第1及び第2電流検出装置の地絡電流波形の一例を示す図である。It is a figure which shows an example of the ground fault current waveform of the 1st and 2nd current detection apparatus which concerns on this embodiment. 本実施形態に係る第1及び第2電流検出装置の地絡電流波形のゲインを増幅した一例を示す図である。It is a figure which shows an example which amplified the gain of the ground fault current waveform of the 1st and 2nd current detection apparatus which concerns on this embodiment.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。以下の説明において、同一符号を付した部分は同一の要素を表し、その基本的な構成および動作は同様であるものとする。 The description of this specification and the accompanying drawings will clarify at least the following matters. In the following description, the parts with the same reference numerals represent the same elements, and their basic configurations and operations are the same.

===地絡点標定システム100===
図1を参照しつつ、地絡点標定システム100について、以下のとおり説明する。図1は、本実施形態に係る地絡点標定システム100を示す図である。
=== Ground fault point positioning system 100 ===
The ground fault point determination system 100 will be described as follows with reference to FIG. FIG. 1 is a diagram showing a ground fault point positioning system 100 according to the present embodiment.

地絡点標定システム100は、電力系統(本実施形態では22kV配電系統)において地絡事故が発生した箇所(以下、「地絡点P」と称する。)を標定するためのシステムである。図1に示すように、地絡点標定システム100は、電力系統において、電源側に設けられる第1電流検出装置110と、負荷側に設けられる第2電流検出装置120と、地絡点Pを標定する地絡点標定装置130と、を含んで構成されている。図1では、説明の便宜上、第1電流検出装置110および第2電流検出装置120の2台が電力系統に設けられるように示されているが、電流検出装置は2台を超えて設けられていてもよい。 The ground fault point locating system 100 is a system for locating a location (hereinafter, referred to as "ground fault point P") where a ground fault has occurred in an electric power system (22 kV distribution system in this embodiment). As shown in FIG. 1, the ground fault point determination system 100 has a first current detection device 110 provided on the power supply side, a second current detection device 120 provided on the load side, and a ground fault point P in the power system. It is configured to include a ground fault point locating device 130 for locating. In FIG. 1, for convenience of explanation, two units, a first current detection device 110 and a second current detection device 120, are shown to be provided in the power system, but more than two current detection devices are provided. You may.

==第1,第2電流検出装置110,120==
図2、図3、図4、図5を参照しつつ、第1,第2電流検出装置110,120について、以下のとおり説明する。図2は、本実施形態に係るセンサ箱112を示す図である。図3は、本実施形態に係る電流検出用のセンサ111を示す図である。図4、図5は、本実施形態に係る巻芯111aの特性を示す図である。なお、以下説明においては、代表的に、第1電流検出装置110について説明をするが、第2電流検出装置120についても同様であり、不図示の電流検出装置についても同様とする。
== 1st and 2nd current detectors 110, 120 ==
The first and second current detection devices 110 and 120 will be described as follows with reference to FIGS. 2, 3, 4, and 5. FIG. 2 is a diagram showing a sensor box 112 according to the present embodiment. FIG. 3 is a diagram showing a sensor 111 for current detection according to the present embodiment. 4 and 5 are views showing the characteristics of the winding core 111a according to the present embodiment. In the following description, the first current detection device 110 will be described as a representative, but the same applies to the second current detection device 120, and the same applies to the current detection device (not shown).

第1電流検出装置110は、電力系統に設置され、電力系統の電力の状態に応じて変動する物理量を計測する装置である。第1電流検出装置110は、例えば、配電線300の電流あるいは電圧を含む電力系統の電力の状態に応じて変動する物理量を計測するセンサ111と、それを収容するセンサ箱112と、センサ111による計測結果を地絡点標定装置130に送信する計測端末113と、を含んで構成されている。 The first current detection device 110 is a device installed in the power system and measures a physical quantity that fluctuates according to the state of the power of the power system. The first current detection device 110 is composed of, for example, a sensor 111 that measures a physical quantity that fluctuates according to the state of power of the power system including the current or voltage of the distribution line 300, a sensor box 112 that houses the sensor 111, and the sensor 111. It is configured to include a measurement terminal 113 that transmits a measurement result to the ground fault point positioning device 130.

センサ111で計測される物理量は、基本的に、配電線300の電流あるいは電圧などの物理量として説明するが、力率や周波数などを含んでいても良い。本実施形態では、これらの物理量に対する夫々の計測器をまとめてセンサ111と称する。 The physical quantity measured by the sensor 111 is basically described as a physical quantity such as a current or a voltage of the distribution line 300, but may include a power factor, a frequency, and the like. In the present embodiment, each measuring instrument for these physical quantities is collectively referred to as a sensor 111.

なお、一般的に特別高圧の電力系統は三相であるが、図1では、記載の簡略化のために配電線300を1本のみ記載している。実際には、図2に示すように、配電線300の各相にそれぞれセンサ箱112を設けている。そして、それぞれのセンサ箱112は、各相の配電線300に装着されて、それぞれのセンサ箱112に収容されるセンサ111で電力系統の電力の状態に応じて変動する物理量が計測される。 In general, the extra high voltage power system has three phases, but in FIG. 1, only one distribution line 300 is shown for simplification of the description. Actually, as shown in FIG. 2, a sensor box 112 is provided in each phase of the distribution line 300. Then, each sensor box 112 is attached to the distribution line 300 of each phase, and the sensor 111 housed in each sensor box 112 measures a physical quantity that fluctuates according to the state of the electric power of the power system.

計測端末113は、配電線300の各相のセンサ111によって計測された物理量の計測値を、通信路200を介して地絡点標定装置130に送信する装置である。 The measuring terminal 113 is a device that transmits the measured value of the physical quantity measured by the sensor 111 of each phase of the distribution line 300 to the ground fault point locating device 130 via the communication path 200.

計測端末113は、センサ111で計測された配電線300の各相の物理量の値を用いて、電力系統の電力の状態に応じて変動する他の物理量の値を算出して、地絡点標定装置130に送信することもできる。 The measuring terminal 113 uses the physical quantity values of each phase of the distribution line 300 measured by the sensor 111 to calculate the values of other physical quantities that fluctuate according to the power state of the power system, and determines the ground fault point. It can also be transmitted to the device 130.

計測端末113は、例えば、配電線300の各相の電流値を取得し、取得した電流値を合成することにより、零相電流を算出して、それを地絡点標定装置130に送信する。あるいは、計測端末113は、配電線300の各相の電圧値を取得し、取得した電圧値を合成することにより、零相電圧を算出して、それを地絡点標定装置130に送信することとしてもよい。 For example, the measuring terminal 113 acquires the current value of each phase of the distribution line 300, calculates the zero-phase current by synthesizing the acquired current value, and transmits it to the ground fault point locating device 130. Alternatively, the measuring terminal 113 acquires the voltage value of each phase of the distribution line 300, calculates the zero-phase voltage by synthesizing the acquired voltage value, and transmits it to the ground fault point locating device 130. May be.

