JPH063402A - Fault locator - Google Patents
Fault locatorInfo
- Publication number
- JPH063402A JPH063402A JP16443292A JP16443292A JPH063402A JP H063402 A JPH063402 A JP H063402A JP 16443292 A JP16443292 A JP 16443292A JP 16443292 A JP16443292 A JP 16443292A JP H063402 A JPH063402 A JP H063402A
- Authority
- JP
- Japan
- Prior art keywords
- branch
- point
- current
- voltage
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Locating Faults (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は送電線の一端の電圧,電
流を入力し、事故点までの距離を標定する故障点標定装
置に係わり、特に分岐電源を有する送電線の故障点標定
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locator for locating a distance to a fault point by inputting voltage and current at one end of a transmission line, and more particularly to a fault locator for a transmission line having a branch power source. .
【0002】[0002]
【従来の技術】従来、送電線故障点標定方式としてサー
ジ受信方式,パルスレーダ方式、あるいはインピーダン
ス測定方式等がある。前二者は高価な通信装置あるいは
送電線への信号結合装置を必要とする。これに対して後
者のインピーダンス測定方式は、電圧変成器及び変流器
より得られる電圧・電流により標定するもので、入力量
を得るために新たな設備を必要としない。このため、最
近、インピーダンス測定方式が特に注目されている。2. Description of the Related Art Conventionally, there are a surge receiving system, a pulse radar system, an impedance measuring system and the like as a transmission line fault locating system. The former two require expensive communication equipment or signal coupling equipment to power lines. On the other hand, the latter impedance measurement method is based on the voltage and current obtained from the voltage transformer and the current transformer, and does not require new equipment to obtain the input amount. For this reason, the impedance measurement method has recently received a great deal of attention.
【0003】従来のインピーダンス測定方式は送電線に
分岐がないことを前提としている。分岐がある場合には
分岐点までの標定を前提としている。このことは基幹系
送電線では特に支障はない。その理由は分岐があるとし
ても極く限られているため分岐毎に装置を設置しても、
その装置数が著増することはないからである。しかし、
66kv等の下位系送電線では需要家への引込みが多数
あり、その引込み毎に装置を設置することは経済的に
も、又、運用する上からも困難である。The conventional impedance measuring method is based on the assumption that the transmission line has no branch. If there is a branch, it is premised on the orientation up to the branch point. This is not a problem for the trunk transmission line. The reason is very limited even if there are branches, so even if a device is installed for each branch,
This is because the number of devices will not increase significantly. But,
In a low-order transmission line of 66 kv or the like, there are many leads to customers, and it is difficult to install a device for each lead in both economically and in operation.
【0004】このため、分岐の多い送電線において分岐
負荷の影響を受けることのない故障点標定方式、例えば
特公昭60−204220号「送電線故障点標定方式」
等が提案されている。Therefore, in a transmission line with many branches, a fault point locating method that is not affected by branch loads, for example, Japanese Patent Publication No. 60-220220 "Transmission line fault point locating method".
Etc. have been proposed.
【0005】[0005]
【発明が解決しようとする課題】上記特公昭60−20
4220号の発明を含む従来方式は、送電線に分岐電源
がないことを前提としている。従来、このことは下位系
送電線においても多くは支障はなかった。分岐電源があ
るとしてもその電源容量は小さく無視できたからであ
る。しかし、最近、故障点標定装置の適用範囲が拡大
し、電源容量の無視できない分岐電源を有する複雑な送
電線にも適用が期待されるようになった結果、従来方式
では分岐電源から流入する電流のため標定誤差が無視で
きなくなった。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The conventional method including the invention of No. 4220 presupposes that the transmission line has no branch power source. In the past, this has not been a problem in many subordinate transmission lines. This is because even if there is a branch power supply, its power supply capacity is small and can be ignored. However, recently, the application range of the fault locator has been expanded, and it is expected to be applied to a complicated transmission line having a branch power supply whose power capacity cannot be ignored. Therefore, the orientation error cannot be ignored.
【0006】本発明は上記事情に鑑みてなされたもので
あり、事故点と標定装置との間に分岐電源があっても高
精度な故障点標定を行なうことのできる故障点標定装置
を提供することを目的としている。The present invention has been made in view of the above circumstances, and provides a fault point locating device capable of performing highly accurate fault point locating even if there is a branch power source between the accident point and the locating device. Is intended.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明の故障点標定装置は電圧・電流読込み手段
と、設定値読込み手段と、分岐点電圧算出手段と、変化
分電圧及び変化分電流算出手段と、標定装置設置端の背
後インピーダンス算出手段と、分岐点電流算出手段と、
標定値算出手段及び標定値出力手段とから構成した。In order to achieve the above object, the fault point locating device of the present invention comprises a voltage / current reading means, a set value reading means, a branch point voltage calculating means, a change voltage and a change voltage. A current calculation means, a back impedance calculation means of the orientation device installation end, a branch point current calculation means,
It is composed of a reference value calculation means and a reference value output means.
