JP2018205109A - Ground point localization system - Google Patents

Ground point localization system Download PDF

Info

Publication number
JP2018205109A
JP2018205109A JP2017110635A JP2017110635A JP2018205109A JP 2018205109 A JP2018205109 A JP 2018205109A JP 2017110635 A JP2017110635 A JP 2017110635A JP 2017110635 A JP2017110635 A JP 2017110635A JP 2018205109 A JP2018205109 A JP 2018205109A
Authority
JP
Japan
Prior art keywords
ground fault
fault current
current
magnetic flux
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017110635A
Other languages
Japanese (ja)
Other versions
JP6881044B2 (en
Inventor
大原 久征
Hisamasa Ohara
久征 大原
秀行 瀧澤
Hideyuki Takizawa
秀行 瀧澤
純也 狩野
Junya Kano
純也 狩野
和博 小林
Kazuhiro Kobayashi
和博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2017110635A priority Critical patent/JP6881044B2/en
Publication of JP2018205109A publication Critical patent/JP2018205109A/en
Application granted granted Critical
Publication of JP6881044B2 publication Critical patent/JP6881044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a ground point localization system that can identify a ground fault point even for a minute ground fault current.SOLUTION: This invention includes a plurality of sensors having a winding core formed in an annular shape such that a magnetic flux density of a magnetic flux generated when the ground fault current flows through a power line of a power system becomes equal to or less than a predetermined magnetic flux density value, and a coil wound around the winding core through which the electric power line is passed; a comparison specifying unit for specifying a second ground fault current indicating a current value smaller than a first ground fault current indicating the highest current value among the ground fault currents detected by each of the plurality of sensors; an amplification unit for amplifying a ground fault current waveform corresponding to a second ground fault current identified by the comparison specifying unit; and ground point localization unit identifying a change point representing a generation time of the second ground fault current in the ground fault current waveform amplified by the amplifying unit and showing the point at which the ground fault current in the power system is generated based on the change point.SELECTED DRAWING: Figure 6

Description

本発明は、地絡点標定システムに関する。   The present invention relates to a ground fault location system.

例えば、電力系統で地絡事故が発生したときに、地絡点を検出するための電流検出センサが知られている。(例えば特許文献1)。   For example, a current detection sensor for detecting a ground fault point when a ground fault occurs in a power system is known. (For example, patent document 1).

特開平5−268723号公報JP-A-5-268723 特開2004−132762号公報JP 2004-132762 A

特許文献1には、地絡検出単位区間において零相電流の位相を検出することにより、当該地絡検出単位区間に地絡が生じているか否かを判定する方法が開示されている。しかし、特許文献1に係る方法では、当該地絡検出単位区間で地絡事故が生じているか否かを判定できるものの、当該地絡検出単位区間のどの地点で地絡事故が生じているかを特定することができないため、地絡点の特定に時間を要する虞があった。   Patent Document 1 discloses a method for determining whether or not a ground fault has occurred in the ground fault detection unit section by detecting the phase of the zero-phase current in the ground fault detection unit section. However, in the method according to Patent Document 1, although it is possible to determine whether or not a ground fault has occurred in the ground fault detection unit section, it is possible to identify at which point in the ground fault detection unit section the ground fault has occurred. Therefore, it may take time to specify the ground fault point.

また、特許文献2には、送配電線路の零相電流および零相電圧を検出することにより、各地点におけるサージ到達時刻の差を算出することで地絡点を標定するシステムが開示されている。当該システムは、零相電流の波形データと零相電圧の急変を検出した時点を示す時刻データとに基づいてサージ到達時刻を算出する機能を有する。しかし、特許文献2に係るシステムでは、変電所の遮断器が動作するようなサージ電流の大きな地絡事故に対しては機能するものの、遮断器が動作しないようなサージ電流の小さな地絡事故に対しては地絡点の特定ができない虞があった。   Further, Patent Document 2 discloses a system for determining a ground fault point by calculating a difference in surge arrival time at each point by detecting a zero-phase current and a zero-phase voltage of a transmission and distribution line. . The system has a function of calculating the surge arrival time based on the waveform data of the zero-phase current and the time data indicating the time point when the sudden change in the zero-phase voltage is detected. However, in the system according to Patent Document 2, although it works for a ground fault accident with a large surge current such that a circuit breaker of a substation operates, a ground fault accident with a small surge current such that the circuit breaker does not operate. On the other hand, there was a possibility that the ground fault point could not be specified.

前述した課題を解決する主たる本発明は、電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサと、前記複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する比較特定部と、前記比較特定部で特定された前記第2地絡電流に対応する地絡電流波形を増幅する増幅部と、前記増幅部で増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する地絡点標定部と、を備えることを特徴とする。   The main present invention for solving the above-mentioned problems is that the core formed in an annular shape so that the magnetic flux density of the magnetic flux generated when the ground fault current flows through the power line of the power system is a predetermined magnetic flux density value or less, A plurality of sensors having a coil wound around the winding core through which the power line passes to detect the ground fault current, and the largest current value among the ground fault currents detected by each of the plurality of sensors. A comparison and identification unit that identifies a second ground fault current that indicates a current value smaller than the first ground fault current that indicates and a ground fault current waveform that corresponds to the second ground fault current that is identified by the comparison and identification unit And a change point representing a generation time of the second ground fault current in the ground fault current waveform amplified by the amplifier, and based on the change point, the ground fault in the power system Ground fault point indicating the point where the current occurred Characterized in that it comprises a and the earth 絡点 orientation section for orientation.

本発明の他の特徴については、添付図面および本明細書の記載により明らかとなる。   Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明によれば、微小な地絡電流に対しても地絡点を特定することが可能となる。   According to the present invention, it is possible to specify a ground fault point even for a small ground fault current.

本実施形態に係る地絡点標定システムを示す図である。It is a figure which shows the ground fault location system which concerns on this embodiment. 本実施形態に係るセンサ箱を示す図である。It is a figure which shows the sensor box which concerns on this embodiment. 本実施形態に係る電流検出用のセンサを示す図である。It is a figure which shows the sensor for electric current detection which concerns on this embodiment. 本実施形態に係る巻芯の特性を示す図である。It is a figure which shows the characteristic of the core which concerns on this embodiment. 本実施形態に係る巻芯の特性を示す図である。It is a figure which shows the characteristic of the core which concerns on this embodiment. 本実施形態に係る地絡点標定装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the ground fault point location apparatus which concerns on this embodiment. 本実施形態に係る地絡点標定システムの動作フローを示す図である。It is a figure which shows the operation | movement flow of the ground fault location system which concerns on this embodiment. 本実施形態に係る第1及び第2電流検出装置の地絡電流波形の一例を示す図である。It is a figure which shows an example of the ground fault current waveform of the 1st and 2nd current detection apparatus which concerns on this embodiment. 本実施形態に係る第2電流検出装置の地絡電流波形のゲインを増幅した一例を示す図である。It is a figure which shows an example which amplified the gain of the ground fault current waveform of the 2nd current detection apparatus which concerns on this embodiment. 本実施形態に係る第1及び第2電流検出装置の地絡電流波形の一例を示す図である。It is a figure which shows an example of the ground fault current waveform of the 1st and 2nd current detection apparatus which concerns on this embodiment. 本実施形態に係る第1及び第2電流検出装置の地絡電流波形のゲインを増幅した一例を示す図である。It is a figure which shows an example which amplified the gain of the ground fault current waveform of the 1st and 2nd current detection apparatus which concerns on this embodiment.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。以下の説明において、同一符号を付した部分は同一の要素を表し、その基本的な構成および動作は同様であるものとする。   At least the following matters will become apparent from the description of this specification and the accompanying drawings. In the following description, parts denoted by the same reference numerals represent the same elements, and the basic configuration and operation thereof are the same.

===地絡点標定システム100===
図1を参照しつつ、地絡点標定システム100について、以下のとおり説明する。図1は、本実施形態に係る地絡点標定システム100を示す図である。
=== Ground fault location system 100 ===
The ground fault location system 100 will be described as follows with reference to FIG. FIG. 1 is a diagram showing a ground fault location system 100 according to the present embodiment.

