JPH11142465A - Ground-fault point detecting method - Google Patents

Ground-fault point detecting method

Info

Publication number
JPH11142465A
JPH11142465A JP9302515A JP30251597A JPH11142465A JP H11142465 A JPH11142465 A JP H11142465A JP 9302515 A JP9302515 A JP 9302515A JP 30251597 A JP30251597 A JP 30251597A JP H11142465 A JPH11142465 A JP H11142465A
Authority
JP
Japan
Prior art keywords
reactance
temporary
current
fault point
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9302515A
Other languages
Japanese (ja)
Inventor
Masanori Toi
雅則 戸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9302515A priority Critical patent/JPH11142465A/en
Publication of JPH11142465A publication Critical patent/JPH11142465A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

PROBLEM TO BE SOLVED: To accurately detect a distance to ground-fault point in a ground-fault distance relay. SOLUTION: A ground-fault point detecting method includes, for temporary ground-fault points in the noted sections of transmission line, a processing to calculate a temporary polarity current using a load impedance, a back impedance, a positive phase impedance, and a negative phase current, a processing to obtain a temporary reactance to the fault point using the temporary polarity current and a transmission line impedance constant, and a processing to identify the temporary reactance as a reactance to the ground-fault point when an error between the temporary reactance and a reactance calculated for the temporary fault point is within specified area and, when it is out of the specified area, obtain a new temporary fault point using a ratio of the temporary reactance to the amount of reactance of the positive phase impedance. Then the above processing is performed repeatedly for new temporary fault points until the fault points are converged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統の地絡故
障に係る保護・制御を目的とするディジタルリレー等の
地絡距離継電器において、送電線の1線地絡故障時に、
正相電源が存在する送電線一端から故障点までのインピ
ーダンスを算出して地絡故障点を検出するための方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault distance relay such as a digital relay for protecting and controlling a ground fault in an electric power system.
The present invention relates to a method for calculating an impedance from one end of a transmission line having a positive-phase power supply to a fault point to detect a ground fault point.

【0002】[0002]

【従来の技術】従来より、送電線の1線地絡故障時に、
正相電源が存在する送電線一端から故障点までのインピ
ーダンス(抵抗分R,リアクタンス分X)を算出する手
段として、以下の数式1が知られている。
2. Description of the Related Art Conventionally, when a one-line ground fault of a transmission line occurs,
The following equation 1 is known as a means for calculating the impedance (resistance R, reactance X) from one end of the transmission line where the positive-phase power source exists to the failure point.

【0003】[0003]

【数1】R=Re{Va・Ip *}/Re{(Ia+K101+K
202)Ip *} X=Im{Va・Ip *}/Im{(Ia+K101+K202)I
p *}
[Number 1] R = Re {V a · I p *} / Re {(I a + K 1 I 01 + K
2 I 02) I p *} X = Im {V a · I p *} / Im {(I a + K 1 I 01 + K 2 I 02) I
p * }