【0008】[0008]
【作用】本発明の故障点標定装置は、まず標定装置設置
端の電圧・電流及び設定値を読込み分岐点電圧を求め
る。次に変化分電圧・電流からの標定装置設置端背後イ
ンピーダンスと分岐電源背後のインピーダンス(設定
値)から分岐点電流を求める。そして分岐点電圧,分岐
点電流及び線路インピーダンス(設定値)から標定値を
求め、出力する。In the fault point locating device of the present invention, first, the voltage / current at the installation end of the locating device and the set value are read to obtain the branch point voltage. Next, the branch point current is calculated from the impedance behind the orientation device installation end and the impedance (setting value) behind the branch power source from the changed voltage and current. Then, a reference value is obtained from the branch point voltage, the branch point current, and the line impedance (set value) and output.
【0009】[0009]
【実施例】以下図面を参照して実施例を説明する。Embodiments will be described below with reference to the drawings.
【0010】図1は本発明の一実施例のハードウェアを
示す構成図である。図1において、1は対象となる送電
線、2は変成器、3は変流器、4及び5は入力変換回
路、6はアナログディジタル変換回路(AD変換回
路)、7は演算回路、8は表示回路、P0 は標定装置設
置端(自端)の背後電源、P1 は分岐電源、J1 は分岐
点、Fは事故点、L1 は自端と分岐点J1 間の線路長、
LB1は分岐電源P1 と分岐点J1 間の線路長、X2 は分
岐点J1 から事故点までの距離、Xは自端から事故点F
までの距離(標定値)、Vは自端電圧、Iは自端電流で
ある。例えば3相電圧Va ,Vb ,Vc を代表してV、
3相電流Ia ,Ib ,Ic を代表してIで表してある。FIG. 1 is a block diagram showing the hardware of an embodiment of the present invention. In FIG. 1, 1 is a target transmission line, 2 is a transformer, 3 is a current transformer, 4 and 5 are input conversion circuits, 6 is an analog-digital conversion circuit (AD conversion circuit), 7 is an arithmetic circuit, and 8 is Display circuit, P 0 is a power source behind the locator installation end (self end), P 1 is a branch power supply, J 1 is a branch point, F is an accident point, L 1 is a line length between the self end and the branch point J 1 ,
L B1 is the line length between the branch power source P 1 and the branch point J 1 , X 2 is the distance from the branch point J 1 to the fault point, and X is the fault point F to the fault point F.
Is a distance (reference value), V is a self-end voltage, and I is a self-end current. For example, V represents three-phase voltages V a , V b , and V c ,
The three-phase currents I a , I b , and I c are represented by I as a representative.
【0011】入力変換回路4及び5は変成器2及び変流
器3の出力を適当なレベルに変換し、更に高域の周波数
成分を除去するための前置フィルタ(公知であり内部構
成図は省略)を経て出力を生ずる。AD変換回路6(公
知であり内部構成図は省略)は入力を一定間隔でサンプ
リングし、AD変換してディジタル出力を演算回路7へ
印加する。演算回路7は図2により説明する演算を実施
し、その結果を表示回路8により表示する。The input conversion circuits 4 and 5 convert the outputs of the transformer 2 and the current transformer 3 to an appropriate level and further remove a high frequency component from a pre-filter (known in the art, Output is generated via (omitted). An AD conversion circuit 6 (which is publicly known and an internal configuration diagram is omitted) samples an input at a constant interval, AD-converts it, and applies a digital output to the arithmetic circuit 7. The arithmetic circuit 7 performs the arithmetic operation described with reference to FIG. 2 and displays the result on the display circuit 8.
【0012】ここで入力変換回路4及び5の出力、AD
変換回路6で変換されたディジタル出力は混乱のない限
りV及びIで表すものとする。又、分岐電源・分岐点が
1ケ、事故点Fは分岐点J以遠として説明する。Here, the outputs of the input conversion circuits 4 and 5, AD
The digital output converted by the conversion circuit 6 is represented by V and I unless there is any confusion. Further, it is assumed that there is one branch power source / branch point and the accident point F is beyond the branch point J.
【0013】図2は図1の演算回路7の機能を説明する
ブロック図である。本発明は2線以上の事故を対象とす
るものである。又、記号表現を省略するが、電圧V,電
流Iは線間量を用いる。電圧・電流の各相から線間への
変換は公知の手法による。FIG. 2 is a block diagram for explaining the function of the arithmetic circuit 7 of FIG. The present invention is intended for accidents involving two or more lines. Further, although the symbolic expression is omitted, the voltage V and the current I use the line spacing. The conversion of each phase of voltage and current into the line is performed by a known method.