地絡点標定システム100は、電力系統(本実施形態では22kV配電系統)において地絡事故が発生した箇所(以下、「地絡点P」と称する。)を標定するためのシステムである。図1に示すように、地絡点標定システム100は、電力系統において、電源側に設けられる第1電流検出装置110と、負荷側に設けられる第2電流検出装置120と、地絡点Pを標定する地絡点標定装置130と、を含んで構成されている。図1では、説明の便宜上、第1電流検出装置110および第2電流検出装置120の2台が電力系統に設けられるように示されているが、電流検出装置は2台を超えて設けられていてもよい。   The ground fault location system 100 is a system for locating a location (hereinafter referred to as “ground fault point P”) where a ground fault has occurred in the power system (22 kV distribution system in this embodiment). As shown in FIG. 1, the ground fault location system 100 includes a first current detection device 110 provided on the power supply side, a second current detection device 120 provided on the load side, and a ground fault point P in the power system. And a ground fault point locating device 130 for locating. In FIG. 1, for convenience of explanation, two units of the first current detection device 110 and the second current detection device 120 are shown to be provided in the power system, but the current detection devices are provided in excess of two units. May be.

==第1,第2電流検出装置110,120==
図2、図3、図4、図5を参照しつつ、第1,第2電流検出装置110,120について、以下のとおり説明する。図2は、本実施形態に係るセンサ箱112を示す図である。図3は、本実施形態に係る電流検出用のセンサ111を示す図である。図4、図5は、本実施形態に係る巻芯111aの特性を示す図である。なお、以下説明においては、代表的に、第1電流検出装置110について説明をするが、第2電流検出装置120についても同様であり、不図示の電流検出装置についても同様とする。
== First and second current detectors 110, 120 ==
The first and second current detection devices 110 and 120 will be described as follows with reference to FIGS. 2, 3, 4, and 5. FIG. 2 is a diagram illustrating the sensor box 112 according to the present embodiment. FIG. 3 is a diagram showing a current detection sensor 111 according to the present embodiment. 4 and 5 are diagrams illustrating characteristics of the core 111a according to the present embodiment. In the following description, the first current detection device 110 is typically described, but the same applies to the second current detection device 120, and the same applies to a current detection device (not shown).

第1電流検出装置110は、電力系統に設置され、電力系統の電力の状態に応じて変動する物理量を計測する装置である。第1電流検出装置110は、例えば、配電線300の電流あるいは電圧を含む電力系統の電力の状態に応じて変動する物理量を計測するセンサ111と、それを収容するセンサ箱112と、センサ111による計測結果を地絡点標定装置130に送信する計測端末113と、を含んで構成されている。   The first current detection device 110 is a device that is installed in the power system and measures a physical quantity that varies according to the power state of the power system. The first current detection device 110 includes, for example, a sensor 111 that measures a physical quantity that varies according to the power state of the power system including the current or voltage of the distribution line 300, a sensor box 112 that houses the sensor 111, and a sensor 111. And a measurement terminal 113 that transmits a measurement result to the ground fault location device 130.

センサ111で計測される物理量は、基本的に、配電線300の電流あるいは電圧などの物理量として説明するが、力率や周波数などを含んでいても良い。本実施形態では、これらの物理量に対する夫々の計測器をまとめてセンサ111と称する。   The physical quantity measured by the sensor 111 is basically described as a physical quantity such as a current or a voltage of the distribution line 300, but may include a power factor or a frequency. In the present embodiment, each measuring instrument for these physical quantities is collectively referred to as a sensor 111.

なお、一般的に特別高圧の電力系統は三相であるが、図1では、記載の簡略化のために配電線300を1本のみ記載している。実際には、図2に示すように、配電線300の各相にそれぞれセンサ箱112を設けている。そして、それぞれのセンサ箱112は、各相の配電線300に装着されて、それぞれのセンサ箱112に収容されるセンサ111で電力系統の電力の状態に応じて変動する物理量が計測される。   In general, the extra high voltage power system has three phases, but in FIG. 1, only one distribution line 300 is shown for the sake of simplicity. Actually, as shown in FIG. 2, sensor boxes 112 are provided in the respective phases of the distribution line 300. Each sensor box 112 is attached to the distribution line 300 of each phase, and a physical quantity that varies according to the power state of the power system is measured by the sensor 111 accommodated in each sensor box 112.

計測端末113は、配電線300の各相のセンサ111によって計測された物理量の計測値を、通信路200を介して地絡点標定装置130に送信する装置である。   The measurement terminal 113 is a device that transmits the measured value of the physical quantity measured by the sensor 111 of each phase of the distribution line 300 to the ground fault location device 130 via the communication path 200.

計測端末113は、センサ111で計測された配電線300の各相の物理量の値を用いて、電力系統の電力の状態に応じて変動する他の物理量の値を算出して、地絡点標定装置130に送信することもできる。   The measurement terminal 113 uses the physical quantity value of each phase of the distribution line 300 measured by the sensor 111 to calculate other physical quantity values that vary depending on the power state of the power system, and to determine the ground fault point location. It can also be transmitted to the device 130.

計測端末113は、例えば、配電線300の各相の電流値を取得し、取得した電流値を合成することにより、零相電流を算出して、それを地絡点標定装置130に送信する。あるいは、計測端末113は、配電線300の各相の電圧値を取得し、取得した電圧値を合成することにより、零相電圧を算出して、それを地絡点標定装置130に送信することとしてもよい。   For example, the measurement terminal 113 acquires a current value of each phase of the distribution line 300, combines the acquired current values, calculates a zero-phase current, and transmits it to the ground fault location device 130. Alternatively, the measurement terminal 113 acquires the voltage value of each phase of the distribution line 300, calculates the zero-phase voltage by combining the acquired voltage values, and transmits it to the ground fault location device 130. It is good.

なお、計測端末113は、GPS衛星1000から現在時刻を受信しているため、計測端末113で計測された電流値や電圧値および算出された零相電流や零相電圧と、時刻情報と、を対応付けて地絡点標定装置130に送信する。なお、以下において、零相電流を地絡電流として説明することもある。   Since the measurement terminal 113 receives the current time from the GPS satellite 1000, the current value and voltage value measured by the measurement terminal 113, the calculated zero-phase current and zero-phase voltage, and time information are obtained. Correspondingly, it is transmitted to the ground fault location device 130. In the following, the zero-phase current may be described as a ground fault current.

ところで、本実施形態に係る電力系統は22kV配電系統であるため、変電所(不図示)に設けられる変圧器(不図示)の接地方式は、抵抗接地方式や非接地方式が採用されている。抵抗接地方式は、変圧器の中性点と大地とを抵抗を介して導体で接続して接地する方式であり、非接地方式は、中性点接地を行わない方式である。   By the way, since the electric power system which concerns on this embodiment is a 22 kV distribution system, the resistance grounding system and the non-grounding system are employ | adopted for the grounding system of the transformer (not shown) provided in a substation (not shown). The resistance grounding method is a method in which a neutral point of the transformer and the ground are connected by a conductor via a resistor and grounded, and the non-grounding method is a method in which neutral point grounding is not performed.

そのため、配電線300に地絡が発生した場合に、変電所に設けられる変圧器の接地方式の違いによって、地絡電流のレンジが大きく異なる。例えば、抵抗接地方式では、中性点が抵抗で接地されているため、地絡電流が数百A(アンペア)程度になり、非接地方式では、数十mA(ミリアンペア)程度である。   Therefore, when a ground fault occurs in the distribution line 300, the range of the ground fault current varies greatly depending on the difference in the grounding method of the transformer provided in the substation. For example, in the resistance grounding method, the neutral point is grounded by a resistor, so that the ground fault current is about several hundred A (ampere), and in the non-grounding method, it is about several tens mA (milliampere).

このような場合であっても、本実施形態に係るセンサ111は、接地方式が抵抗接地方式であるか非接地方式であるかによらず地絡電流を検出することができるように構成されている。   Even in such a case, the sensor 111 according to the present embodiment is configured to detect a ground fault current regardless of whether the grounding method is a resistance grounding method or a non-grounding method. Yes.