なお、計測端末113は、GPS衛星1000から現在時刻を受信しているため、計測端末113で計測された電流値や電圧値および算出された零相電流や零相電圧と、時刻情報と、を対応付けて地絡点標定装置130に送信する。なお、以下において、零相電流を地絡電流として説明することもある。 Since the measurement terminal 113 receives the current time from the GPS satellite 1000, the current value and voltage value measured by the measurement terminal 113, the calculated zero-phase current and zero-phase voltage, and the time information can be obtained. It is associated and transmitted to the ground fault point locating device 130. In the following, the zero-phase current may be described as a ground fault current.

ところで、本実施形態に係る電力系統は22kV配電系統であるため、変電所(不図示)に設けられる変圧器(不図示)の接地方式は、抵抗接地方式や非接地方式が採用されている。抵抗接地方式は、変圧器の中性点と大地とを抵抗を介して導体で接続して接地する方式であり、非接地方式は、中性点接地を行わない方式である。 By the way, since the power system according to the present embodiment is a 22 kV distribution system, a resistance grounding method or a non-grounding method is adopted as the grounding method of the transformer (not shown) provided in the substation (not shown). The resistance grounding method is a method in which the neutral point of the transformer and the ground are connected by a conductor via a resistor to be grounded, and the non-grounding method is a method in which the neutral point grounding is not performed.

そのため、配電線300に地絡が発生した場合に、変電所に設けられる変圧器の接地方式の違いによって、地絡電流のレンジが大きく異なる。例えば、抵抗接地方式では、中性点が抵抗で接地されているため、地絡電流が数百A(アンペア)程度になり、非接地方式では、数十mA(ミリアンペア)程度である。 Therefore, when a ground fault occurs in the distribution line 300, the range of the ground fault current differs greatly depending on the difference in the grounding method of the transformer provided in the substation. For example, in the resistance grounding method, since the neutral point is grounded by a resistor, the ground fault current is about several hundred amperes (ampere), and in the non-grounded method, it is about several tens of mA (milliampere).

このような場合であっても、本実施形態に係るセンサ111は、接地方式が抵抗接地方式であるか非接地方式であるかによらず地絡電流を検出することができるように構成されている。 Even in such a case, the sensor 111 according to the present embodiment is configured to be able to detect the ground fault current regardless of whether the grounding method is the resistance grounding method or the non-grounding method. There is.

図3に示すように、センサ111は、配電線300が貫通するように設けられる環状の巻芯111aと、配電線300が地絡した際に配電線300に生ずる地絡電流を検出するべく巻芯111aに巻回されるコイル111bと、を有して構成されている。センサ111は、配電線300に地絡電流が流れると、巻芯111aの磁束Φが変化し、それに伴ってコイル111bを流れる電流が変化する。コイル111bを流れる電流を不図示の検出器により検出することにより、配電線300に流れる地絡電流を検出することができる。 As shown in FIG. 3, the sensor 111 is wound to detect an annular winding core 111a provided so as to penetrate the distribution line 300 and a ground fault current generated in the distribution line 300 when the distribution line 300 has a ground fault. It is configured to have a coil 111b wound around a core 111a. When a ground fault current flows through the distribution line 300, the sensor 111 changes the magnetic flux Φ of the winding core 111a, and the current flowing through the coil 111b changes accordingly. By detecting the current flowing through the coil 111b with a detector (not shown), the ground fault current flowing through the distribution line 300 can be detected.

ここで、巻芯111aは、配電線300に地絡電流が流れる際に生ずる磁束の磁束密度Bが所定の磁束密度値以下となるように形成されている。巻芯111aに生ずる磁束の磁束密度Bがなるべく小さくなるようにセンサ111を形成することにより、センサ111が検出可能な地絡電流のレンジを拡大することができる。これにより、22kV配電系統の変圧器の接地方式が抵抗接地方式あるいは非接地方式のいずれであっても、地絡電流を検出することが可能となる。 Here, the winding core 111a is formed so that the magnetic flux density B of the magnetic flux generated when the ground fault current flows through the distribution line 300 is equal to or less than a predetermined magnetic flux density value. By forming the sensor 111 so that the magnetic flux density B of the magnetic flux generated in the winding core 111a is as small as possible, the range of the ground fault current that can be detected by the sensor 111 can be expanded. This makes it possible to detect the ground fault current regardless of whether the grounding method of the transformer of the 22kV distribution system is the resistance grounding method or the non-grounding method.

つまり、巻芯111aに生ずる磁束の磁束密度Bが所定の磁束密度値以下になるように小さくすることにより、各相の配電線300に装着されるセンサ111の計測値のばらつきを小さくすることができ、これにより地絡電流を広帯域に計測することが可能となる。以下に、図4及び図5を参照しながら、巻芯111aについて、より詳細に説明する。 That is, by reducing the magnetic flux density B of the magnetic flux generated in the winding core 111a so as to be equal to or less than a predetermined magnetic flux density value, it is possible to reduce the variation in the measured values of the sensor 111 mounted on the distribution line 300 of each phase. This makes it possible to measure the ground fault current over a wide band. Hereinafter, the winding core 111a will be described in more detail with reference to FIGS. 4 and 5.

図4では、巻芯111aの比透磁率μrと、巻芯111aに生ずる磁束の磁束密度Bと、の関係を示す。巻芯111aがパーマロイコアである場合の特性曲線を例示するが、比透磁率μrの値は、磁束密度Bによって大きく異なることがわかる。このため、各相のセンサ111の特性のばらつきを抑えるためには、できるだけ比透磁率μrの変動が小さくなるような範囲の磁束密度Bが巻芯111aに発生することが必要である。 FIG. 4 shows the relationship between the relative magnetic permeability μr of the winding core 111a and the magnetic flux density B of the magnetic flux generated in the winding core 111a. The characteristic curve when the winding core 111a is a permalloy core is illustrated, and it can be seen that the value of the relative magnetic permeability μr differs greatly depending on the magnetic flux density B. Therefore, in order to suppress variations in the characteristics of the sensor 111 of each phase, it is necessary to generate a magnetic flux density B in the winding core 111a in a range in which the fluctuation of the relative magnetic permeability μr is as small as possible.

図4を参照すると、磁束密度Bが小さいほど比透磁率μrの変動が小さいことがわかる。そこで、磁束密度Bが3000ガウス以下の場合の磁束密度Bと比透磁率μrとの関係を拡大して図5に示す。比透磁率μrの変化と磁束密度Bの変化が線形の関係、つまり配電線300に地絡電流が流れる際の磁束密度Bの増加率と比透磁率μrの増加率とが一致する関係にあれば、磁束密度Bの変化に対して比透磁率μrの変化が安定する。そして、この比透磁率μrが安定する磁束密度Bの範囲が各相のセンサ111のばらつきが少ない領域となる。 With reference to FIG. 4, it can be seen that the smaller the magnetic flux density B, the smaller the fluctuation of the relative permeability μr. Therefore, the relationship between the magnetic flux density B and the relative magnetic permeability μr when the magnetic flux density B is 3000 gauss or less is expanded and shown in FIG. There is a linear relationship between the change in relative permeability μr and the change in magnetic flux density B, that is, the rate of increase in magnetic flux density B and the rate of increase in specific magnetic flux density μr when a ground fault current flows through the distribution line 300. For example, the change in relative magnetic permeability μr is stable with respect to the change in magnetic flux density B. The range of the magnetic flux density B at which the relative magnetic permeability μr is stable is a region in which there is little variation in the sensors 111 of each phase.