【0014】図2では9は設定手段であり、L1 ,
LB1,Z1 ,ZB1等が設定され記憶されている。L1 ,
LB1は図1と同様の距離、Z1 は送電線単位長当たりの
正相インピーダンス、ZB1は分岐電源P1 端背後の正相
インピーダンスである。10は演算手段で電圧V,電流
I,定数Z1 ,L1 を入力として次の演算を実施し分岐
点電圧出力VJ1を出力する。ただし、*は乗算を示す。 VJ1=V−Z1 *L1 *I ……………………………………(1) である。11は演算手段で電圧V,電流Iを入力して次
の演算を実施し変化分電圧V″,変化分電流I″を出力
する。ここで、V′:事故前電圧、I′:事故前電流。 V″=V−V′ , I″=I−I′ …………………(2) 12は演算手段で次の演算を実施し自端電源P0 背後の
正相インピーダンスZB0を出力する。 ZB0=V″/I″ ………………………………………………(3) 13は演算手段で次の演算を実施し分岐点電流IJ1を出
力する。 IJ1=(1+(ZB0+Z1 *L1 )/(ZB1+Z1 *LB1))*I…(4) 14は演算手段で次の演算を実施し距離X2 を出力す
る。 X2 =VJ1/(Z1 *IJ1) …………………………………(5) 15は演算手段で次の演算を実施し標定値Xを出力す
る。 X=L1 +X2 …………………………………………………(6)In FIG. 2, 9 is a setting means, which is L 1 ,
L B1 , Z 1 , Z B1, etc. are set and stored. L 1 ,
L B1 is the same distance as in FIG. 1, Z 1 is the positive phase impedance per unit length of the transmission line, and Z B1 is the positive phase impedance behind the branch power source P 1 end. Numeral 10 is a calculating means which receives the voltage V, the current I and the constants Z 1 and L 1 as input and performs the following calculation to output a branch point voltage output V J1 . However, * indicates multiplication. V J1 = V−Z 1 * L 1 * I …………………………………… (1). Numeral 11 is a calculation means for inputting the voltage V and the current I and performing the following calculation to output the changed voltage V ″ and the changed current I ″. Here, V ': voltage before accident, I': current before accident. V ″ = V−V ′, I ″ = I−I ′ (2) 12 is a calculating means for performing the following calculation and outputting the positive phase impedance Z B0 behind the self-end power supply P 0. To do. Z B0 = V ″ / I ″ (………………………………………… (3) 13 is the calculation means to perform the following calculation and output the branch point current I J1 . I J1 = (1+ (Z B0 + Z 1 * L 1 ) / (Z B1 + Z 1 * L B1 )) * I (4) 14 is the calculating means for performing the following calculation and outputting the distance X 2 . X 2 = V J1 / (Z 1 * I J1 ) ... (5) 15 is a calculation means for performing the following calculation and outputting the reference value X. X = L 1 + X 2 …………………………………………………… (6)
【0015】図3は図2の演算手段11と12の作用を
説明する等価回路である。図3の(a)は事故時等価回
路、(b)は事故前成分の等価回路、(c)は事故成分
の等価回路である。事故発生時の現象は、いわゆる重畳
の理により図3に示すように事故前成分と事故成分の二
つの等価回路に分解される。従って、図(c)より自端
背後の正相インピーダンスZB0は変化分(事故前成分と
事故成分との差分)電圧V″及び変化分電流I″(前記
(2)式)を用いて前記(3)式により求められる。FIG. 3 is an equivalent circuit for explaining the operation of the calculating means 11 and 12 of FIG. 3A is an equivalent circuit at the time of an accident, FIG. 3B is an equivalent circuit of the pre-accident component, and FIG. 3C is an equivalent circuit of the accident component. The phenomenon when an accident occurs is decomposed into two equivalent circuits of the pre-accident component and the accident component as shown in FIG. Therefore, the positive-phase impedance Z B0 behind the self-terminal is changed from the figure (c) using the change (difference between the pre-accident component and the accident component) voltage V ″ and the change current I ″ (equation (2) above). It is obtained by the equation (3).
【0016】図4は図2の全体の作用を説明する図であ
る。まず、分岐点J1 での電圧VJ1 は自端電圧Vから
自端と分岐点J1 との間の電圧降下分を引くことにより
前記(1)式で求められる(演算手段10)。次に、分
岐点J1 から自端及び分岐電源端を見たインピーダンス
ZJ10 ,ZJ11 は各々下記で求められる。 ZJ10 =ZB0+Z1 *L1 ……………………………………(7) ZJ11 =ZB1+Z1 *LB1 ……………………………………(8) 分岐電源からの流入電流IB1は自端電流及び上記インピ
ーダンスZJ10 ,ZJ11 を用いて下記で求められる。 ZB1=(ZJ10 /ZJ11 )*I ………………………………(9) 又、分岐点J1 での電流IJ1は電流IとIB1との和であ
るため(7)式ないし(9)式を用いて下記で求められ
る(演算手段13)。 IJ1=I+IB1=(1+(ZJ10 /ZJ11 ))*I =(1+(ZB0+Z1 *L1 )/(ZB1+Z1 *IB1))*I …………前掲(4)式FIG. 4 is a diagram for explaining the overall operation of FIG. First, the voltage VJ 1 at the branch point J 1 is obtained by the equation (1) by subtracting the voltage drop between the local end from Zidane voltage V and the branching point J 1 (computing means 10). Next, the impedances Z J10 and Z J11 seen from the branch point J 1 to the self end and the branch power supply end are respectively calculated as follows. Z J10 = Z B0 + Z 1 * L 1 …………………………………… (7) Z J11 = Z B1 + Z 1 * L B1 …………………………………… (8) The inflow current I B1 from the branch power source is obtained as follows using the self-end current and the impedances Z J10 and Z J11 . Z B1 = (Z J10 / Z J11 ) * I ………………………… (9) Also, the current I J1 at the branch point J 1 is the sum of the currents I and I B1. The following is obtained using the equations (7) to (9) (calculating means 13). I J1 = I + I B1 = (1+ (Z J10 / Z J11 )) * I = (1+ (Z B0 + Z 1 * L 1 ) / (Z B1 + Z 1 * I B1 )) * I ............ (4) )formula
【0017】更に分岐点から事故点までの距離X2 は分
岐点電圧・電流VJ1,IJ1及び送電線の単位長当りの正
相インピーダンスZ1 を用いて前記(5)式で求められ
る(演算手段14)。そして、自端から事故点までの距
離(標定値)Xは前記(6)式で求められる(演算手段
15)。Further, the distance X 2 from the branch point to the fault point is obtained by the above equation (5) using the branch point voltages / currents V J1 , I J1 and the positive phase impedance Z 1 per unit length of the transmission line ( Computing means 14). Then, the distance (orientation value) X from the self-end to the accident point is obtained by the equation (6) (calculating means 15).