図3に示すように、センサ111は、配電線300が貫通するように設けられる環状の巻芯111aと、配電線300が地絡した際に配電線300に生ずる地絡電流を検出するべく巻芯111aに巻回されるコイル111bと、を有して構成されている。センサ111は、配電線300に地絡電流が流れると、巻芯111aの磁束Φが変化し、それに伴ってコイル111bを流れる電流が変化する。コイル111bを流れる電流を不図示の検出器により検出することにより、配電線300に流れる地絡電流を検出することができる。   As shown in FIG. 3, the sensor 111 is wound so as to detect an annular winding core 111 a provided so as to penetrate the distribution line 300 and a ground fault current generated in the distribution line 300 when the distribution line 300 is grounded. A coil 111b wound around the core 111a. In the sensor 111, when a ground fault current flows through the distribution line 300, the magnetic flux Φ of the core 111a changes, and the current flowing through the coil 111b changes accordingly. By detecting the current flowing through the coil 111b with a detector (not shown), the ground fault current flowing through the distribution line 300 can be detected.

ここで、巻芯111aは、配電線300に地絡電流が流れる際に生ずる磁束の磁束密度Bが所定の磁束密度値以下となるように形成されている。巻芯111aに生ずる磁束の磁束密度Bがなるべく小さくなるようにセンサ111を形成することにより、センサ111が検出可能な地絡電流のレンジを拡大することができる。これにより、22kV配電系統の変圧器の接地方式が抵抗接地方式あるいは非接地方式のいずれであっても、地絡電流を検出することが可能となる。   Here, the core 111a is formed so that the magnetic flux density B of the magnetic flux generated when the ground fault current flows through the distribution line 300 is equal to or less than a predetermined magnetic flux density value. By forming the sensor 111 so that the magnetic flux density B of the magnetic flux generated in the core 111a is as small as possible, the range of the ground fault current that can be detected by the sensor 111 can be expanded. This makes it possible to detect a ground fault current regardless of whether the transformer grounding system of the 22 kV distribution system is a resistance grounding system or a non-grounding system.

つまり、巻芯111aに生ずる磁束の磁束密度Bが所定の磁束密度値以下になるように小さくすることにより、各相の配電線300に装着されるセンサ111の計測値のばらつきを小さくすることができ、これにより地絡電流を広帯域に計測することが可能となる。以下に、図4及び図5を参照しながら、巻芯111aについて、より詳細に説明する。   In other words, by reducing the magnetic flux density B of the magnetic flux generated in the winding core 111a to be equal to or less than a predetermined magnetic flux density value, it is possible to reduce the variation in the measured values of the sensors 111 attached to the distribution lines 300 of each phase. This makes it possible to measure the ground fault current over a wide band. Hereinafter, the core 111a will be described in more detail with reference to FIGS.

図4では、巻芯111aの比透磁率μrと、巻芯111aに生ずる磁束の磁束密度Bと、の関係を示す。巻芯111aがパーマロイコアである場合の特性曲線を例示するが、比透磁率μrの値は、磁束密度Bによって大きく異なることがわかる。このため、各相のセンサ111の特性のばらつきを抑えるためには、できるだけ比透磁率μrの変動が小さくなるような範囲の磁束密度Bが巻芯111aに発生することが必要である。   FIG. 4 shows the relationship between the relative permeability μr of the core 111a and the magnetic flux density B of the magnetic flux generated in the core 111a. A characteristic curve when the core 111a is a permalloy core is illustrated, but it can be seen that the value of the relative permeability μr varies greatly depending on the magnetic flux density B. For this reason, in order to suppress variations in the characteristics of the sensors 111 of the respective phases, it is necessary to generate a magnetic flux density B in a range in which the variation of the relative permeability μr is as small as possible on the core 111a.

図4を参照すると、磁束密度Bが小さいほど比透磁率μrの変動が小さいことがわかる。そこで、磁束密度Bが3000ガウス以下の場合の磁束密度Bと比透磁率μrとの関係を拡大して図5に示す。比透磁率μrの変化と磁束密度Bの変化が線形の関係、つまり配電線300に地絡電流が流れる際の磁束密度Bの増加率と比透磁率μrの増加率とが一致する関係にあれば、磁束密度Bの変化に対して比透磁率μrの変化が安定する。そして、この比透磁率μrが安定する磁束密度Bの範囲が各相のセンサ111のばらつきが少ない領域となる。   Referring to FIG. 4, it can be seen that the smaller the magnetic flux density B, the smaller the variation in the relative permeability μr. Therefore, FIG. 5 shows an enlarged relationship between the magnetic flux density B and the relative permeability μr when the magnetic flux density B is 3000 gauss or less. The change in the relative permeability μr and the change in the magnetic flux density B are in a linear relationship, that is, the increase rate of the magnetic flux density B when the ground fault current flows through the distribution line 300 and the increase rate of the relative permeability μr coincide. For example, the change in the relative permeability μr is stabilized with respect to the change in the magnetic flux density B. The range of the magnetic flux density B in which the relative permeability μr is stable is an area where the variation of the sensors 111 of each phase is small.

また、図5を参照すると、磁束密度Bの増加に伴って比透磁率μrがリニアに増加する範囲は、磁束密度Bが所定値以下の範囲であることが分かる。図5に示す場合では、磁束密度Bが1000ガウス以下となる範囲が好ましい。もちろん、比透磁率μrの変化と磁束密度Bの変化は完全に線形の関係を有さなくても良く、それぞれの増加率あるいは変化率が所定範囲内にあれば良い。   Referring to FIG. 5, it can be seen that the range in which the relative permeability μr increases linearly as the magnetic flux density B increases is a range in which the magnetic flux density B is a predetermined value or less. In the case shown in FIG. 5, a range where the magnetic flux density B is 1000 gauss or less is preferable. Of course, the change in the relative permeability μr and the change in the magnetic flux density B do not have to have a completely linear relationship, and each increase rate or change rate only needs to be within a predetermined range.

このように、配電線300に地絡電流が流れる際に巻芯111aに生ずる磁束の磁束密度Bが、磁束密度Bの変化に対する比透磁率μrの変化の度合いに基づいて定められる所定の磁束密度値以下となるようにすることで、センサ111が検出可能な電流のレンジを拡大することができ、22kV配電系統の変圧器の接地方式が抵抗接地方式あるいは非接地方式のいずれであっても、地絡電流を検出することが可能となる。   As described above, the magnetic flux density B of the magnetic flux generated in the core 111a when the ground fault current flows through the distribution line 300 is determined based on the degree of change in the relative permeability μr with respect to the change in the magnetic flux density B. By making it below the value, the range of current that can be detected by the sensor 111 can be expanded, and even if the grounding system of the transformer of the 22 kV distribution system is either the resistance grounding system or the non-grounding system, It becomes possible to detect a ground fault current.

また、このように、磁束密度Bの変化に対する比透磁率μrの変化の度合いに基づいて、磁束密度Bの上限値である上述した所定の磁束密度値を定めることにより、巻芯111aに用いる材料について図4に示したような比透磁率μrと磁束密度Bとの特性を基に、磁束密度Bの上限値を定めることが可能となる。   In addition, the material used for the core 111a is determined by determining the above-described predetermined magnetic flux density value, which is the upper limit value of the magnetic flux density B, based on the degree of change in the relative permeability μr with respect to the change in the magnetic flux density B. The upper limit value of the magnetic flux density B can be determined based on the characteristics of the relative magnetic permeability μr and the magnetic flux density B as shown in FIG.

なお、巻芯111aに生ずる磁束の磁束密度Bは、磁束Φに比例するが、巻芯111aの断面積S及び長さ(円周長)Lに反比例する。そのため、巻芯111aは、地絡電流が発生した場合に巻芯111aに生ずる磁束の磁束密度Bが所定の磁束密度値以下に抑制されるように、断面積S及び長さLが所定値以上になるように構成される必要がある。一方で、巻芯111aの大型化にもある程度の限度があることから、巻芯111aは、磁束密度Bが所定の磁束密度値以下に抑制されつつも、ある下限値以上になるような断面積S及び長さLを有するように構成されることになる。   The magnetic flux density B of the magnetic flux generated in the core 111a is proportional to the magnetic flux Φ, but is inversely proportional to the cross-sectional area S and the length (circumferential length) L of the core 111a. Therefore, the core 111a has a cross-sectional area S and a length L that are equal to or greater than a predetermined value so that the magnetic flux density B of the magnetic flux generated in the core 111a when the ground fault current is generated is suppressed to a predetermined magnetic flux density value or less. Need to be configured to be On the other hand, since there is a certain limit to the enlargement of the core 111a, the core 111a has a cross-sectional area such that the magnetic flux density B is suppressed to a predetermined magnetic flux density value or less, but becomes a certain lower limit value or more. It will be configured to have S and length L.