また、図5を参照すると、磁束密度Bの増加に伴って比透磁率μrがリニアに増加する範囲は、磁束密度Bが所定値以下の範囲であることが分かる。図5に示す場合では、磁束密度Bが1000ガウス以下となる範囲が好ましい。もちろん、比透磁率μrの変化と磁束密度Bの変化は完全に線形の関係を有さなくても良く、それぞれの増加率あるいは変化率が所定範囲内にあれば良い。 Further, referring to FIG. 5, it can be seen that the range in which the relative magnetic permeability μr linearly increases as the magnetic flux density B increases is the range in which the magnetic flux density B is equal to or less than a predetermined value. In the case shown in FIG. 5, the range in which the magnetic flux density B is 1000 gauss or less is preferable. Of course, the change in the relative permeability μr and the change in the magnetic flux density B do not have to have a completely linear relationship, and the respective increase rates or change rates may be within a predetermined range.

このように、配電線300に地絡電流が流れる際に巻芯111aに生ずる磁束の磁束密度Bが、磁束密度Bの変化に対する比透磁率μrの変化の度合いに基づいて定められる所定の磁束密度値以下となるようにすることで、センサ111が検出可能な電流のレンジを拡大することができ、22kV配電系統の変圧器の接地方式が抵抗接地方式あるいは非接地方式のいずれであっても、地絡電流を検出することが可能となる。 As described above, the magnetic flux density B of the magnetic flux generated in the winding core 111a when the ground fault current flows through the distribution wire 300 is a predetermined magnetic flux density determined based on the degree of change in the relative permeability μr with respect to the change in the magnetic flux density B. By setting the value to less than or equal to the value, the range of current that can be detected by the sensor 111 can be expanded, regardless of whether the grounding method of the transformer of the 22kV distribution system is the resistance grounding method or the non-grounding method. It becomes possible to detect the ground fault current.

また、このように、磁束密度Bの変化に対する比透磁率μrの変化の度合いに基づいて、磁束密度Bの上限値である上述した所定の磁束密度値を定めることにより、巻芯111aに用いる材料について図4に示したような比透磁率μrと磁束密度Bとの特性を基に、磁束密度Bの上限値を定めることが可能となる。 Further, in this way, the material used for the winding core 111a is determined by determining the above-mentioned predetermined magnetic flux density value which is the upper limit value of the magnetic flux density B based on the degree of change in the relative magnetic permeability μr with respect to the change in the magnetic flux density B. It is possible to determine the upper limit value of the magnetic flux density B based on the characteristics of the relative magnetic permeability μr and the magnetic flux density B as shown in FIG.

なお、巻芯111aに生ずる磁束の磁束密度Bは、磁束Φに比例するが、巻芯111aの断面積S及び長さ(円周長)Lに反比例する。そのため、巻芯111aは、地絡電流が発生した場合に巻芯111aに生ずる磁束の磁束密度Bが所定の磁束密度値以下に抑制されるように、断面積S及び長さLが所定値以上になるように構成される必要がある。一方で、巻芯111aの大型化にもある程度の限度があることから、巻芯111aは、磁束密度Bが所定の磁束密度値以下に抑制されつつも、ある下限値以上になるような断面積S及び長さLを有するように構成されることになる。 The magnetic flux density B of the magnetic flux generated in the winding core 111a is proportional to the magnetic flux Φ, but is inversely proportional to the cross-sectional area S and the length (circumferential length) L of the winding core 111a. Therefore, the winding core 111a has a cross-sectional area S and a length L of a predetermined value or more so that the magnetic flux density B of the magnetic flux generated in the winding core 111a when a ground fault current is generated is suppressed to a predetermined magnetic flux density value or less. Must be configured to be. On the other hand, since there is a certain limit to the increase in size of the winding core 111a, the winding core 111a has a cross-sectional area such that the magnetic flux density B is suppressed to a predetermined magnetic flux density value or less, but is equal to or more than a certain lower limit value. It will be configured to have S and length L.

また、配電線300が地絡した際にコイル111bに流れる電流は、コイル111bの巻回数に反比例する。そのため、本実施形態に係るセンサ111は、コイル111bの巻回数が所定の巻数以下になるように定められている。コイル111bの巻数を所定の巻数以下にすることによって、微弱な地絡電流であっても2次電流のレベルが増加することで検出することが可能となるため、地絡電流の検出可能なレンジを広げることが可能となる。 Further, the current flowing through the coil 111b when the distribution line 300 has a ground fault is inversely proportional to the number of turns of the coil 111b. Therefore, the sensor 111 according to the present embodiment is defined so that the number of turns of the coil 111b is equal to or less than a predetermined number of turns. By setting the number of turns of the coil 111b to a predetermined number or less, even a weak ground fault current can be detected by increasing the level of the secondary current, so that the range in which the ground fault current can be detected can be detected. Can be expanded.

例えば、非接地方式の電力系統の地絡を検出する場合に、一つの巻芯111a内に3相分の配電線300をまとめて貫通させるようなことを行わなくても、各相の配電線300にそれぞれセンサ111を設け、それぞれ数十mA程度の地絡電流を検出することが可能となる。 For example, when detecting a ground fault in a non-grounded power system, the distribution lines of each phase do not need to be passed through the distribution lines 300 for three phases in one winding core 111a. Sensors 111 are provided in each of the 300s, and each can detect a ground fault current of about several tens of mA.

このため、22kV配電系統の変圧器の接地方式が抵抗接地方式あるいは非接地方式のいずれであっても、地絡電流を検出することが可能となる。 Therefore, it is possible to detect the ground fault current regardless of whether the grounding method of the transformer of the 22kV distribution system is the resistance grounding method or the non-grounding method.

==地絡点標定装置130==
図6を参照しつつ、地絡点標定装置130について、以下のとおり説明する。図6は、本実施形態に係る地絡点標定装置130の構成の一例を示す図である。
== Ground fault point locator 130 ==
The ground fault point locating device 130 will be described as follows with reference to FIG. FIG. 6 is a diagram showing an example of the configuration of the ground fault point locating device 130 according to the present embodiment.

地絡点標定装置130は、地絡事故が発生したときに生じる地絡電流を上述した第1,第2電流検出装置110,120で検出するとともに、該地絡電流を増幅することで、地絡電流の検出時刻を特定して地絡点Pを標定する装置である。 The ground fault point locator 130 detects the ground fault current generated when a ground fault occurs with the above-mentioned first and second current detection devices 110 and 120, and amplifies the ground fault current to ground the ground. It is a device that specifies the detection time of the entanglement current and defines the ground fault point P.