【0004】数式1において、Ipは極性電流または極
性量と呼ばれ、一般に零相電流I01、相電流Ia、α−
β−0回路法で知られるα回路電流(Ia−I01)等が
使用されている。また、Ipに付したアスタリスク(*
は、一般に複素ベクトル量として表記されるIpの共役
量を意味する。このIp *は、数式1のベクトル位相基準
をIpにするベクトル位相回転処理のために使用される
量であり、このIpにどのような電気量を使用するかに
よって数式1におけるR,Xの算出精度に違いを生じる
ことになる。なお、数式1において、K1,K2は定数で
あり、一般に、K1は正相インピーダンスZ1と零相イン
ピーダンスZ0との比(Z0/Z1)、K2はZ1と回線間
相互インピーダンスZmmとの比(Zmm/Z1)が用いら
れる。また、I01は平行2回線送電線における自回線零
相電流、I02は隣回線零相電流である。送電線が1回線
運用の場合、隣回線の全電流=0により、I02は0にな
る。
In equation (1), I p is called a polar current or a polar quantity, and is generally zero-phase current I 01 , phase current I a , α−
An α circuit current (I a −I 01 ) or the like known in the β-0 circuit method is used. Also, an asterisk ( * ) attached to I p
Means a conjugate amount of I p generally expressed as a complex vector amount. This I p * is an amount used for a vector phase rotation process that sets the vector phase reference of Equation 1 to I p , and R, in Equation 1 depends on what electric quantity is used for I p . This will cause a difference in the calculation accuracy of X. In Equation 1, K 1 and K 2 are constants. Generally, K 1 is a ratio (Z 0 / Z 1 ) between the positive-phase impedance Z 1 and the zero-phase impedance Z 0, and K 2 is a line between Z 1 and the line. ratio of between mutual impedance Z mm (Z mm / Z 1 ) is used. I 01 is a zero-phase current of the own line in the parallel two-line transmission line, and I 02 is a zero-phase current of the adjacent line. If the transmission line is one line operation, the total current = 0 of the next line, I 02 is zero.

【0005】[0005]

【発明が解決しようとする課題】数式1によって得られ
るインピーダンスは、送電線一端から故障点までの送電
線インピーダンスZ、故障点抵抗分Rg及び負荷電流が
流れる負荷(抵抗)分RLの合成量(複素ベクトル)で
ある。このうち、Rg,RL分をほぼ純抵抗分とすると、
数式1におけるXの分式で得られるリアクタンス量は全
て送電線のインピーダンスに起因する量であることにな
り、このリアクタンス量を求めることで距離継電器や故
障点標定装置における測距に利用することができる。
The impedance obtained by equation (1) is a combination of the transmission line impedance Z from one end of the transmission line to the failure point, the failure point resistance Rg, and the load (resistance) RL through which the load current flows. Quantity (complex vector). Of these, assuming that Rg and RL are almost pure resistance,
The reactance amounts obtained by the expression of X in Equation 1 are all amounts due to the impedance of the transmission line, and by obtaining this reactance amount, the reactance amount can be used for distance measurement in a distance relay or a fault location device. it can.

【0006】ここで、RやXの算出精度は、Ipによっ
て大きく左右される。なぜなら、数式1におけるRe
{ }は、{ }内の複素数のIpと同相成分(=ベク
トルIpへの正射影分)となり、これが真のR分となる
には、Ipが純抵抗分であるRg,R Lに流れる電流と同
相である必要があるからである。理想的には、Ipは故
障点に流れる故障電流であるが、これは未知の電流量で
あるので、何らかの演算処理によって故障点の電流を模
擬するか、あるいはベクトルとして大きさは異なっても
位相が同相である他の電流量によって代用することにな
る。
Here, the calculation accuracy of R and X is IpBy
Depends greatly. Because, in Equation 1, Re
{{Is the complex I in {IpAnd in-phase component (=
Toll IpAnd this is the true R component
Contains IpIs the pure resistanceg, R LSame as the current flowing through
It is necessary to be a phase. Ideally, IpIs late
The fault current flowing through the fault point is an unknown current
Therefore, the current at the fault point is simulated by some arithmetic processing.
Simulate or have different magnitudes as vectors
Will be replaced by other currents that are in phase.
You.

【0007】次に、X分は数式1におけるIm{ }表記
から分かるように、Ipと直交する成分をとることで真
のX分を算出しているので、IpがRg,RLに流れる電
流と同相でないと、数式1により算出したXの値にR分
の誤差が含まれることになる。なお、この誤差について
は、後述する図4(a)中に示してある。
[0007] Next, as can be seen from the expression Im {in Equation 1, the X component is calculated by taking the component orthogonal to I p , so that I p is R g , R L If the current does not have the same phase, the value of X calculated by the equation 1 includes an error corresponding to R. This error is shown in FIG. 4A described later.