【0018】以上のように、分岐電源がある場合の故障
点標定は、分岐点電流を求めるのに自端及び分岐電源端
の背後インピーダンスを用いる。ここで、通常、自端電
源は分岐電源に比べ大きく標定結果への影響が大きい。
従って、自端の電圧・電流を用いてリアルタイムで精度
よく背後インピーダンスを求める方法とした。他方、分
岐電源は一般に小さいので背後インピーダンスを設定す
る方法とした。厳密には季節・時間帯により多少変動す
るが、平均値を設定することで実用上問題はない。As described above, in the fault point localization when there is a branch power source, the back impedance of the self end and the branch power source end is used to obtain the branch point current. Here, normally, the self-power source is larger than the branch power source and has a great influence on the orientation result.
Therefore, a method for accurately determining the back impedance in real time using the voltage and current at the end is used. On the other hand, the branch power supply is generally small, so the back impedance is set. Strictly speaking, it fluctuates somewhat depending on the season and time zone, but setting an average value will not cause any practical problems.
【0019】又、本発明では自端背後インピーダンスを
自端電圧・電流の変化分から求めるように構成したの
で、平行2回線送電線にも適用できる。なぜなら、平行
2回線の各回線の電圧・電流は事故種類・事故点により
変わるが、該当事故回線に対応する自端背後インピーダ
ンスは自端電圧・電流の変化分から求められ、標定に必
要な分岐点電流が正しく推定できるからである。Further, according to the present invention, since the impedance at the self-terminal is obtained from the change of the voltage / current at the self-terminal, it can be applied to a parallel two-line power transmission line. This is because the voltage / current of each of the two parallel lines changes depending on the type and point of the accident, but the impedance behind the self-end corresponding to the faulty line is calculated from the change in the voltage / current of the end, and the branch point required for orientation. This is because the current can be correctly estimated.
【0020】なお、一実施例では2線以上の事故で電圧
V,電流Iは線間量、インピーダンスは正相での測距を
説明した。これは公知のように2線短絡,2線地絡,3
線短絡,3線地絡いずれも事故相の測距はβ回路で線間
電圧・電流(β電圧・電流と線間電圧・電流は大きさが
異なるのみ)と正相インピーダンス(β量のインピーダ
ンスは正相インピーダンスに置換できる)を用いて行な
うことができるからである。In the embodiment, the voltage V and the current I are measured by the distance between the lines and the impedance is measured by the positive phase in the case of the accident of two or more lines. This is a 2-wire short circuit, 2-wire ground fault, 3
Both the line short-circuit and the three-line ground fault measure the fault phase in the β circuit with the line voltage / current (β voltage / current and line voltage / current differ only in magnitude) and positive phase impedance (β amount impedance). Can be replaced with a positive phase impedance).
【0021】以上説明したように、本発明の一実施例で
は自端及び分岐電源端の背後インピーダンスと自端電流
を用いて分岐点電流を求めるように構成したので、標定
装置と事故点の間に分岐電源があっても高精度な故障標
定を行なうことのできる故障点標定装置を提供すること
ができる。以下に他の実施例を示す。As described above, in one embodiment of the present invention, the branch point current is obtained by using the back impedance of the self end and the branch power supply end and the self end current, so that between the locator and the fault point. It is possible to provide a fault point locating device that can perform fault locating with high accuracy even if there is a branch power source. Another embodiment will be described below.