配電線300の地絡事故で生じる地絡電流は、伝播する距離が長くなるにつれて減衰する。そのため、地絡点Pから地絡電流を検出する地点までの距離が長大である場合、地絡電流を検出することが困難であった。そこで、地絡点標定装置130は、上述した第1及び第2電流検出装置110,120を用いて、減衰して小さい地絡電流を検出するとともに、該地絡電流に対応する地絡電流波形を特定するとともに、地絡電流波形のゲインを増幅する。増幅された地絡電流波形に基づいて、該地絡電流の発生時刻を示す変化点を特定し、変化点に基づいて地絡点Pを標定する。 The ground fault current generated by the ground fault of the distribution line 300 is attenuated as the propagating distance increases. Therefore, when the distance from the ground fault point P to the point where the ground fault current is detected is long, it is difficult to detect the ground fault current. Therefore, the ground fault point locating device 130 detects a small ground fault current by being attenuated by using the first and second current detection devices 110 and 120 described above, and the ground fault current waveform corresponding to the ground fault current. And amplify the gain of the ground fault current waveform. Based on the amplified ground fault current waveform, a change point indicating the occurrence time of the ground fault current is specified, and the ground fault point P is defined based on the change point.

このような機能を有する地絡点標定装置130は、図6に示すように、演算処理部131と、主記憶部132と、入力部133と、出力部134と、補助記憶部135と、を含んで構成され、それぞれが通信可能に接続されている。 As shown in FIG. 6, the ground fault point locating device 130 having such a function includes an arithmetic processing unit 131, a main storage unit 132, an input unit 133, an output unit 134, and an auxiliary storage unit 135. It is configured to include, and each is connected so that it can communicate.

演算処理部131は、例えばCPUあるいはMPUなどで構成されている。演算処理部131は、主記憶部132に補助記憶部135から一時的に蓄えられたプログラムを読み出し命令を実施したり、情報を読み書きすことにより、各種機能を実現する。演算処理部131の各構成要素については、詳細に後述する。主記憶部132は、例えば、RAMなど揮発性メモリで構成されている。入力部133は、通信路200を介して電流検出装置から出力される各種情報が入力されるネットワークインターフェイスである。出力部134は、通信ネットワークに各種情報が出力されるネットワークインターフェイスである。補助記憶部135は、演算処理部131が処理するためのプログラムを格納する装置である。補助記憶部135は、例えば、ハードディスクドライブ、SSDあるいは光学式記憶装置など不揮発性メモリで構成されている。 The arithmetic processing unit 131 is composed of, for example, a CPU or an MPU. The arithmetic processing unit 131 realizes various functions by issuing an instruction to read a program temporarily stored in the main storage unit 132 from the auxiliary storage unit 135 and reading / writing information. Each component of the arithmetic processing unit 131 will be described in detail later. The main storage unit 132 is composed of, for example, a volatile memory such as a RAM. The input unit 133 is a network interface to which various information output from the current detection device is input via the communication path 200. The output unit 134 is a network interface that outputs various information to the communication network. The auxiliary storage unit 135 is a device that stores a program for processing by the arithmetic processing unit 131. The auxiliary storage unit 135 is composed of, for example, a non-volatile memory such as a hard disk drive, an SSD, or an optical storage device.

<<演算処理部131>>
演算処理部131は、判定部131aと、比較特定部131bと、増幅部131cと、地絡点標定部131dと、を含んで構成されている。
<< Arithmetic processing unit 131 >>
The arithmetic processing unit 131 includes a determination unit 131a, a comparison identification unit 131b, an amplification unit 131c, and a ground fault point setting unit 131d.

判定部131aは、第1,第2電流検出装置110,120で検出された地絡電流が所定の電流値以上か否かを判定する機能を有する。検出された地絡電流が所定の電流値以上である場合は、検出された地絡電流のうち最も大きい電流値を示す地絡電流(以下、「第1地絡電流」と称する。)よりも小さい地絡電流(以下、「第2地絡電流」と称する。)を基準として後述する変化点を特定するために、処理を移行させる。一方、地絡電流が所定の電流値未満である場合は、地絡電流を検出した全ての電流検出装置(本実施形態では、第1,第2電流検出装置110,120)を基準として変化点を特定するために、処理を移行させる。 The determination unit 131a has a function of determining whether or not the ground fault current detected by the first and second current detection devices 110 and 120 is equal to or higher than a predetermined current value. When the detected ground fault current is equal to or higher than a predetermined current value, it is larger than the ground fault current (hereinafter, referred to as "first ground fault current") indicating the largest current value among the detected ground fault currents. The process is shifted in order to identify the change point described later with reference to a small ground fault current (hereinafter, referred to as “second ground fault current”). On the other hand, when the ground fault current is less than a predetermined current value, the change point is based on all the current detection devices (first and second current detection devices 110 and 120 in this embodiment) that have detected the ground fault current. Migrate processing to identify.

比較特定部131bは、第1,第2電流検出装置110,120で検出された夫々の地絡電流を比較する機能を有する。さらに、比較特定部131bでは、第2地絡電流を検出した電流検出装置を特定する。 The comparison identification unit 131b has a function of comparing the ground fault currents detected by the first and second current detection devices 110 and 120, respectively. Further, the comparative identification unit 131b identifies the current detection device that has detected the second ground fault current.

増幅部131cは、第1,第2電流検出装置110,120で検出された地絡電流に対応する地絡電流波形のゲインを増幅する機能を有する。これにより、後述する地絡電流波形の変化点を明確にできる。さらに、増幅部131cは、地絡電流波形の立ち上がり(立ち下がり)角度が最も大きくなる増幅度を算定する機能を有する。増幅度とは、特定された電流検出装置で検出される地絡電流波形のゲインを増幅する度合をいう。 The amplification unit 131c has a function of amplifying the gain of the ground fault current waveform corresponding to the ground fault current detected by the first and second current detection devices 110 and 120. As a result, the change point of the ground fault current waveform, which will be described later, can be clarified. Further, the amplification unit 131c has a function of calculating the amplification degree at which the rising (falling) angle of the ground fault current waveform is the largest. The degree of amplification refers to the degree of amplifying the gain of the ground fault current waveform detected by the specified current detection device.

地絡点標定部131dは、ゲインが増幅された地絡電流波形に基づいて、地絡電流が発生した時刻を示す変化点を特定する機能を有する。さらに、地絡点標定部131dは、変化点に基づいて、電力系統における地絡電流が発生した地絡点Pを標定する機能を有する。 The ground fault point setting unit 131d has a function of specifying a change point indicating the time when the ground fault current occurs based on the ground fault current waveform in which the gain is amplified. Further, the ground fault point locating unit 131d has a function of locating the ground fault point P in which the ground fault current is generated in the power system based on the change point.

このような演算処理部131を有する地絡点標定装置130は、高周波領域の地絡電流を高精度に検出できる第1,第2電流検出装置110,120で検出される微弱な地絡電流を増幅して、正確に変化点を特定することにより、地絡点Pを標定することができる。以下、地絡点Pを標定する標定手順について、詳細に説明する。 The ground fault point locating device 130 having such an arithmetic processing unit 131 detects a weak ground fault current detected by the first and second current detection devices 110 and 120 capable of detecting the ground fault current in the high frequency region with high accuracy. The ground fault point P can be defined by amplifying and accurately identifying the change point. Hereinafter, the locating procedure for locating the ground fault point P will be described in detail.