【0008】何れにしても、極性電流Ipの選択によ
り、数式1の精度が左右される。この点に関し、先に記
載したIpの候補のそれぞれについては、次のような問
題がある。 (1)Ipとして相電流・α回路電流を用いる場合 この場合には正相電流を含むので、負荷電流(その殆ど
が正相分)の影響を受けやすい。 (2)Ipとして零相電流を用いる場合 零相電圧と送電線の対地容量成分に起因する零相充電電
流の影響を受けるため、特に高抵抗接地系の地絡故障で
誤差を生じる。
In any case, the accuracy of Equation 1 depends on the selection of the polarity current Ip . In this regard, each of the Ip candidates described above has the following problem. (1) When a phase current / α circuit current is used as I p In this case, since a positive-phase current is included, it is easily affected by a load current (most of which is a positive-phase component). (2) When a zero-sequence current is used as I p Since an influence is caused by a zero-sequence voltage and a zero-sequence charging current caused by a capacitance component of the transmission line to the ground, an error occurs particularly in a ground fault of a high-resistance grounding system.

【0009】そこで本発明は、上述したようなIpの候
補に起因する問題点を持たず、結果的に、数式1によっ
て故障点までのインピーダンスを高精度に算出可能な地
絡故障点検出方法を提供しようとするものである。
Therefore, the present invention does not have the above-mentioned problem caused by the candidate for Ip , and as a result, a ground fault detecting method capable of calculating the impedance to the fault with high accuracy by the following equation (1). It is intended to provide.

【0010】[0010]

【課題を解決するための手段】送電線の1線地絡故障に
おける負荷電流・対地容量の影響を受けにくいIpの特
徴は、 (1)負荷電流に殆ど含まれない成分であること すなわち、逆相電流や零相電流が良い。 (2)充電電流は、対地容量と電圧との積であるため、
地絡故障時に電圧が極力発生しなければ良い。 従って、一般に、1線地絡故障では零相電圧>逆相電圧
であるため、逆相分が良い。例えば、高抵抗接地系の1
線地絡では、零相電圧>逆相電圧、正相電圧>逆相電圧
であるから、Ipとしては逆相電流が適当であることが
分かる。但し、負荷電流にも、正相分に比べれば少ない
が逆相分が含まれる場合があり、単純にIpに逆相電流
を用いると測距誤差を生じる場合があるので注意を要す
る。
The characteristics of I p that are not easily affected by the load current and the ground capacity in the case of a single-line ground fault in a transmission line are as follows: (1) The component is hardly included in the load current. Good reverse phase current and zero phase current. (2) Since the charging current is the product of the ground capacity and the voltage,
It is sufficient that no voltage is generated as much as possible during a ground fault. Therefore, in general, the zero-phase voltage> negative-phase voltage is satisfied for a one-line ground fault, so that the negative-phase component is good. For example, 1 of high resistance grounding system
In the case of a line ground fault, since zero-phase voltage> negative-phase voltage and positive-phase voltage> negative-phase voltage, it is understood that a negative-phase current is appropriate as Ip . However, it should be noted that the load current may also include a negative phase component, although it is smaller than the positive phase component, and simply using the negative phase current for Ip may cause a distance measurement error.

【0011】これらの点に鑑み、本発明では、地絡故障
時の逆相電流を基本として、故障点電流(1線地絡故障
では、逆相電流と同相でほぼ3倍の大きさを有する)の
推定とインピーダンス演算とを1セットにして繰り返し
演算を行い、その収束値を算出することで故障点電流量
を正しく算出し、ひいては故障点までの正確なインピー
ダンスの算出を実現するようにした。
In view of these points, in the present invention, based on the reverse phase current at the time of the ground fault, the fault point current (a single-line ground fault has almost three times the magnitude of the reverse phase current in phase with the reverse phase current). ) And the impedance calculation are performed as one set, and the calculation is repeatedly performed, and the convergence value is calculated to correctly calculate the current amount at the fault point, and thus to accurately calculate the impedance up to the fault point. .