【0022】[1]上実施例では説明を容易にするため
分岐電源・分岐点が1ケで事故点が分岐点以遠の場合を
説明した。本発明は分岐電源・分岐点の個数や事故点に
制約されるものでなく、容易に拡張できる。図5は他の
実施例の構成図である。図5においてP1 ,P2 ,
P3 ,P4 は分岐電源、J1 ,J2 ,J3 は分岐点、F
1,F2 ,F3 ,F4 は事故点、L1 ,L2 ,L3 ,L
4 は各区間の線路長、X1は自端から事故点F1 までの
距離、X2 ,X3 ,X4 は各分岐点J1 ,J2 ,J3 か
ら事故点F2 ,F3 ,F4 までの距離である。1〜6,
8,P0 は図1と同一であるため説明を省略する。7A
は演算回路であり図6にて説明する。なお、分岐電源は
送電線直下と仮定し分岐線の長さは例とする。図6は図
5の演算回路7Aの機能を説明するブロック図である。[1] In the above embodiment, in order to facilitate the explanation, the case where the branch power source / branch point is one and the accident point is beyond the branch point has been described. The present invention is not limited by the number of branch power sources / branch points or accident points, and can be easily expanded. FIG. 5 is a block diagram of another embodiment. In FIG. 5, P 1 , P 2 ,
P 3 , P 4 are branch power supplies, J 1 , J 2 , J 3 are branch points, F
1 , F 2 , F 3 , F 4 are accident points, L 1 , L 2 , L 3 , L
4 is the line length of each section, X 1 is the distance from the end to the fault point F 1 , X 2 , X 3 , X 4 are the branch points J 1 , J 2 , J 3 to the fault points F 2 , F 3 , F 4 is the distance. 1-6
Since 8, P 0 is the same as that in FIG. 1, its description is omitted. 7A
Is an arithmetic circuit, which will be described with reference to FIG. The branch power source is assumed to be directly under the transmission line, and the length of the branch line is an example. FIG. 6 is a block diagram illustrating the function of the arithmetic circuit 7A of FIG.
【0023】図6で11,12は図2と同じ内容であ
る。20は設定手段でL1 〜L4 ,Z1 ,ZB1〜ZB3等
が設定され記憶されている。L1 〜L4 は図5と同様の
距離、Z1 は図2と同様、ZB1〜ZB3は分岐電源P1 〜
P3 端背後の正相インピーダンスである。21は演算手
段の次の演算を実施し、各分岐点J1 ,J2 ,J3 から
自端側を見たインピーダンスZBD1 ,ZBD2 ,ZBD3 を
出力する。なお、ZB0は自端電源P0 背後の正相インピ
ーダンス、ZB1,ZB2は分岐電源P1 ,P2 背後の正相
インピーダンスである。 ここで‖は並列演算を示し、例えば下記の通りである。 ZBD1 ‖ZB1=(ZBD1 *ZB1)/(ZBD1 +ZB1) ……(11) 22は演算手段で次の演算を実施し、分岐点電流IJ1,
IJ2,IJ3を出力する。なお、ZB3は分岐電源P3 背後
のインピーダンスである。 23は演算手段で次の演算を実施し、分岐点電圧VJ1,
VJ2,VJ3を出力する。 24は演算手段で次の演算を実施し、距離X1 ,X2 ,
X3 ,X4 を出力する。 In FIG. 6, 11 and 12 have the same contents as in FIG. Reference numeral 20 is a setting means for setting and storing L 1 to L 4 , Z 1 , Z B1 to Z B3 and the like. L 1 to L 4 are the same distances as in FIG. 5, Z 1 is the same as in FIG. 2, Z B1 to Z B3 are branch power supplies P 1 to
It is the positive phase impedance behind the P 3 end. 21 performs the next operation of the operation means, and outputs the impedances Z BD1 , Z BD2 , Z BD3 viewed from the end points from the respective branch points J 1 , J 2 , J 3 . Z B0 is a positive phase impedance behind the self-power source P 0 , and Z B1 and Z B2 are positive phase impedances behind the branch power sources P 1 and P 2 . Here, ‖ indicates parallel operation, and is as follows, for example. Z BD1 ‖Z B1 = (Z BD1 * Z B1 ) / (Z BD1 + Z B1 ) ... (11) 22 is the calculating means for carrying out the following calculation, and the branch point current I J1 ,
Outputs I J2 and I J3 . Z B3 is the impedance behind the branch power supply P 3 . Reference numeral 23 is a calculation means for performing the following calculation to calculate the branch point voltage V J1 ,
Outputs V J2 and V J3 . Reference numeral 24 is a calculation means for carrying out the following calculation to obtain the distances X 1 , X 2 ,
Outputs X 3 and X 4 .
【0024】25は比較手段で、自端又は分岐点から事
故点までの距離X1 ,X2 ,X3 ,X4 と各区間の線路
長L1 ,L2 ,L3 ,L4 との比較を行なう。26は演
算手段で自端から事故点までの距離(標定値)を出力す
る。27はゲート要素で演算手段26の出力又は出力C
(例えば区間外事故出力)を生ずる。具体的には下記の
通りである。 X1 ≦L1 のとき 標定値X=X1 として出力する。 X1 >L1 のとき X2 とL2 の比較に移る。 X2 ≦L2 のとき 標定値X=L1 +X2 として出力
する。 X2 >L2 のとき X3 とL3 の比較に移る。以下同様
である。 X4 >L4 のとき 出力C(区間外事故出力) を生ず
る。Reference numeral 25 is a comparison means for comparing the distances X1, X2, X3, X4 from the self-end or branch point to the accident point with the line lengths L1, L2, L3, L4 of each section. Numeral 26 is a calculation means for outputting the distance (localized value) from the self-end to the accident point. 27 is a gate element, which is the output or output C of the calculating means
(For example, out-of-section accident output) occurs. Specifically, it is as follows. When X 1 ≦ L 1, the standard value X = X 1 is output. When X 1 > L 1 Move to comparison of X 2 and L 2 . When X 2 ≦ L 2, the standard value X = L 1 + X 2 is output. When X 2 > L 2 Move to comparison of X 3 and L 3 . The same applies hereinafter. When X 4 > L 4 , output C (outside section accident output) occurs.