===地絡点の標定手順===
図7〜図11を参照しつつ、地絡点標定システム100における地絡点の標定手順について、以下のとおり説明する。図7は、本実施形態に係る地絡点標定システム100の動作フローを示す図である。図8は、本実施形態に係る第1及び第2電流検出装置110,120の地絡電流波形の一例を示す図である。図9は、本実施形態に係る第2電流検出装置120の地絡電流波形のゲインを増幅した一例を示す図である。図10は、本実施形態に係る第1及び第2電流検出装置110,120の地絡電流波形の一例を示す図である。図11は、本実施形態に係る第1及び第2電流検出装置110,120の地絡電流波形のゲインを増幅した一例を示す図である。
=== Ground fault setting procedure ===
The procedure for locating the ground fault point in the ground fault point locating system 100 will be described as follows with reference to FIGS. 7 to 11. FIG. 7 is a diagram showing an operation flow of the ground fault point determination system 100 according to the present embodiment. FIG. 8 is a diagram showing an example of ground fault current waveforms of the first and second current detection devices 110 and 120 according to the present embodiment. FIG. 9 is a diagram showing an example in which the gain of the ground fault current waveform of the second current detection device 120 according to the present embodiment is amplified. FIG. 10 is a diagram showing an example of ground fault current waveforms of the first and second current detection devices 110 and 120 according to the present embodiment. FIG. 11 is a diagram showing an example in which the gain of the ground fault current waveforms of the first and second current detection devices 110 and 120 according to the present embodiment is amplified.

電力系統において地絡事故が発生する(S100)。第1及び第2電流検出装置110,120は、配電線300に流れる地絡電流を検出し、地絡電流に関する情報を地絡点標定装置130に送信する(S101)。上述したように、本実施形態に係る第1及び第2電流検出装置110,120は、地絡点Pから長大な距離が離れていても、高精度に地絡電流を検出できる。なお、本標定手順においては、一例として、第1電流検出装置110と第2電流検出装置120の間で生じる地絡点Pを標定する手順について説明するが、言うまでもなく、3台以上の電流検出装置を用いても同様に標定できる。 A ground fault occurs in the power system (S100). The first and second current detection devices 110 and 120 detect the ground fault current flowing through the distribution line 300 and transmit information on the ground fault current to the ground fault point locating device 130 (S101). As described above, the first and second current detection devices 110 and 120 according to the present embodiment can detect the ground fault current with high accuracy even if they are separated from the ground fault point P by a long distance. In this localization procedure, as an example, a procedure for defining a ground fault point P generated between the first current detection device 110 and the second current detection device 120 will be described, but it goes without saying that three or more current detection devices are detected. The same can be done by using the device.

判定部131aは、第1及び第2電流検出装置110,120から受信する地絡電流に関する情報に基づいて、地絡電流の電流値が所定の電流値以上か否かを判定する(S102)。 The determination unit 131a determines whether or not the current value of the ground fault current is equal to or higher than a predetermined current value based on the information regarding the ground fault current received from the first and second current detection devices 110 and 120 (S102).

地絡電流が所定の電流値以上である場合(S102:YES)、比較特定部131bに処理を移行させる。 When the ground fault current is equal to or higher than a predetermined current value (S102: YES), the process is shifted to the comparative identification unit 131b.

次に、比較特定部131bは、第1電流検出装置110および第2電流検出装置120のそれぞれで検出される地絡電流の電流値を比較する(S103)。そして、比較特定部131bは、最も大きい地絡電流よりも小さい地絡電流を示す電流検出装置を特定する(S104)。つまり、配電線300における地絡電流は地絡点Pを基準として電源側よりも負荷側の方が小さい電流値を示すため、比較特定部131bは、負荷側の第2電流検出装置120を特定する。比較特定部131bは、増幅部131cに処理を移行させる。 Next, the comparison identification unit 131b compares the current values of the ground fault currents detected by the first current detection device 110 and the second current detection device 120 (S103). Then, the comparative identification unit 131b identifies a current detection device that shows a ground fault current smaller than the largest ground fault current (S104). That is, since the ground fault current in the distribution line 300 shows a smaller current value on the load side than on the power supply side with reference to the ground fault point P, the comparison identification unit 131b specifies the second current detection device 120 on the load side. To do. The comparative identification unit 131b shifts the process to the amplification unit 131c.

上述したS102(:YES)〜S104について、より具体的に説明する。図8(A)では、第1電流検出装置110で検出される地絡電流に対応する地絡電流波形(以下、「第1地絡電流波形」と称する。)を示している。図8(A)に示すように、第1地絡電流波形は、電流値I0を示す定常電流に地絡電流が重畳することにより形成される。また、第1地絡電流波形は、t1時点付近で発生していることがわかる。図8(B)では、第2電流検出装置120で検出される地絡電流に対応する地絡電流波形(以下、「第2地絡電流波形」と称する。)を示している。第2地絡電流波形は、t2時点付近で発生していることがわかる。そして、図8(A)、図8(B)に示すように、電流値I1及びI2を示す夫々の地絡電流は、所定の電流値Ipを超える。つまり、判定部131aは、第1及び第2地絡電流検出装置で検出される地絡電流の電流値I1及びI2が所定の電流値Ipを超えることを判定する。そして、比較特定部131bは、電流値I1を示す第1地絡電流よりも電流値I2を示す第2地絡電流の方が小さいことを特定する。したがって、本標定手順では、第2電流検出装置120が特定されることとして、以下説明を続ける。 The above-mentioned S102 (: YES) to S104 will be described more specifically. FIG. 8A shows a ground fault current waveform (hereinafter, referred to as “first ground fault current waveform”) corresponding to the ground fault current detected by the first current detection device 110. As shown in FIG. 8A, the first ground fault current waveform is formed by superimposing the ground fault current on the steady current indicating the current value I0. Further, it can be seen that the first ground fault current waveform is generated near the time point t1. FIG. 8B shows a ground fault current waveform (hereinafter, referred to as “second ground fault current waveform”) corresponding to the ground fault current detected by the second current detection device 120. It can be seen that the second ground fault current waveform is generated near the time point t2. Then, as shown in FIGS. 8A and 8B, the ground fault currents showing the current values I1 and I2 each exceed a predetermined current value Ip. That is, the determination unit 131a determines that the current values I1 and I2 of the ground fault current detected by the first and second ground fault current detection devices exceed a predetermined current value Ip. Then, the comparative identification unit 131b identifies that the second ground fault current showing the current value I2 is smaller than the first ground fault current showing the current value I1. Therefore, in this localization procedure, the second current detection device 120 will be specified, and the following description will be continued.