また、配電線300が地絡した際にコイル111bに流れる電流は、コイル111bの巻回数に反比例する。そのため、本実施形態に係るセンサ111は、コイル111bの巻回数が所定の巻数以下になるように定められている。コイル111bの巻数を所定の巻数以下にすることによって、微弱な地絡電流であっても2次電流のレベルが増加することで検出することが可能となるため、地絡電流の検出可能なレンジを広げることが可能となる。   Further, the current that flows through the coil 111b when the distribution line 300 is grounded is inversely proportional to the number of turns of the coil 111b. Therefore, the sensor 111 according to the present embodiment is determined such that the number of turns of the coil 111b is equal to or less than a predetermined number of turns. By setting the number of turns of the coil 111b to a predetermined number or less, even a weak ground fault current can be detected by increasing the secondary current level. Can be expanded.

例えば、非接地方式の電力系統の地絡を検出する場合に、一つの巻芯111a内に3相分の配電線300をまとめて貫通させるようなことを行わなくても、各相の配電線300にそれぞれセンサ111を設け、それぞれ数十mA程度の地絡電流を検出することが可能となる。   For example, when detecting a ground fault in an ungrounded power system, the distribution lines for each phase can be obtained without having to pierce the distribution lines 300 for three phases into one winding core 111a. Each of the sensors 111 is provided in 300, and a ground fault current of about several tens of mA can be detected.

このため、22kV配電系統の変圧器の接地方式が抵抗接地方式あるいは非接地方式のいずれであっても、地絡電流を検出することが可能となる。   For this reason, it is possible to detect a ground fault current regardless of whether the transformer grounding system of the 22 kV distribution system is a resistance grounding system or a non-grounding system.

==地絡点標定装置130==
図6を参照しつつ、地絡点標定装置130について、以下のとおり説明する。図6は、本実施形態に係る地絡点標定装置130の構成の一例を示す図である。
== Ground fault location device 130 ==
With reference to FIG. 6, the ground fault location device 130 will be described as follows. FIG. 6 is a diagram illustrating an example of the configuration of the ground fault location device 130 according to the present embodiment.

地絡点標定装置130は、地絡事故が発生したときに生じる地絡電流を上述した第1,第2電流検出装置110,120で検出するとともに、該地絡電流を増幅することで、地絡電流の検出時刻を特定して地絡点Pを標定する装置である。   The ground fault location device 130 detects the ground fault current generated when a ground fault occurs by the first and second current detection devices 110 and 120 described above, and amplifies the ground fault current to thereby detect the ground fault current. This is an apparatus for determining the ground fault point P by specifying the detection time of the fault current.

配電線300の地絡事故で生じる地絡電流は、伝播する距離が長くなるにつれて減衰する。そのため、地絡点Pから地絡電流を検出する地点までの距離が長大である場合、地絡電流を検出することが困難であった。そこで、地絡点標定装置130は、上述した第1及び第2電流検出装置110,120を用いて、減衰して小さい地絡電流を検出するとともに、該地絡電流に対応する地絡電流波形を特定するとともに、地絡電流波形のゲインを増幅する。増幅された地絡電流波形に基づいて、該地絡電流の発生時刻を示す変化点を特定し、変化点に基づいて地絡点Pを標定する。   The ground fault current generated by the ground fault of the distribution line 300 is attenuated as the propagation distance becomes longer. Therefore, when the distance from the ground fault point P to the point where the ground fault current is detected is long, it is difficult to detect the ground fault current. Therefore, the ground fault location device 130 detects the small ground fault current by using the first and second current detection devices 110 and 120 described above, and also detects the ground fault current waveform corresponding to the ground fault current. And the gain of the ground fault current waveform is amplified. Based on the amplified ground fault current waveform, a change point indicating the generation time of the ground fault current is specified, and the ground fault point P is determined based on the change point.

このような機能を有する地絡点標定装置130は、図6に示すように、演算処理部131と、主記憶部132と、入力部133と、出力部134と、補助記憶部135と、を含んで構成され、それぞれが通信可能に接続されている。   As shown in FIG. 6, the ground fault location device 130 having such a function includes an arithmetic processing unit 131, a main storage unit 132, an input unit 133, an output unit 134, and an auxiliary storage unit 135. Each of which is configured to be communicable.

演算処理部131は、例えばCPUあるいはMPUなどで構成されている。演算処理部131は、主記憶部132に補助記憶部135から一時的に蓄えられたプログラムを読み出し命令を実施したり、情報を読み書きすことにより、各種機能を実現する。演算処理部131の各構成要素については、詳細に後述する。主記憶部132は、例えば、RAMなど揮発性メモリで構成されている。入力部133は、通信路200を介して電流検出装置から出力される各種情報が入力されるネットワークインターフェイスである。出力部134は、通信ネットワークに各種情報が出力されるネットワークインターフェイスである。補助記憶部135は、演算処理部131が処理するためのプログラムを格納する装置である。補助記憶部135は、例えば、ハードディスクドライブ、SSDあるいは光学式記憶装置など不揮発性メモリで構成されている。   The arithmetic processing unit 131 is composed of, for example, a CPU or MPU. The arithmetic processing unit 131 implements various functions by executing an instruction to read a program temporarily stored in the main storage unit 132 from the auxiliary storage unit 135 and reading / writing information. Each component of the arithmetic processing unit 131 will be described later in detail. The main storage unit 132 is configured by a volatile memory such as a RAM, for example. The input unit 133 is a network interface to which various information output from the current detection device is input via the communication path 200. The output unit 134 is a network interface that outputs various types of information to a communication network. The auxiliary storage unit 135 is a device that stores a program to be processed by the arithmetic processing unit 131. The auxiliary storage unit 135 is configured by a nonvolatile memory such as a hard disk drive, an SSD, or an optical storage device, for example.

<<演算処理部131>>
演算処理部131は、判定部131aと、比較特定部131bと、増幅部131cと、地絡点標定部131dと、を含んで構成されている。
<< Calculation Processing Unit 131 >>
The arithmetic processing unit 131 includes a determination unit 131a, a comparison and identification unit 131b, an amplification unit 131c, and a ground fault location unit 131d.

判定部131aは、第1,第2電流検出装置110,120で検出された地絡電流が所定の電流値以上か否かを判定する機能を有する。検出された地絡電流が所定の電流値以上である場合は、検出された地絡電流のうち最も大きい電流値を示す地絡電流(以下、「第1地絡電流」と称する。)よりも小さい地絡電流(以下、「第2地絡電流」と称する。)を基準として後述する変化点を特定するために、処理を移行させる。一方、地絡電流が所定の電流値未満である場合は、地絡電流を検出した全ての電流検出装置(本実施形態では、第1,第2電流検出装置110,120)を基準として変化点を特定するために、処理を移行させる。   The determination unit 131a has a function of determining whether or not the ground fault current detected by the first and second current detection devices 110 and 120 is equal to or greater than a predetermined current value. When the detected ground fault current is equal to or greater than a predetermined current value, the detected ground fault current is larger than the ground fault current indicating the largest current value (hereinafter referred to as “first ground fault current”). The process is shifted to specify a change point to be described later with reference to a small ground fault current (hereinafter referred to as “second ground fault current”). On the other hand, when the ground fault current is less than the predetermined current value, the changing point is based on all the current detection devices (in this embodiment, the first and second current detection devices 110 and 120) that detect the ground fault current. In order to identify

比較特定部131bは、第1,第2電流検出装置110,120で検出された夫々の地絡電流を比較する機能を有する。さらに、比較特定部131bでは、第2地絡電流を検出した電流検出装置を特定する。   The comparison specifying unit 131b has a function of comparing the respective ground fault currents detected by the first and second current detection devices 110 and 120. Furthermore, the comparison specifying unit 131b specifies the current detection device that has detected the second ground fault current.