【0012】すなわち、本発明は、送電線の1線地絡故
障時に、正相電源が存在する方の送電線一端から故障点
までのインピーダンスを算出して地絡故障点を検出する
方法において、系統健全時の送電線一端における三相電
圧・電流を電圧・電流検出器により検出し、これらの電
圧・電流の正相分を用いて前記送電線に接続された負荷
インピーダンスを算出する第1の処理と、1線地絡故障
時に、前記電圧・電流検出器により検出した電圧・電流
の逆相分を用いて前記電圧・電流検出器の設置点から見
た系統の背後インピーダンスを算出する第2の処理と、
前記着目区間内に設定した仮の故障点につき、前記負荷
インピーダンス、背後インピーダンス、送電線着目区間
の既知である正相インピーダンス及び逆相電流を用い
て、仮の故障点電流を仮の極性電流として算出する第3
の処理と、第3の処理により算出した仮の極性電流と既
知の送電線インピーダンス定数とを用いて故障点までの
仮のリアクタンスを求める第4の処理と、第4の処理に
より求めた仮のリアクタンスと、前記仮の故障点につき
算出したリアクタンスとの誤差が所定範囲内であれば前
記仮のリアクタンスを地絡故障点までのリアクタンスと
して同定する第5の処理と、第4の処理により求めた仮
のリアクタンスと前記仮の故障点につき算出したリアク
タンスとの誤差が所定範囲外であるときに、前記仮のリ
アクタンスと前記正相インピーダンスのリアクタンス分
との比により新たな仮の故障点を求める第6の処理とを
有し、第6の処理により求めた新たな仮の故障点につ
き、故障点が収束するまで前記第3の処理から第6の処
理を繰り返し実行するものである。
That is, the present invention provides a method for detecting a ground fault point by calculating the impedance from one end of the transmission line where the positive-phase power source exists to the fault point when a single-line ground fault of the transmission line occurs. First, a three-phase voltage / current at one end of the transmission line when the system is healthy is detected by a voltage / current detector, and a load impedance connected to the transmission line is calculated by using a positive phase component of the voltage / current. And calculating the impedance behind the system as viewed from the installation point of the voltage / current detector using the opposite phase components of the voltage / current detected by the voltage / current detector at the time of the one-line ground fault. Processing and
For the provisional fault point set in the section of interest, the load impedance, the back impedance, the known positive-phase impedance and the negative-phase current of the transmission line section of interest, using the provisional failure point current as a provisional polarity current Third to calculate
, A fourth process of obtaining a tentative reactance up to the failure point using the tentative polarity current calculated by the third process and the known transmission line impedance constant, and a tentative reactance obtained by the fourth process. If the error between the reactance and the reactance calculated for the tentative fault point is within a predetermined range, the tentative reactance is determined as a reactance up to the ground fault point, and the fifth process and the fourth process are used. When an error between the tentative reactance and the reactance calculated for the tentative failure point is outside a predetermined range, a new tentative failure point is determined by a ratio of the tentative reactance and the reactance of the positive-phase impedance. And the third to sixth processes are repeatedly executed on the new temporary fault point obtained by the sixth process until the fault point converges. It is intended.