次に、増幅部131cは、特定された第2電流検出装置120で検出される第2地絡電流波形のゲインを増幅する増幅度を算出する(S105)。増幅度は、後述する変化点を特定できる程度に第2地絡電流波形のゲインを増幅する度合である。増幅部131cは、算出した増幅度で第2地絡電流波形のゲインを増幅する(S106)。 Next, the amplification unit 131c calculates the amplification degree for amplifying the gain of the second ground fault current waveform detected by the specified second current detection device 120 (S105). The degree of amplification is the degree of amplifying the gain of the second ground fault current waveform to the extent that a change point described later can be specified. The amplification unit 131c amplifies the gain of the second ground fault current waveform with the calculated amplification degree (S106).

上述したS105、S106について、より具体的に説明する。図9では、第2地絡電流波形のゲインを増幅した地絡電流波形(以下、「第2増幅地絡電流波形」と称する。)を示している。第2地絡電流波形のゲインを増幅するということは、第2地絡電流波形の振幅を増幅させることをいう。これにより、第2増幅地絡電流波形における立ち下がり角度Bが増幅前の立ち下がり角度Aに比べて鋭くなる。 The above-mentioned S105 and S106 will be described more specifically. FIG. 9 shows a ground fault current waveform in which the gain of the second ground fault current waveform is amplified (hereinafter, referred to as “second amplified ground fault current waveform”). Amplifying the gain of the second ground fault current waveform means amplifying the amplitude of the second ground fault current waveform. As a result, the fall angle B in the second amplified ground fault current waveform becomes sharper than the fall angle A before amplification.

一方、地絡電流が所定の電流値未満である場合(S102:NO)、増幅部131cに処理を移行させる。 On the other hand, when the ground fault current is less than a predetermined current value (S102: NO), the process is shifted to the amplification unit 131c.

上述したS102(:NO)について、より具体的に説明する。図10(A)では第1地絡電流波形を示し、図10(B)では第2地絡電流波形を示している。第1及び第2電流検出装置110,120で検出され、電流値I3及びI4を示す夫々の地絡電流は、所定の電流値Ipを超えないことがわかる。つまり、判定部131aは、第1及び第2地絡電流検出装置で検出される地絡電流の電流値I3及びI4が所定の電流値Ipを超えないことを判定する。 The above-mentioned S102 (: NO) will be described more specifically. FIG. 10A shows a first ground fault current waveform, and FIG. 10B shows a second ground fault current waveform. It can be seen that the ground fault currents detected by the first and second current detectors 110 and 120 and showing the current values I3 and I4 do not exceed the predetermined current values Ip. That is, the determination unit 131a determines that the current values I3 and I4 of the ground fault current detected by the first and second ground fault current detection devices do not exceed the predetermined current values Ip.

次に、増幅部131cは、第1電流検出装置110および第2電流検出装置120のそれぞれで検出される地絡電流に対応する第1地絡電流波形および第2地絡電流波形のゲインを、増幅部131cの性能の範囲内における所定の増幅度で増幅する(S107)。これにより、後述する変化点を特定しやすくなる。 Next, the amplification unit 131c obtains the gains of the first ground fault current waveform and the second ground fault current waveform corresponding to the ground fault currents detected by the first current detection device 110 and the second current detection device 120, respectively. Amplification is performed at a predetermined amplification degree within the range of the performance of the amplification unit 131c (S107). This makes it easier to identify the change points described later.

次に、地絡点標定部131dは、図11(A)に示すように、第1地絡電流波形のゲインを増幅した第1増幅地絡電流波形における地絡電流の検出時刻t3を特定し、図11(B)に示すように、第2地絡電流波形のゲインを増幅した第2増幅地絡電流波形における地絡電流の検出時刻t4を特定する(S108)。なお、検出時刻t3および検出時刻t4を変化点と称する。これにより、地絡点標定部131dは、地絡点Pを標定することができる(S109)。 Next, as shown in FIG. 11A, the ground fault point locating unit 131d specifies the detection time t3 of the ground fault current in the first amplified ground fault current waveform in which the gain of the first ground fault current waveform is amplified. As shown in FIG. 11B, the detection time t4 of the ground fault current in the second amplified ground fault current waveform obtained by amplifying the gain of the second ground fault current waveform is specified (S108). The detection time t3 and the detection time t4 are referred to as change points. As a result, the ground fault point setting unit 131d can determine the ground fault point P (S109).

尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 It should be noted that the above embodiment is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.

===まとめ===
以上説明したように、本実施形態に係る地絡点標定システム100は、電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が、該磁束密度の変化に対応する透磁率の変化の度合いに基づいて定められる所定の磁束密度値以下となるような、環状に形成される巻芯111a,121aと、配電線300が貫通する巻芯111a,121aに地絡電流を検出するべく巻回されるコイル111b,121bと、を有する複数のセンサ111,121と、複数のセンサ111,121のそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する比較特定部131bと、比較特定部131bで特定された第2地絡電流に対応する地絡電流波形を増幅する増幅部131cと、増幅部131cで増幅された地絡電流波形において、第2地絡電流の発生時刻を表す変化点を特定し、変化点に基づいて、電力系統における地絡電流が発生した地点を示す地絡点Pを標定する地絡点標定部131dと、備える。本実施形態によれば、高周波領域の地絡電流を高感度に検出できるセンサ111,121を用いて、微小な地絡電流をも検出することができ、その地絡電流波形のゲインを増幅しつつ、変化点を正確に特定し、地絡点Pを標定することができる。
=== Summary ===
As described above, in the ground fault point determination system 100 according to the present embodiment, the magnetic flux density of the magnetic flux generated when the ground fault current flows through the power line of the power system is the change in the magnetic permeability corresponding to the change in the magnetic flux density. The winding cores 111a and 121a formed in an annular shape and the winding cores 111a and 121a through which the distribution wire 300 penetrates are wound to detect a ground fault current so as to be equal to or less than a predetermined magnetic flux density value determined based on the degree of Of the ground fault currents detected by the plurality of sensors 111, 121 having the rotated coils 111b, 121b, and the plurality of sensors 111, 121, respectively, the first ground fault current showing the largest current value. A comparative identification unit 131b that specifies a second ground fault current showing a small current value, an amplification unit 131c that amplifies the ground fault current waveform corresponding to the second ground fault current specified by the comparison specific unit 131b, and an amplification unit 131c. In the ground fault current waveform amplified by, the change point representing the occurrence time of the second ground fault current is specified, and the ground fault point P indicating the point where the ground fault current occurs in the power system is defined based on the change point. It is provided with a ground fault point setting unit 131d. According to this embodiment, even a minute ground fault current can be detected by using the sensors 111 and 121 capable of detecting the ground fault current in the high frequency region with high sensitivity, and the gain of the ground fault current waveform is amplified. At the same time, the change point can be accurately identified and the ground fault point P can be defined.