増幅部131cは、第1,第2電流検出装置110,120で検出された地絡電流に対応する地絡電流波形のゲインを増幅する機能を有する。これにより、後述する地絡電流波形の変化点を明確にできる。さらに、増幅部131cは、地絡電流波形の立ち上がり(立ち下がり)角度が最も大きくなる増幅度を算定する機能を有する。増幅度とは、特定された電流検出装置で検出される地絡電流波形のゲインを増幅する度合をいう。   The amplifying unit 131c has a function of amplifying the gain of the ground fault current waveform corresponding to the ground fault current detected by the first and second current detection devices 110 and 120. Thereby, the change point of the ground fault current waveform mentioned later can be clarified. Further, the amplifying unit 131c has a function of calculating the amplification degree at which the rising (falling) angle of the ground fault current waveform is the largest. The amplification degree refers to the degree to which the gain of the ground fault current waveform detected by the specified current detection device is amplified.

地絡点標定部131dは、ゲインが増幅された地絡電流波形に基づいて、地絡電流が発生した時刻を示す変化点を特定する機能を有する。さらに、地絡点標定部131dは、変化点に基づいて、電力系統における地絡電流が発生した地絡点Pを標定する機能を有する。   The ground fault location unit 131d has a function of specifying a change point indicating the time when the ground fault current is generated based on the ground fault current waveform in which the gain is amplified. Furthermore, the ground fault location unit 131d has a function of locating the ground fault point P where the ground fault current is generated in the power system based on the change point.

このような演算処理部131を有する地絡点標定装置130は、高周波領域の地絡電流を高精度に検出できる第1,第2電流検出装置110,120で検出される微弱な地絡電流を増幅して、正確に変化点を特定することにより、地絡点Pを標定することができる。以下、地絡点Pを標定する標定手順について、詳細に説明する。   The ground fault point locating device 130 having such an arithmetic processing unit 131 can detect the weak ground fault current detected by the first and second current detection devices 110 and 120 that can detect the ground fault current in the high frequency region with high accuracy. The ground fault point P can be determined by amplifying and pinpointing the change point accurately. Hereinafter, an orientation procedure for orientation of the ground fault point P will be described in detail.

===地絡点の標定手順===
図7〜図11を参照しつつ、地絡点標定システム100における地絡点の標定手順について、以下のとおり説明する。図7は、本実施形態に係る地絡点標定システム100の動作フローを示す図である。図8は、本実施形態に係る第1及び第2電流検出装置110,120の地絡電流波形の一例を示す図である。図9は、本実施形態に係る第2電流検出装置120の地絡電流波形のゲインを増幅した一例を示す図である。図10は、本実施形態に係る第1及び第2電流検出装置110,120の地絡電流波形の一例を示す図である。図11は、本実施形態に係る第1及び第2電流検出装置110,120の地絡電流波形のゲインを増幅した一例を示す図である。
=== Procedure for ground fault location ===
The ground fault location procedure in the ground fault location system 100 will be described as follows with reference to FIGS. FIG. 7 is a diagram showing an operation flow of the ground fault location system 100 according to the present embodiment. FIG. 8 is a diagram illustrating an example of a ground fault current waveform of the first and second current detection devices 110 and 120 according to the present embodiment. FIG. 9 is a diagram illustrating an example in which the gain of the ground fault current waveform of the second current detection device 120 according to the present embodiment is amplified. FIG. 10 is a diagram illustrating an example of a ground fault current waveform of the first and second current detection devices 110 and 120 according to the present embodiment. FIG. 11 is a diagram illustrating an example in which the gain of the ground fault current waveform of the first and second current detection devices 110 and 120 according to the present embodiment is amplified.

電力系統において地絡事故が発生する(S100)。第1及び第2電流検出装置110,120は、配電線300に流れる地絡電流を検出し、地絡電流に関する情報を地絡点標定装置130に送信する(S101)。上述したように、本実施形態に係る第1及び第2電流検出装置110,120は、地絡点Pから長大な距離が離れていても、高精度に地絡電流を検出できる。なお、本標定手順においては、一例として、第1電流検出装置110と第2電流検出装置120の間で生じる地絡点Pを標定する手順について説明するが、言うまでもなく、3台以上の電流検出装置を用いても同様に標定できる。   A ground fault occurs in the power system (S100). The 1st and 2nd electric current detection apparatuses 110 and 120 detect the ground fault current which flows into the distribution line 300, and transmit the information regarding a ground fault current to the ground fault point location apparatus 130 (S101). As described above, the first and second current detection devices 110 and 120 according to the present embodiment can detect the ground fault current with high accuracy even when a long distance is away from the ground fault point P. In this orientation procedure, the procedure for locating the ground fault point P generated between the first current detection device 110 and the second current detection device 120 will be described as an example. The orientation can be similarly performed using an apparatus.

判定部131aは、第1及び第2電流検出装置110,120から受信する地絡電流に関する情報に基づいて、地絡電流の電流値が所定の電流値以上か否かを判定する(S102)。   The determination unit 131a determines whether or not the current value of the ground fault current is greater than or equal to a predetermined current value based on the information on the ground fault current received from the first and second current detection devices 110 and 120 (S102).

地絡電流が所定の電流値以上である場合(S102:YES)、比較特定部131bに処理を移行させる。   If the ground fault current is equal to or greater than the predetermined current value (S102: YES), the process is shifted to the comparison specifying unit 131b.

次に、比較特定部131bは、第1電流検出装置110および第2電流検出装置120のそれぞれで検出される地絡電流の電流値を比較する(S103)。そして、比較特定部131bは、最も大きい地絡電流よりも小さい地絡電流を示す電流検出装置を特定する(S104)。つまり、配電線300における地絡電流は地絡点Pを基準として電源側よりも負荷側の方が小さい電流値を示すため、比較特定部131bは、負荷側の第2電流検出装置120を特定する。比較特定部131bは、増幅部131cに処理を移行させる。   Next, the comparison specifying unit 131b compares the current values of the ground fault currents detected by the first current detection device 110 and the second current detection device 120 (S103). And the comparison specific | specification part 131b specifies the electric current detection apparatus which shows a ground fault current smaller than the largest ground fault current (S104). That is, since the ground fault current in the distribution line 300 indicates a smaller current value on the load side than on the power source side with respect to the ground fault point P, the comparison and identification unit 131b identifies the second current detection device 120 on the load side. To do. The comparison specifying unit 131b shifts the processing to the amplification unit 131c.

上述したS102(:YES)〜S104について、より具体的に説明する。図8(A)では、第1電流検出装置110で検出される地絡電流に対応する地絡電流波形(以下、「第1地絡電流波形」と称する。)を示している。図8(A)に示すように、第1地絡電流波形は、電流値I0を示す定常電流に地絡電流が重畳することにより形成される。また、第1地絡電流波形は、t1時点付近で発生していることがわかる。図8(B)では、第2電流検出装置120で検出される地絡電流に対応する地絡電流波形(以下、「第2地絡電流波形」と称する。)を示している。第2地絡電流波形は、t2時点付近で発生していることがわかる。そして、図8(A)、図8(B)に示すように、電流値I1及びI2を示す夫々の地絡電流は、所定の電流値Ipを超える。つまり、判定部131aは、第1及び第2地絡電流検出装置で検出される地絡電流の電流値I1及びI2が所定の電流値Ipを超えることを判定する。そして、比較特定部131bは、電流値I1を示す第1地絡電流よりも電流値I2を示す第2地絡電流の方が小さいことを特定する。したがって、本標定手順では、第2電流検出装置120が特定されることとして、以下説明を続ける。   The above-described S102 (: YES) to S104 will be described more specifically. FIG. 8A shows a ground fault current waveform (hereinafter referred to as “first ground fault current waveform”) corresponding to the ground fault current detected by the first current detection device 110. As shown in FIG. 8A, the first ground fault current waveform is formed by superposing the ground fault current on the steady current indicating the current value I0. It can also be seen that the first ground fault current waveform is generated near the time point t1. FIG. 8B shows a ground fault current waveform (hereinafter referred to as “second ground fault current waveform”) corresponding to the ground fault current detected by the second current detection device 120. It can be seen that the second ground fault current waveform occurs near the time point t2. As shown in FIGS. 8A and 8B, each ground fault current indicating the current values I1 and I2 exceeds a predetermined current value Ip. That is, the determination unit 131a determines that the current values I1 and I2 of the ground fault current detected by the first and second ground fault current detection devices exceed the predetermined current value Ip. Then, the comparison specifying unit 131b specifies that the second ground fault current indicating the current value I2 is smaller than the first ground fault current indicating the current value I1. Therefore, in this orientation procedure, the following description will be continued assuming that the second current detection device 120 is specified.