【0025】以上他の実施例で示したように、分岐電源
が複数あっても、分岐点電流が自端及び分岐電源端背後
の正相インピーダンスを用いて求めることができ、高精
度な故障点標定ができる。もちろん分岐電源数が4ケを
超えても同様である。As described in the other embodiments, even if there are a plurality of branch power sources, the branch point current can be obtained by using the positive-phase impedances at the end of the branch power source and at the back of the branch power source end. Can be oriented. Of course, the same applies when the number of branch power sources exceeds four.
【0026】[2]上記他の実施例では説明を容易にす
るため分岐線の長さを零とした。しかし、本発明は分岐
線の長さが非零の場合でも適用できる。図6の演算手段
21にて次のように変形すればよい。 ZB1→ZB1+Z1 *LB1 等(LB1:分岐電源P1 と分
岐点J1 との長さ)[2] In the other embodiments described above, the length of the branch line is set to zero in order to facilitate the description. However, the present invention can be applied even when the length of the branch line is non-zero. The calculation means 21 in FIG. 6 may be modified as follows. Z B1 → Z B1 + Z 1 * L B1 etc. (L B1 : Length between branch power supply P 1 and branch point J 1 )
【0027】[3]上記他の実施例では各分岐点から自
端側を見たインピーダンスZBD1 〜ZBD3 、分岐点電流
IJ1〜IJ3、分岐点電圧VJ1〜VJ3、自端又は各分岐点
から事故点までの距離X1 〜X4 を比較手段25の判定
以前に算出するように説明した。しかし、本発明はこれ
に限定されない。例えば、下記としてもよい。X1 ≦L
1 のときZBD1 ,IJ1,VJ1,X2 の演算は実施しな
い。X1 >L1 のときZBD1 ,IJ1,VJ1,X2 を演算
し、X2 とL2 の比較に移る。 (以下同様)[3] In the other embodiments described above, the impedances Z BD1 to Z BD3 , branch point currents I J1 to I J3 , branch point voltages V J1 to V J3 , the self end or It has been explained that the distances X 1 to X 4 from each branch point to the accident point are calculated before the judgment by the comparison means 25. However, the present invention is not limited to this. For example, it may be as follows. X 1 ≤ L
When 1 , Z BD1 , I J1 , V J1 , and X 2 are not calculated. When X 1 > L 1 , Z BD1 , I J1 , V J1 , and X 2 are calculated, and the comparison of X 2 and L 2 is started. (Same below)
【0028】[4]上記実施例では、分岐電源のみがあ
り分岐負荷がない場合を説明した。しかし、本発明は分
岐電源,分岐負荷が両方ある場合にも適用できる。2線
以上の事故では事故電流への分岐負荷の影響は極めて小
さいので無視できる。即ち、分岐電源か分岐負荷かを識
別できる情報を各分岐毎に設定しておき、分岐電源のと
きは上記通りとし、分岐負荷のときは補正は行なわな
い。例えば、分岐点J2に負荷が接続されているとき下
記とする。 [4] In the above embodiment, the case where only the branch power source is provided and there is no branch load has been described. However, the present invention can be applied to the case where there are both branch power supply and branch load. In the case of an accident with two or more lines, the effect of branch load on the accident current is extremely small and can be ignored. That is, information for identifying the branch power source or the branch load is set for each branch, the above is set for the branch power source, and the correction is not performed for the branch load. For example, when a load is connected to the branch point J 2 , the following is performed.
【0029】[5]上記零では2線以上の事故を対象に
β回路で説明した。本発明は1線事故(地絡)の場合に
も適用できる。1線地絡時はα回路及び零相回路で測距
を行なう。即ち、電圧V・電流Iはα量及び零相量と
し、インピーダンスは正相及び零相量を用いる。電圧・
電流の各相からα及び零相の変換は公知の手法による。
次にα量(零相量)の変化分電圧・電流から自端背後の
正相(零相)インピーダンスを求める(α量のインピー
ダンスは正相インピーダンスで置換できる)。この場
合、前記(1)〜(5)は下記に置き換わる。ただし、
事故相をa相として表す(b,c相の場合も同様)。
又、添え字α,0は夫々α量,零相量を表す。 VJ1a=VJ1α+VJ10 =(Vα+V0 )−Z1 *L1 *Iα−Z0 *L1 *I0 ………(15) X2 =VJ1a/(Z1 *IJ1α+Z0 *IJ10 ) ………(19)[5] In the above zero, the β circuit has been described for an accident involving two or more lines. The present invention can also be applied in the case of a one-line accident (ground fault). When there is a one-line ground fault, distance measurement is performed with the α circuit and zero-phase circuit. That is, the voltage V / current I is the amount of α and the amount of zero phase, and the impedance is the amount of positive phase and zero phase. Voltage·
The conversion of each phase of the current into α and zero phase is performed by a known method.