又、本実施形態に係る地絡点標定システム100は、複数のセンサ111,121で検出された複数の地絡電流が所定の電流値以上か否かを判定する判定部131aをさらに備え、判定部131aで複数の地絡電流が所定の電流値未満であると判定された場合、増幅部131cは、複数のセンサ111,121で検出される複数の地絡電流に対応する複数の地絡電流波形を増幅し、地絡点標定部131dは、増幅部131cで増幅された第1,第2増幅地絡電流波形における地絡電流の発生時刻を表す変化点を特定し、変化点に基づいて、電力系統における地絡電流が発生した地点を示す地絡点Pを標定する。本実施形態によれば、地絡電流波形を増幅することで変化点を正確に特定し、地絡点Pを標定することができる。 Further, the ground fault point determination system 100 according to the present embodiment further includes a determination unit 131a for determining whether or not the plurality of ground fault currents detected by the plurality of sensors 111 and 121 are equal to or higher than a predetermined current value. When the unit 131a determines that the plurality of ground fault currents is less than a predetermined current value, the amplification unit 131c has a plurality of ground fault currents corresponding to the plurality of ground fault currents detected by the plurality of sensors 111 and 121. The waveform is amplified, and the ground fault point locating unit 131d identifies a change point representing the generation time of the ground fault current in the first and second amplified ground fault current waveforms amplified by the amplification unit 131c, and is based on the change point. , The ground fault point P indicating the point where the ground fault current is generated in the power system is defined. According to this embodiment, the change point can be accurately specified and the ground fault point P can be defined by amplifying the ground fault current waveform.

又、本実施形態に係る地絡点標定システム100の地絡点標定部131dは、変化点から逆算して地絡点Pにおける地絡電流が発生した時刻を算出することで、地絡点Pを標定する。本実施形態によれば、正確に特定された変化点に基づいて、正確に地絡点Pを標定することができる。 Further, the ground fault point locating unit 131d of the ground fault point locating system 100 according to the present embodiment calculates the time when the ground fault current is generated at the ground fault point P by calculating back from the change point, thereby calculating the ground fault point P. To position. According to the present embodiment, the ground fault point P can be accurately located based on the accurately identified change point.

又、本実施形態に係る地絡点標定システム100における所定の磁束密度値は、配電線300に地絡電流が流れる際の磁束密度の増加率と透磁率の増加率との一致の度合いに基づいて定められる。本実施形態によれば、磁束密度Bの変化に対して比透磁率μrの変化が安定するため、各相のセンサ111,121のばらつきを少なくできる。 Further, the predetermined magnetic flux density value in the ground fault point positioning system 100 according to the present embodiment is based on the degree of coincidence between the increase rate of the magnetic flux density and the increase rate of the magnetic permeability when the ground fault current flows through the distribution line 300. Is determined. According to this embodiment, since the change in the relative magnetic permeability μr is stable with respect to the change in the magnetic flux density B, the variation in the sensors 111 and 121 of each phase can be reduced.

又、本実施形態に係る地絡点標定システム100の巻芯111a,121aは、磁束密度が前記所定の磁束密度値以下となるような断面積及び長さを有して構成される。本実施形態によれば、センサ111,121の大型化を抑制できる。 Further, the winding cores 111a and 121a of the ground fault point positioning system 100 according to the present embodiment are configured to have a cross-sectional area and a length such that the magnetic flux density is equal to or less than the predetermined magnetic flux density value. According to this embodiment, it is possible to suppress the increase in size of the sensors 111 and 121.

又、本実施形態に係る地絡点標定システム100のセンサ111,121は、コイル111b,121bの巻数が所定の巻数以下になるように定められていなる。本実施形態によれば、微弱な地絡電流であっても2次電流のレベルが増加することで検出することが可能となるため、センサ111,121における、地絡電流の検出可能なレンジを広げることができる。 Further, the sensors 111 and 121 of the ground fault point determination system 100 according to the present embodiment are defined so that the number of turns of the coils 111b and 121b is equal to or less than a predetermined number of turns. According to this embodiment, even a weak ground fault current can be detected by increasing the level of the secondary current. Therefore, the range in which the ground fault current can be detected in the sensors 111 and 121 is set. Can be expanded.

又、本実施形態に係る地絡点標定システム100を適用する電力系統は、22kVの特別高圧配電系統である。本実施形態によれば、周波数特性の高いセンサを用いるため、一般的に抵抗接地方式あるいは非接地方式が適用される22kV特別高圧配電系統においても、正確に地絡点Pを標定できる。 The power system to which the ground fault point positioning system 100 according to the present embodiment is applied is a 22 kV special high voltage distribution system. According to this embodiment, since a sensor having high frequency characteristics is used, the ground fault point P can be accurately defined even in a 22 kV special high voltage distribution system to which a resistance grounding method or a non-grounding method is generally applied.

又、本実施形態に係る地絡点標定システム100における時刻は、GPSから送信される時刻情報に基づいて特定される。本実施形態によれば、正確な時刻により、正確に地絡点Pを標定できる。 Further, the time in the ground fault point positioning system 100 according to the present embodiment is specified based on the time information transmitted from GPS. According to this embodiment, the ground fault point P can be accurately determined at an accurate time.

10 地絡点標定システム
111,121 センサ
111a,121a 巻芯
111b,121b コイル
131a 判定部
131b 比較特定部
131c 増幅部
131d 地絡点標定部
10 Ground fault point locating system 111, 121 Sensor 111a, 121a Winding core 111b, 121b Coil 131a Judgment unit 131b Comparison specific unit 131c Amplification unit 131d Ground fault point locating unit

Claims (9)