次に、増幅部131cは、特定された第2電流検出装置120で検出される第2地絡電流波形のゲインを増幅する増幅度を算出する(S105)。増幅度は、後述する変化点を特定できる程度に第2地絡電流波形のゲインを増幅する度合である。増幅部131cは、算出した増幅度で第2地絡電流波形のゲインを増幅する(S106)。   Next, the amplifying unit 131c calculates an amplification factor for amplifying the gain of the second ground fault current waveform detected by the identified second current detection device 120 (S105). The amplification degree is a degree to which the gain of the second ground fault current waveform is amplified to such an extent that a change point described later can be specified. The amplifying unit 131c amplifies the gain of the second ground fault current waveform with the calculated amplification degree (S106).

上述したS105、S106について、より具体的に説明する。図9では、第2地絡電流波形のゲインを増幅した地絡電流波形(以下、「第2増幅地絡電流波形」と称する。)を示している。第2地絡電流波形のゲインを増幅するということは、第2地絡電流波形の振幅を増幅させることをいう。これにより、第2増幅地絡電流波形における立ち下がり角度Bが増幅前の立ち下がり角度Aに比べて鋭くなる。   The above-described S105 and S106 will be described more specifically. FIG. 9 shows a ground fault current waveform obtained by amplifying the gain of the second ground fault current waveform (hereinafter referred to as “second amplified ground fault current waveform”). Amplifying the gain of the second ground fault current waveform means amplifying the amplitude of the second ground fault current waveform. Thereby, the falling angle B in the second amplified ground fault current waveform becomes sharper than the falling angle A before amplification.

一方、地絡電流が所定の電流値未満である場合(S102:NO)、増幅部131cに処理を移行させる。   On the other hand, when the ground fault current is less than the predetermined current value (S102: NO), the process is transferred to the amplifying unit 131c.

上述したS102(:NO)について、より具体的に説明する。図10(A)では第1地絡電流波形を示し、図10(B)では第2地絡電流波形を示している。第1及び第2電流検出装置110,120で検出され、電流値I3及びI4を示す夫々の地絡電流は、所定の電流値Ipを超えないことがわかる。つまり、判定部131aは、第1及び第2地絡電流検出装置で検出される地絡電流の電流値I3及びI4が所定の電流値Ipを超えないことを判定する。   The above-described S102 (: NO) will be described more specifically. FIG. 10A shows a first ground fault current waveform, and FIG. 10B shows a second ground fault current waveform. It can be seen that the respective ground fault currents detected by the first and second current detection devices 110 and 120 and indicating the current values I3 and I4 do not exceed the predetermined current value Ip. That is, the determination unit 131a determines that the current values I3 and I4 of the ground fault current detected by the first and second ground fault current detection devices do not exceed the predetermined current value Ip.

次に、増幅部131cは、第1電流検出装置110および第2電流検出装置120のそれぞれで検出される地絡電流に対応する第1地絡電流波形および第2地絡電流波形のゲインを、増幅部131cの性能の範囲内における所定の増幅度で増幅する(S107)。これにより、後述する変化点を特定しやすくなる。   Next, the amplifying unit 131c calculates the gain of the first ground fault current waveform and the second ground fault current waveform corresponding to the ground fault current detected by each of the first current detection device 110 and the second current detection device 120. Amplification is performed at a predetermined amplification within the range of the performance of the amplifying unit 131c (S107). Thereby, it becomes easy to specify the change point mentioned later.

次に、地絡点標定部131dは、図11(A)に示すように、第1地絡電流波形のゲインを増幅した第1増幅地絡電流波形における地絡電流の検出時刻t3を特定し、図11(B)に示すように、第2地絡電流波形のゲインを増幅した第2増幅地絡電流波形における地絡電流の検出時刻t4を特定する(S108)。なお、検出時刻t3および検出時刻t4を変化点と称する。これにより、地絡点標定部131dは、地絡点Pを標定することができる(S109)。   Next, as shown in FIG. 11A, the ground fault location unit 131d specifies the detection time t3 of the ground fault current in the first amplified ground fault current waveform obtained by amplifying the gain of the first ground fault current waveform. As shown in FIG. 11B, the detection time t4 of the ground fault current in the second amplified ground fault current waveform obtained by amplifying the gain of the second ground fault current waveform is specified (S108). The detection time t3 and the detection time t4 are referred to as change points. Thereby, the ground fault point location unit 131d can determine the ground fault point P (S109).

尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。   In addition, said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

===まとめ===
以上説明したように、本実施形態に係る地絡点標定システム100は、電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が、該磁束密度の変化に対応する透磁率の変化の度合いに基づいて定められる所定の磁束密度値以下となるような、環状に形成される巻芯111a,121aと、配電線300が貫通する巻芯111a,121aに地絡電流を検出するべく巻回されるコイル111b,121bと、を有する複数のセンサ111,121と、複数のセンサ111,121のそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する比較特定部131bと、比較特定部131bで特定された第2地絡電流に対応する地絡電流波形を増幅する増幅部131cと、増幅部131cで増幅された地絡電流波形において、第2地絡電流の発生時刻を表す変化点を特定し、変化点に基づいて、電力系統における地絡電流が発生した地点を示す地絡点Pを標定する地絡点標定部131dと、備える。本実施形態によれば、高周波領域の地絡電流を高感度に検出できるセンサ111,121を用いて、微小な地絡電流をも検出することができ、その地絡電流波形のゲインを増幅しつつ、変化点を正確に特定し、地絡点Pを標定することができる。
=== Summary ===
As described above, the ground fault locating system 100 according to the present embodiment has the magnetic flux density of the magnetic flux generated when the ground fault current flows through the power line of the power system, and the change in permeability corresponding to the change in the magnetic flux density. In order to detect a ground fault current in the cores 111a, 121a formed in an annular shape and the cores 111a, 121a through which the distribution line 300 passes so as to be equal to or less than a predetermined magnetic flux density value determined based on the degree of A plurality of sensors 111, 121 having coils 111b, 121b to be rotated, and a ground fault current detected by each of the plurality of sensors 111, 121, than the first ground fault current indicating the largest current value. The comparison specifying unit 131b that specifies the second ground fault current indicating a small current value, and the amplification unit 131 that amplifies the ground fault current waveform corresponding to the second ground fault current specified by the comparison specifying unit 131b. In the ground fault current waveform amplified by the amplifying unit 131c, the change point indicating the generation time of the second ground fault current is specified, and the ground indicating the point where the ground fault current in the power system is generated based on the change point. A ground fault point location unit 131d for standardizing the entanglement point P; According to the present embodiment, it is possible to detect even a small ground fault current using the sensors 111 and 121 that can detect a ground fault current in a high frequency region with high sensitivity, and amplify the gain of the ground fault current waveform. On the other hand, the change point can be accurately identified and the ground fault point P can be determined.

又、本実施形態に係る地絡点標定システム100は、複数のセンサ111,121で検出された複数の地絡電流が所定の電流値以上か否かを判定する判定部131aをさらに備え、判定部131aで複数の地絡電流が所定の電流値未満であると判定された場合、増幅部131cは、複数のセンサ111,121で検出される複数の地絡電流に対応する複数の地絡電流波形を増幅し、地絡点標定部131dは、増幅部131cで増幅された第1,第2増幅地絡電流波形における地絡電流の発生時刻を表す変化点を特定し、変化点に基づいて、電力系統における地絡電流が発生した地点を示す地絡点Pを標定する。本実施形態によれば、地絡電流波形を増幅することで変化点を正確に特定し、地絡点Pを標定することができる。   The ground fault location system 100 according to the present embodiment further includes a determination unit 131a that determines whether or not a plurality of ground fault currents detected by the plurality of sensors 111 and 121 are equal to or greater than a predetermined current value. When the unit 131a determines that the plurality of ground fault currents is less than the predetermined current value, the amplifying unit 131c includes a plurality of ground fault currents corresponding to the plurality of ground fault currents detected by the plurality of sensors 111 and 121. The ground fault location unit 131d amplifies the waveform, specifies a change point indicating the occurrence time of the ground fault current in the first and second amplified ground fault current waveforms amplified by the amplifier 131c, and based on the change point Then, the ground fault point P indicating the point where the ground fault current in the power system is generated is determined. According to the present embodiment, the change point can be accurately identified by amplifying the ground fault current waveform, and the ground fault point P can be determined.