Next, the positive-phase (zero-phase) impedance behind the self-end is obtained from the voltage / current corresponding to the change in the amount of α (zero-phase amount) (the impedance of α can be replaced by the positive-phase impedance). In this case, the above (1) to (5) are replaced with the following. However,
The accident phase is represented as a phase (the same applies to b and c phases).
The subscripts α and 0 represent the amount of α and the amount of zero phase, respectively. V J1 a = V J1 α + V J10 = (Vα + V 0) -Z 1 * L 1 * Iα-Z 0 * L 1 * I 0 ......... (15) X 2 = V J1 a / (Z 1 * I J1 α + Z 0 * I J10 ) ... (19)
【0030】ここで、ZB01 ,ZB11 ,ZB00 ,
ZB10 ,Z0 は各々自端背後の正相インピーダンス,分
岐電源P1 端の正相インピーダンス,自端背後の零相イ
ンピーダンス,分岐電源P1 端の零相インピーダンス,
送電線単位長当たりの零相インピーダンスを示す。以上
のように、1線地絡の場合にもα量及び零相量を用いる
ことにより本発明は適用できる。Here, Z B01 , Z B11 , Z B00 ,
Z B10 and Z 0 are a positive phase impedance behind its own end, a positive phase impedance of the branch power source P 1 end, a zero phase impedance behind its own end, a zero phase impedance of the branch power source P 1 end, respectively.
Zero-phase impedance per unit length of transmission line is shown. As described above, the present invention can be applied by using the α amount and the zero phase amount even in the case of the one-line ground fault.
【0031】[6]上記例では背後インピーダンスを抵
抗分+リアクタンス分で説明した。しかし、実用上はリ
アクタンス分のみとしてもよい。これは電源,送電線と
も正相分についてはリアクタンス分が抵抗分に比べ著し
く大きいからである。本近似はよく成り立つので、前記
設定手段にて設定個数を減少でき装置の簡素化が可能と
なる。[6] In the above example, the background impedance is described as the resistance component + reactance component. However, in practice, only the reactance component may be used. This is because the reactance component for the positive phase component is significantly larger than the resistance component for both the power supply and the transmission line. Since this approximation holds well, the number of settings can be reduced by the setting means, and the apparatus can be simplified.
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば特
に電源容量が大きく事故電流に支配的な自端(標定装置
設置端)の背後インピーダンスを自端の電圧・電流情報
から精度よく求め、設定された分岐電源背後インピーダ
ンス,自端電流も用いて分岐点電流を略正しく求めるよ
うにしたので、事故点と標定装置との間の分岐電源があ
ってもその影響を除去することができ、又、平行2回線
送電線にも適用できる高精度な故障点標定装置を提供す
ることができる。As described above, according to the present invention, the back impedance of the self-end (the end at which the orientation device is installed), which has a particularly large power supply capacity and is dominant in the fault current, is accurately obtained from the voltage-current information of the self-end. Since the branch point current is calculated almost correctly by using the set impedance of the branch power source and the self-end current, even if there is a branch power source between the fault point and the locator, its influence can be eliminated. Further, it is possible to provide a highly accurate fault point locating device which can be applied to a parallel two-line power transmission line.
【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】図1の一部を詳細に説明するブロック図。FIG. 2 is a block diagram illustrating a part of FIG. 1 in detail.
【図3】図2の作用を説明するための図。FIG. 3 is a diagram for explaining the operation of FIG.
【図4】図2の作用を説明するための図。FIG. 4 is a diagram for explaining the operation of FIG.
【図5】本発明の他の実施例の構成図。FIG. 5 is a configuration diagram of another embodiment of the present invention.
【図6】図5の一部を詳細に説明するブロック図。FIG. 6 is a block diagram illustrating a part of FIG. 5 in detail.
1 送電線 2 変成器 3 変流器 4,5 入力変換器 6 アナログディジタル変換器 7,7A 演算回路 8 表示回路 9 設定手段 10〜15,21〜24,26 演算手段 25 比較手段 27 ゲート要素 DESCRIPTION OF SYMBOLS 1 Transmission line 2 Transformer 3 Current transformer 4,5 Input converter 6 Analog-digital converter 7, 7A Arithmetic circuit 8 Display circuit 9 Setting means 10-15, 21-24, 26 Arithmetic means 25 Comparing means 27 Gate element
Claims (2)
故障点標定装置において、自端の電圧・電流を読込む第
1の手段と、単位長当たりの線路インピーダンス,自端
及び各分岐間の線路長,各分岐の電源背後インピーダン
スの設定値を読込む第2の手段と、第1及び第2の手段
の出力を用いて分岐点電圧を算出する第3の手段と、第
1の手段の出力から変化分電圧・電流を算出する第4の
手段と、第4の手段の出力から自端背後のインピーダン
スを算出する第5の手段と、第1,第2,第5の手段の
出力から分岐点電流を算出する第6の手段と、第2,第
3,第6の手段の出力から自端から事故点までの距離を
算出する第7の手段とを備えたことを特徴とする故障点
標定装置。1. In a fault point locating device for locating a fault point of a transmission line having a branch, a first means for reading a voltage / current at the self-end, a line impedance per unit length, a self-end and between each branch. Second means for reading the line length and the set value of the impedance behind the power source of each branch, a third means for calculating the branch point voltage using the outputs of the first and second means, and a first means. Means for calculating the changed voltage / current from the output of the second means, fifth means for calculating the impedance behind the self-end from the output of the fourth means, and outputs of the first, second, and fifth means From the output of the second, third, and sixth means, and seventh means for calculating the distance from the self-end to the fault point. Failure point locator.