【0013】[0013]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。まず、図1はこの実施形態が適用される
系統構成図である。図において、10は系統の電源、2
1,22は送電線、30は変圧器、NGRは中性点接地
抵抗、40は負荷(インピーダンスをZLとする)、5
0はPT,CT等の電圧・電流検出器を示す。また、変
圧器30を含む送電線21側の背後インピーダンスの正
相分をZb、送電線22側の全線路(着目区間)の正相
インピーダンスをZ1とする。なお、aZ1 ,(1−
a)Z1は地絡故障点Fの前後のインピーダンスであ
り、比aは0≦a≦1の範囲にある。ここでは、電圧・
電流検出器50により検出した送電線一端の三相電圧・
電流に基づき、電圧・電流検出器50の設置点から故障
点Fまでの線路インピーダンス(特にリアクタンスX)
を求めることとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 1 is a system configuration diagram to which this embodiment is applied. In the figure, reference numeral 10 denotes a system power supply, 2
Reference numerals 1 and 22 are transmission lines, 30 is a transformer, NGR is a neutral point ground resistance, 40 is a load (impedance is Z L ), 5
0 indicates a voltage / current detector such as PT and CT. Further, the positive phase component of the impedance behind the transmission line 21 including the transformer 30 is defined as Z b , and the positive phase impedance of all the lines (interest section) on the transmission line 22 side is defined as Z 1 . Note that aZ 1 , (1-
a) Z 1 is a longitudinal impedance of the ground fault point F, the ratio a is in the range of 0 ≦ a ≦ 1. Here,
The three-phase voltage at one end of the transmission line detected by the current detector 50
Based on the current, the line impedance (particularly the reactance X) from the installation point of the voltage / current detector 50 to the fault point F
Is determined.

【0014】図2は、本実施形態において故障点Fまで
のリアクタンスXを求める処理のフローチャートであ
り、その内容は後述する。また、図3は図1の対称座標
法に基づく等価回路図であり、図1の説明と一部重複す
るが、Z1は着目区間(図1における電圧・電流検出器
50の設置点から負荷40までの区間)の正相インピー
ダンス、Z0は同区間の零相インピーダンス、Zbは背後
インピーダンスの正相分、Zb’は同零相分、V1は電圧
・電流検出器50の設置点の正相電圧、V2は同逆相電
圧、V2Fは故障点Fの逆相電圧、I1は故障点Fに流れ
込む正相電流、I2,I2’は同逆相電流、Rgは故障点
抵抗である。
FIG. 2 is a flowchart of a process for obtaining the reactance X up to the failure point F in the present embodiment, the contents of which will be described later. FIG. 3 is an equivalent circuit diagram based on the symmetric coordinate method of FIG. 1 and partially overlaps with the description of FIG. 1, but Z 1 is a section of interest (from the installation point of the voltage / current detector 50 in FIG. The positive-phase impedance of the section up to 40), Z 0 is the zero-phase impedance of the same section, Z b is the positive-phase part of the back impedance, Z b ′ is the same zero-phase part, and V 1 is the voltage / current detector 50 installation. The positive-phase voltage at the point, V 2 is the negative-phase voltage, V 2F is the negative-phase voltage at the fault point F, I 1 is the positive-phase current flowing into the fault point F, I 2 and I 2 ′ are the same-phase current and R g is the fault point resistance.

【0015】図4(a),(b)は、図1の故障点Fで
1線地絡故障が発生した場合の故障相に関わる電圧V、
電流Iのベクトル図であり、図4(a)は相電流Ia
位相基準とした場合、図4(b)は未知量である故障点
電流IFと同相の極性電流Ipを位相基準とした場合であ
る。これらの図において、Vgは未知量である故障点電
圧、Vaは計測量である相電圧、Iaは計測量である相電
流である。
FIGS. 4 (a) and 4 (b) show the voltages V and V related to the failure phase when a single-line ground fault occurs at the failure point F in FIG.
It is a vector diagram of the current I, FIG. 4 (a) when the phase current I a as a phase reference, FIG. 4 (b) phase reference polarity current I p of the fault point current I F and phase are unknown amount Is the case. In these figures, V g is fault point voltage is unknown amount, V a is the phase voltage is measured quantity, is I a is the phase current is measured quantity.