又、本実施形態に係る地絡点標定システム100の地絡点標定部131dは、変化点から逆算して地絡点Pにおける地絡電流が発生した時刻を算出することで、地絡点Pを標定する。本実施形態によれば、正確に特定された変化点に基づいて、正確に地絡点Pを標定することができる。   Further, the ground fault location unit 131d of the ground fault location system 100 according to the present embodiment calculates the time when the ground fault current occurs at the ground fault point P by calculating backward from the change point. . According to the present embodiment, the ground fault point P can be accurately determined based on the accurately identified change point.

又、本実施形態に係る地絡点標定システム100における所定の磁束密度値は、配電線300に地絡電流が流れる際の磁束密度の増加率と透磁率の増加率との一致の度合いに基づいて定められる。本実施形態によれば、磁束密度Bの変化に対して比透磁率μrの変化が安定するため、各相のセンサ111,121のばらつきを少なくできる。   Further, the predetermined magnetic flux density value in the ground fault location system 100 according to the present embodiment is based on the degree of coincidence between the increase rate of the magnetic flux density and the increase rate of the magnetic permeability when the ground fault current flows through the distribution line 300. Determined. According to the present embodiment, since the change in the relative permeability μr is stable with respect to the change in the magnetic flux density B, variations in the sensors 111 and 121 in each phase can be reduced.

又、本実施形態に係る地絡点標定システム100の巻芯111a,121aは、磁束密度が前記所定の磁束密度値以下となるような断面積及び長さを有して構成される。本実施形態によれば、センサ111,121の大型化を抑制できる。   The cores 111a and 121a of the ground fault location system 100 according to the present embodiment are configured to have a cross-sectional area and a length such that the magnetic flux density is equal to or less than the predetermined magnetic flux density value. According to this embodiment, the enlargement of the sensors 111 and 121 can be suppressed.

又、本実施形態に係る地絡点標定システム100のセンサ111,121は、コイル111b,121bの巻数が所定の巻数以下になるように定められていなる。本実施形態によれば、微弱な地絡電流であっても2次電流のレベルが増加することで検出することが可能となるため、センサ111,121における、地絡電流の検出可能なレンジを広げることができる。   In addition, the sensors 111 and 121 of the ground fault location system 100 according to the present embodiment are determined such that the number of turns of the coils 111b and 121b is equal to or less than a predetermined number. According to the present embodiment, even a weak ground fault current can be detected by an increase in the level of the secondary current. Therefore, the range in which the sensors 111 and 121 can detect the ground fault current is set. Can be spread.

又、本実施形態に係る地絡点標定システム100を適用する電力系統は、22kVの特別高圧配電系統である。本実施形態によれば、周波数特性の高いセンサを用いるため、一般的に抵抗接地方式あるいは非接地方式が適用される22kV特別高圧配電系統においても、正確に地絡点Pを標定できる。   The power system to which the ground fault location system 100 according to the present embodiment is applied is a 22 kV special high-voltage distribution system. According to this embodiment, since a sensor having high frequency characteristics is used, the ground fault point P can be accurately determined even in a 22 kV special high voltage distribution system to which a resistance grounding method or a non-grounding method is generally applied.

又、本実施形態に係る地絡点標定システム100における時刻は、GPSから送信される時刻情報に基づいて特定される。本実施形態によれば、正確な時刻により、正確に地絡点Pを標定できる。   The time in the ground fault location system 100 according to the present embodiment is specified based on time information transmitted from the GPS. According to the present embodiment, the ground fault point P can be accurately determined based on an accurate time.

10 地絡点標定システム
111,121 センサ
111a,121a 巻芯
111b,121b コイル
131a 判定部
131b 比較特定部
131c 増幅部
131d 地絡点標定部
DESCRIPTION OF SYMBOLS 10 Ground fault location system 111, 121 Sensor 111a, 121a Winding core 111b, 121b Coil 131a Determination part 131b Comparison specific part 131c Amplification part 131d Ground fault point location part

Claims (10)

電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサと、
前記複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する比較特定部と、
前記比較特定部で特定された前記第2地絡電流に対応する地絡電流波形を増幅する増幅部と、
前記増幅部で増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する地絡点標定部と、
を備えることを特徴とする地絡点標定システム。
An annularly formed core in which the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or less than a predetermined magnetic flux density value, and the ground fault in the core through which the power line penetrates A plurality of sensors having coils wound to detect current;
Among the ground fault currents detected by each of the plurality of sensors, a comparison specifying unit that specifies a second ground fault current indicating a current value smaller than the first ground fault current indicating the largest current value;
An amplifying unit for amplifying a ground fault current waveform corresponding to the second ground fault current specified by the comparison specifying unit;
In the ground fault current waveform amplified by the amplifying unit, the change point indicating the generation time of the second ground fault current is specified, and the ground fault current in the power system is generated based on the change point. A ground fault location unit that locates a ground fault point indicating
A ground fault location system characterized by comprising:
前記複数のセンサで検出された前記複数の地絡電流が所定の電流値以上か否かを判定する判定部を
さらに備え、
前記判定部で前記複数の地絡電流が前記所定の電流値未満であると判定された場合、
前記増幅部は、前記複数のセンサで検出される前記複数の地絡電流に対応する複数の地絡電流波形を増幅し、
前記地絡点標定部は、前記増幅部で増幅された前記複数の地絡電流波形における前記地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する
ことを特徴とする請求項1または請求項2に記載の地絡点標定システム。
A determination unit for determining whether or not the plurality of ground fault currents detected by the plurality of sensors are equal to or greater than a predetermined current value;
When the determination unit determines that the plurality of ground fault currents is less than the predetermined current value,
The amplifying unit amplifies a plurality of ground fault current waveforms corresponding to the plurality of ground fault currents detected by the plurality of sensors,
The ground fault location unit identifies a change point that represents the occurrence time of the ground fault current in the plurality of ground fault current waveforms amplified by the amplifier, and based on the change point, the power grid The ground fault point locating system according to claim 1 or 2, wherein a ground fault point indicating a point where a ground fault current is generated is determined.
前記地絡点標定部は、前記変化点から逆算して前記地絡点における前記地絡電流が発生した時刻を算出することで、前記地絡点を標定する
ことを特徴とする請求項1又は請求項2に記載の地絡点標定システム。
The ground fault point locating unit is configured to determine the ground fault point by calculating a time when the ground fault current occurs at the ground fault point by calculating backward from the change point. The ground fault location system according to claim 2.
前記所定の磁束密度値は、前記電力線に前記地絡電流が流れる際の前記磁束密度の増加率と、前記磁束密度に対応する透磁率の増加率との一致の度合いに基づいて定められる
ことを特徴とする請求項1乃至請求項3の何れか一項に記載の地絡点標定システム。
The predetermined magnetic flux density value is determined based on a degree of coincidence between an increase rate of the magnetic flux density when the ground fault current flows through the power line and an increase rate of the magnetic permeability corresponding to the magnetic flux density. The ground fault location system as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned.
前記巻芯は、前記磁束密度が前記所定の磁束密度値以下となるような断面積及び長さを有して構成される
ことを特徴とする請求項1乃至請求項4の何れか一項に記載の地絡点標定システム。
5. The core according to claim 1, wherein the core has a cross-sectional area and a length such that the magnetic flux density is equal to or less than the predetermined magnetic flux density value. The ground fault location system described.
前記センサは、前記コイルの巻数が所定の巻数以下になるように定められてなる
ことを特徴とする請求項1乃至請求項5の何れか一項に記載の地絡点標定システム。
The ground fault point locating system according to any one of claims 1 to 5, wherein the sensor is determined such that the number of turns of the coil is equal to or less than a predetermined number of turns.
前記電力系統は、22kVの特別高圧配電系統である
ことを特徴とする請求項1乃至請求項6の何れか一項に記載の地絡点標定システム。
The ground fault location system according to any one of claims 1 to 6, wherein the power system is a 22 kV special high-voltage distribution system.
前記時刻は、GPSから送信される時刻情報に基づいて特定される
ことを特徴とする請求項1乃至請求項7の何れか一項に記載の地絡点標定システム。
The ground fault location system according to any one of claims 1 to 7, wherein the time is specified based on time information transmitted from a GPS.
電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が、前記磁束密度の変化に対応する透磁率の変化の度合いに基づいて定められる所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定し、
特定された前記第2地絡電流に対応する地絡電流波形を増幅し、
増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する
ことを特徴とする地絡点標定方法。
An annular shape in which the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or less than a predetermined magnetic flux density value determined based on the degree of change in permeability corresponding to the change in magnetic flux density. Among the ground fault currents detected by each of a plurality of sensors, the core formed in the coil and the coil wound around the core through which the power line penetrates to detect the ground fault current. A second ground fault current indicating a current value smaller than a first ground fault current indicating a large current value is identified;
Amplifying a ground fault current waveform corresponding to the identified second ground fault current;
In the amplified ground fault current waveform, a change point indicating the generation time of the second ground fault current is specified, and a ground fault indicating a point where the ground fault current is generated in the power system based on the change point A ground fault location method characterized by location of points.
地絡点標定システムに用いられる演算処理装置に、
電力系統の電力線に地絡電流が流れるときに生じる磁束の磁束密度が、前記磁束密度の変化に対応する透磁率の変化の度合いに基づいて定められる所定の磁束密度値以下となるような、環状に形成される巻芯と、前記電力線が貫通する前記巻芯に前記地絡電流を検出するべく巻回されるコイルと、を有する複数のセンサのそれぞれで検出される地絡電流のうち、最も大きい電流値を示す第1地絡電流よりも小さい電流値を示す第2地絡電流を特定する機能と、
特定された前記第2地絡電流に対応する地絡電流波形を増幅する機能と、
増幅された前記地絡電流波形において、前記第2地絡電流の発生時刻を表す変化点を特定し、前記変化点に基づいて、前記電力系統における前記地絡電流が発生した地点を示す地絡点を標定する機能と、
を実行させるプログラム。
In the arithmetic processing unit used for the ground fault location system,
An annular shape in which the magnetic flux density of the magnetic flux generated when a ground fault current flows through the power line of the power system is equal to or less than a predetermined magnetic flux density value determined based on the degree of change in permeability corresponding to the change in magnetic flux density. Among the ground fault currents detected by each of a plurality of sensors, the core formed in the coil and the coil wound around the core through which the power line penetrates to detect the ground fault current. A function of specifying a second ground fault current indicating a smaller current value than the first ground fault current indicating a large current value;
A function of amplifying a ground fault current waveform corresponding to the identified second ground fault current;
In the amplified ground fault current waveform, a change point indicating the generation time of the second ground fault current is specified, and a ground fault indicating a point where the ground fault current is generated in the power system based on the change point The ability to locate points,
A program that executes
JP2017110635A 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program Active JP6881044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110635A JP6881044B2 (en) 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110635A JP6881044B2 (en) 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program