3,6,7の手段の代わりに、第2及び第5の手段の出
力から分岐点より自端側を見たインピーダンスを算出す
る第8の手段と、第1,第2,第8の手段の出力から分
岐点電流を算出する第9の手段と、第2,第8,第9の
手段の出力から分岐点電圧を算出する第10の手段と、
第2,第9,第10の手段の出力から自端から事故点ま
での距離を算出する第11の手段とを備えたことを特徴
とする故障点標定装置。2. In the fault point locating device according to claim 1, instead of the third, sixth and seventh means, the impedance of the self-end side from the branch point is calculated from the outputs of the second and fifth means. 8th means for calculating the branch point current from the outputs of the 1st, 2nd, 8th means, and 9th means for calculating the branch point voltage from the outputs of the 2nd, 8th, 9th means Tenth means of doing
An eleventh means for calculating the distance from the self-end to the accident point based on the outputs of the second, ninth, and tenth means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16443292A JP3319517B2 (en) | 1992-06-23 | 1992-06-23 | Fault location device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16443292A JP3319517B2 (en) | 1992-06-23 | 1992-06-23 | Fault location device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH063402A true JPH063402A (en) | 1994-01-11 |
JP3319517B2 JP3319517B2 (en) | 2002-09-03 |
Family
ID=15793051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16443292A Expired - Fee Related JP3319517B2 (en) | 1992-06-23 | 1992-06-23 | Fault location device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3319517B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100335136B1 (en) * | 2000-01-31 | 2002-05-04 | 이종수 | Apparatus of signal transformation |
KR100350722B1 (en) * | 2000-08-30 | 2002-08-28 | 주식회사 젤파워 | Apparatus and method for locating fault distance in a power double circuit transmision line |
JP2022506223A (en) * | 2018-10-31 | 2022-01-17 | ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト | Accelerated Zone-2 Protection for Transmission Lines |
-
1992
- 1992-06-23 JP JP16443292A patent/JP3319517B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100335136B1 (en) * | 2000-01-31 | 2002-05-04 | 이종수 | Apparatus of signal transformation |
KR100350722B1 (en) * | 2000-08-30 | 2002-08-28 | 주식회사 젤파워 | Apparatus and method for locating fault distance in a power double circuit transmision line |
JP2022506223A (en) * | 2018-10-31 | 2022-01-17 | ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト | Accelerated Zone-2 Protection for Transmission Lines |
US11594876B2 (en) | 2018-10-31 | 2023-02-28 | Hitachi Energy Switzerland Ag | Accelerated zone-2 protection for transmission lines |
Also Published As
Publication number | Publication date |
---|---|
JP3319517B2 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9476931B2 (en) | Method for fault location analysis of ungrounded distribution systems | |
US7472026B2 (en) | Multi-ended fault location system | |
JP2000074978A (en) | Fault point locator at parallel two-line transmission line | |
JPH06347503A (en) | Ground fault position locating apparatus | |
JPH063402A (en) | Fault locator | |
US11940476B2 (en) | Three-phase power meter monitoring for star and delta configurations | |
JP3460336B2 (en) | Fault location method for multi-terminal transmission lines | |
JPH10132890A (en) | Method and device for locating failure point | |
JPH0373825B2 (en) | ||
JPH11142465A (en) | Ground-fault point detecting method | |
JPH06289089A (en) | Fault-state specifying apparatus for power system | |
JPH0812220B2 (en) | Transmission line fault locator | |
JPH09304468A (en) | Method for locating fault-point of parallel two line system | |
JPH1090341A (en) | Method for locating fault point | |
JP2000088910A (en) | Locating apparatus for failure point | |
JP2637074B2 (en) | Transmission line fault point location method and apparatus | |
JPH0718901B2 (en) | Apparatus and method for determining values of circuit elements in three-terminal equivalent circuit | |
JPS6152431B2 (en) | ||
JP3503274B2 (en) | Fault location method for two parallel transmission and distribution lines | |
JPH0583873B2 (en) | ||
JP2003315403A (en) | Method for locating fault point | |
JP2532156B2 (en) | Fault location method for n-terminal parallel 2-circuit transmission line | |
JPH07229946A (en) | Method for locating fault point in parallel two-line transmission line | |
JPH06347504A (en) | Ground fault position locating apparatus | |
JPH06347505A (en) | Ground fault position locating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090621 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090621 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20100621 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100621 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110621 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20120621 |
|
LAPS | Cancellation because of no payment of annual fees |