電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサと、
前記複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する比較特定部と、
前記比較特定部で特定された前記第2地絡電流に対応する地絡電流波形を増幅する増幅部と、
前記増幅部で増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する地絡点標定部と、
を備えることを特徴とする地絡点標定システム。
The ground fault is formed between a winding core formed in an annular shape so that the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or less than a predetermined magnetic flux density value, and the winding core through which the power line penetrates. Multiple sensors with a coil that is wound to detect current, and
Among the ground fault currents detected by each of the plurality of sensors, a comparative identification unit that specifies a second ground fault current that indicates a current value smaller than the first ground fault current that indicates the largest current value, and a comparative identification unit.
An amplification unit that amplifies the ground fault current waveform corresponding to the second ground fault current specified by the comparison specific unit, and an amplification unit.
In the ground fault current waveform amplified by the amplification unit, a change point representing the occurrence time of the second ground fault current is specified, and a point at which the ground fault current is generated in the power system based on the change point. The ground fault setting part that defines the ground fault point indicating
A ground fault locating system characterized by being equipped with.
前記地絡点標定部は、前記変化点から逆算して前記地絡点における前記地絡電流が発生した時刻を算出することで、前記地絡点を標定する
ことを特徴とする請求項1に記載の地絡点標定システム。
The ground絡点orientation section, by calculating the time at which the ground fault current in the ground絡点by back calculation from the change point has occurred in claim 1, characterized by locating the land絡点The described ground fault point positioning system.
前記所定の磁束密度値は、前記電力線に前記地絡電流が流れる際の前記磁束密度の増加率と、前記磁束密度に対応する透磁率の増加率との一致の度合いに基づいて定められる
ことを特徴とする請求項1又は請求項2に記載の地絡点標定システム。
The predetermined magnetic flux density value is determined based on the degree of coincidence between the increase rate of the magnetic flux density when the ground fault current flows through the power line and the increase rate of the magnetic permeability corresponding to the magnetic flux density. The ground fault locating system according to claim 1 or 2, which is characterized.
前記巻芯は、前記磁束密度が前記所定の磁束密度値以下となるような断面積及び長さを有して構成される
ことを特徴とする請求項1乃至請求項3の何れか一項に記載の地絡点標定システム。
The winding core has a cross-sectional area and a length such that the magnetic flux density is equal to or less than the predetermined magnetic flux density value, according to any one of claims 1 to 3. The described ground fault point positioning system.
前記センサは、前記コイルの巻数が所定の巻数以下になるように定められてなる
ことを特徴とする請求項1乃至請求項4の何れか一項に記載の地絡点標定システム。
The ground fault point determination system according to any one of claims 1 to 4 , wherein the sensor is defined so that the number of turns of the coil is equal to or less than a predetermined number of turns.
前記電力系統は、22kVの特別高圧配電系統である
ことを特徴とする請求項1乃至請求項5の何れか一項に記載の地絡点標定システム。
The ground fault locating system according to any one of claims 1 to 5 , wherein the power system is a 22 kV special high-voltage power distribution system.
前記時刻は、GPSから送信される時刻情報に基づいて特定される
ことを特徴とする請求項1乃至請求項6の何れか一項に記載の地絡点標定システム。
The ground fault locating system according to any one of claims 1 to 6 , wherein the time is specified based on time information transmitted from GPS.
電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が、前記磁束密度の変化に対応する透磁率の変化の度合いに基づいて定められる所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定し、
特定された前記第2地絡電流に対応する地絡電流波形を増幅し、
増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する
ことを特徴とする地絡点標定方法。
An annular structure in which the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or less than a predetermined magnetic flux density value determined based on the degree of change in the magnetic permeability corresponding to the change in the magnetic flux density. Of the ground fault currents detected by each of the plurality of sensors having the winding core formed in the above and the coil wound around the winding core through which the power line penetrates to detect the ground fault current. Identify the second ground fault current that shows a smaller current value than the first ground fault current that shows a larger current value.
Amplify the ground fault current waveform corresponding to the specified second ground fault current,
In the amplified ground fault current waveform, a change point representing the occurrence time of the second ground fault current is specified, and based on the change point, a ground fault indicating the point where the ground fault current is generated in the power system. A ground fault point locating method characterized by locating a point.
地絡点標定システムに用いられる演算処理装置に、
電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が、前記磁束密度の変化に対応する透磁率の変化の度合いに基づいて定められる所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する機能と、
特定された前記第2地絡電流に対応する地絡電流波形を増幅する機能と、
増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する機能と、
を実行させるプログラム。
For the arithmetic processing unit used in the ground fault point determination system,
An annular structure in which the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or less than a predetermined magnetic flux density value determined based on the degree of change in the magnetic permeability corresponding to the change in the magnetic flux density. Of the ground fault currents detected by each of the plurality of sensors having the winding core formed in the above and the coil wound around the winding core through which the power line penetrates to detect the ground fault current. A function to identify the second ground fault current that shows a current value smaller than the first ground fault current that shows a large current value, and
A function to amplify the ground fault current waveform corresponding to the specified second ground fault current, and
In the amplified ground fault current waveform, a change point representing the occurrence time of the second ground fault current is specified, and based on the change point, a ground fault indicating the point where the ground fault current is generated in the power system. The function to set points and
A program that executes.
JP2017110635A 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program Active JP6881044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110635A JP6881044B2 (en) 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110635A JP6881044B2 (en) 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program

Publications (2)

Publication Number Publication Date
JP2018205109A JP2018205109A (en) 2018-12-27
JP6881044B2 true JP6881044B2 (en) 2021-06-02

Family

ID=64955656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110635A Active JP6881044B2 (en) 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program

Country Status (1)

Country Link
JP (1) JP6881044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360663B2 (en) * 2019-10-17 2023-10-13 西日本電線株式会社 Abnormal location identification device, system and program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157997A (en) * 1985-12-28 1987-07-13 ホーチキ株式会社 Sensor
JPS631980A (en) * 1986-06-20 1988-01-06 Tokyo Electric Power Co Inc:The Apparatus for locating trouble point of power distributing system
JPS6385376A (en) * 1986-09-29 1988-04-15 Sumitomo Electric Ind Ltd Sensor for detecting accident section of transmission line
JPH09159717A (en) * 1995-12-11 1997-06-20 Toshiba Corp Method and device for detecting discharging position
JP2002228703A (en) * 2001-01-30 2002-08-14 Mitsubishi Cable Ind Ltd Failure point determination device for cable
JP2009232380A (en) * 2008-03-25 2009-10-08 Nec Corp Photo-detection power monitor circuit, optical transceiver, optical module, optical receiver, amplifier circuit, and integrated circuit
JP5761787B2 (en) * 2011-03-15 2015-08-12 国立大学法人信州大学 Sensor and adjustment method thereof
JP5950396B2 (en) * 2012-08-08 2016-07-13 一般財団法人電力中央研究所 Method and system for evaluating partial discharge occurrence position
JP5889152B2 (en) * 2012-09-20 2016-03-22 オムロンオートモーティブエレクトロニクス株式会社 Light receiving circuit, laser radar
JP6449663B2 (en) * 2015-02-03 2019-01-09 中国電力株式会社 Fault location method and fault location system

Also Published As

Publication number Publication date
JP2018205109A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US9606147B2 (en) Apparatus for high bandwidth current sensing
JP6327411B1 (en) Ground fault location system, ground fault location method
GB2547732A (en) Current sensor for a switch gear protection relay
US20170059623A1 (en) Non-contact sensor based rogowski coil
US9218905B2 (en) AC/DC current transformer
JP6881044B2 (en) Ground fault point locating system, ground fault locating method and program
JP6790405B2 (en) Current detection sensor and ground fault point positioning system
CN105359365B (en) Method and apparatus for complexity, common ground error protection in high pressure electric system
KR101488690B1 (en) Method and current measuring device to measure current by cancelling adjacent current interference
Shah et al. Assessing mechanical deformations in two-winding transformer unit using reduced-order circuit model
AU2012259127A1 (en) AC/DC current transformer
JP4865436B2 (en) Ground fault location method and apparatus
EP2378296A1 (en) Method and arrangement for determining impedance values
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
Antony et al. Suitability of Rogowski coil for DC shipboard protection
JP6678539B2 (en) Phase loss detection system, phase loss detection device, and phase loss detection method
US4305785A (en) Sensor for detecting changes in magnetic fields
KR100821705B1 (en) Earth resistance measurement method by clamp-on type current comparison
JPH07244111A (en) Leakage current detecting sensor
CN109507521B (en) Method and device for acquiring grounding current full-compensation output value of controllable voltage source
JP2017204973A (en) Phase interruption detection system, phase interruption detection apparatus and phase interruption detection method
Paophan et al. Partial Discharge Measurement Based on an Inductive Mode Air-Core Sensor
JP2020517043A (en) Manufacturing method of measuring sensor for circuit breaker
CN203376382U (en) Leakage current detection apparatus
US11799279B2 (en) Multifunction single core sensor for ground fault application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6881044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150