Publications (2)

Publication Number Publication Date
JP2018205109A true JP2018205109A (en) 2018-12-27
JP6881044B2 JP6881044B2 (en) 2021-06-02

Family

ID=64955656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110635A Active JP6881044B2 (en) 2017-06-05 2017-06-05 Ground fault point locating system, ground fault locating method and program

Country Status (1)

Country Link
JP (1) JP6881044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360663B2 (en) 2019-10-17 2023-10-13 西日本電線株式会社 Abnormal location identification device, system and program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157997A (en) * 1985-12-28 1987-07-13 ホーチキ株式会社 Sensor
JPS631980A (en) * 1986-06-20 1988-01-06 Tokyo Electric Power Co Inc:The Apparatus for locating trouble point of power distributing system
JPS6385376A (en) * 1986-09-29 1988-04-15 Sumitomo Electric Ind Ltd Sensor for detecting accident section of transmission line
JPH09159717A (en) * 1995-12-11 1997-06-20 Toshiba Corp Method and device for detecting discharging position
JP2002228703A (en) * 2001-01-30 2002-08-14 Mitsubishi Cable Ind Ltd Failure point determination device for cable
JP2009232380A (en) * 2008-03-25 2009-10-08 Nec Corp Photo-detection power monitor circuit, optical transceiver, optical module, optical receiver, amplifier circuit, and integrated circuit
JP2012193981A (en) * 2011-03-15 2012-10-11 Shinshu Univ Sensor and adjusting method therefor
JP2014035243A (en) * 2012-08-08 2014-02-24 Central Research Institute Of Electric Power Industry Rating method and rating system for partial discharge generation position
JP2014062767A (en) * 2012-09-20 2014-04-10 Omron Automotive Electronics Co Ltd Light receiving circuit, and laser radar
JP2016142659A (en) * 2015-02-03 2016-08-08 中国電力株式会社 Failure point locating method and failure point locating system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157997A (en) * 1985-12-28 1987-07-13 ホーチキ株式会社 Sensor
JPS631980A (en) * 1986-06-20 1988-01-06 Tokyo Electric Power Co Inc:The Apparatus for locating trouble point of power distributing system
JPS6385376A (en) * 1986-09-29 1988-04-15 Sumitomo Electric Ind Ltd Sensor for detecting accident section of transmission line
JPH09159717A (en) * 1995-12-11 1997-06-20 Toshiba Corp Method and device for detecting discharging position
JP2002228703A (en) * 2001-01-30 2002-08-14 Mitsubishi Cable Ind Ltd Failure point determination device for cable
JP2009232380A (en) * 2008-03-25 2009-10-08 Nec Corp Photo-detection power monitor circuit, optical transceiver, optical module, optical receiver, amplifier circuit, and integrated circuit
JP2012193981A (en) * 2011-03-15 2012-10-11 Shinshu Univ Sensor and adjusting method therefor
JP2014035243A (en) * 2012-08-08 2014-02-24 Central Research Institute Of Electric Power Industry Rating method and rating system for partial discharge generation position
JP2014062767A (en) * 2012-09-20 2014-04-10 Omron Automotive Electronics Co Ltd Light receiving circuit, and laser radar
JP2016142659A (en) * 2015-02-03 2016-08-08 中国電力株式会社 Failure point locating method and failure point locating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360663B2 (en) 2019-10-17 2023-10-13 西日本電線株式会社 Abnormal location identification device, system and program

Also Published As

Publication number Publication date
JP6881044B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US8773139B2 (en) High sensitivity differential current transformer for insulation health monitoring
US8217644B2 (en) High sensitivity differential current transformer for insulation health monitoring
JP6327411B1 (en) Ground fault location system, ground fault location method
US20170059622A1 (en) Compensated rogowski coil
JP6166319B2 (en) Non-contact type DC current sensor and DC current measuring system using the non-contact type DC current sensor
CN105359365B (en) Method and apparatus for complexity, common ground error protection in high pressure electric system
JP6881044B2 (en) Ground fault point locating system, ground fault locating method and program
JP6790405B2 (en) Current detection sensor and ground fault point positioning system
Lu et al. Analytical analysis and design of an advanced differential-mode current sensor for insulation monitoring for industrial electrical assets
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
Antony et al. Suitability of Rogowski coil for DC shipboard protection
JP6678539B2 (en) Phase loss detection system, phase loss detection device, and phase loss detection method
JP2017204973A (en) Phase interruption detection system, phase interruption detection apparatus and phase interruption detection method
JPH07244111A (en) Leakage current detecting sensor
CN109507521B (en) Method and device for acquiring grounding current full-compensation output value of controllable voltage source
CN203376382U (en) Leakage current detection apparatus
Paophan et al. Partial Discharge Measurement Based on an Inductive Mode Air-Core Sensor
KR102039270B1 (en) A Ground-Fault Current Detection Circuit
JP2019002812A (en) Insulation resistance measurement system, distribution board, insulation resistance measurement method and program
KR102039271B1 (en) A Earth Leakage Current Detection Circuit
KR102039269B1 (en) A Residual Current Detection Circuit
Dolgicers et al. Current transformer error correction
KR102039268B1 (en) An Alternating and Direct Current Detection Circuit
Lisowiec et al. Operation of air core current transducers in the presence of strong interfering magnetic fields
CN107942124A (en) A kind of DC current compares measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6881044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150