【0016】従来技術の数式1でも、図4(b)のIp
が正確に求められれば故障点電圧Vgの影響を受けずに
故障点Fまでのインピーダンス(リアクタンス)を良好
に算出することができる。しかし、系統の主CTによっ
て計測される相電流や零相電流は、前述したようにその
ままでは正確なIpとはなり得ない。また、単純な逆相
電流からも、負荷電流の影響によって正確なIpとはな
り得ない。しかし、実際に故障点Fに流れる逆相電流
(図3におけるIF=I2+I2')が算出できれば、Ip
は正確な値として求めることができる。この逆相電流の
うち、I2は相電流から容易に算出できるので、未知量
たるI2’をいかに取り扱うかが問題となる。
In the prior art equation 1, I p in FIG.
It can be satisfactorily calculated impedance to fault point F (the reactance) without being influenced by the exact calculated Rarere if fault point voltage V g. However, the phase current and the zero-phase current measured by the main CT of the system cannot be accurate Ip as it is as described above. Further, even from a simple reverse-phase current, an accurate I p cannot be obtained due to the influence of the load current. However, if the reverse-phase current (I F = I 2 + I 2 ′ in FIG. 3) that actually flows to the fault point F can be calculated, I p
Can be determined as an accurate value. Of the negative phase currents, I 2 can be easily calculated from the phase currents, so how to handle the unknown I 2 ′ is a problem.

【0017】以下、図2のフローチャートを参照しつつ
故障点FまでのリアクタンスXの算出手順を説明する。
図3に示した負荷インピーダンスZLは、系統健全時の
系統電圧・電流(正相分)及び正相インピーダンスZ1
に基づいて、数式2により求めることができる(図2の
S1)。
The procedure for calculating the reactance X up to the fault point F will be described below with reference to the flowchart of FIG.
The load impedance Z L shown in FIG. 3 is the system voltage / current (for the positive phase) and the positive phase impedance Z 1 when the system is healthy.
Can be obtained based on the equation (2) (S1 in FIG. 2).

【0018】[0018]

【数2】ZL=V1/I1−Z1 ## EQU2 ## Z L = V 1 / I 1 -Z 1

【0019】次に、周知の手段により系統に1線地絡故
障が発生したかどうかを判断し(ステップS2)、発生
していなければステップS1に戻り、発生が確認された
場合にはステップS3に移行する。ここで、故障点Fの
逆相電圧V2Fについては、数式3が成立する。また、数
式3から数式4が得られる。
Next, it is determined by a known means whether or not a one-line ground fault has occurred in the system (step S2). If it has not occurred, the process returns to step S1, and if it has been confirmed, the process returns to step S3. Move to Here, Equation 3 holds for the negative-phase voltage V 2F at the failure point F. In addition, Equation 4 is obtained from Equation 3.

【0020】[0020]

【数3】V2F=(Zb+aZ1)I2={(1−a)Z1
L}I2
## EQU3 ## V 2F = (Z b + aZ 1 ) I 2 = {(1-a) Z 1 +
Z L } I 2 '

【0021】[0021]

【数4】I2’={(Zb+aZ1)I2}/{(1−a)
1+ZL
## EQU4 ## I 2 ′ = {(Z b + aZ 1 ) I 2 } / {(1-a)
Z 1 + Z L

【0022】これから、極性電流Ipに関して数式5を
得ることができる。
From this, equation 5 can be obtained for the polarity current Ip .

【0023】[0023]

【数5】Ip=I2+I2’={(Zb+ZL+aZ1
2}/{(1−a)Z1+ZL
## EQU5 ## I p = I 2 + I 2 ′ = {(Z b + Z L + aZ 1 )
I 2 } / {(1-a) Z 1 + Z L

【0024】数式5において、背後インピーダンスZb
は、電圧・電流検出器50の設置点の各相電圧・電流か
ら算出した逆相電圧V2及び逆相電流I2を用いて、数式
6により算出することができる(ステップS3)。
In Equation 5, the back impedance Z b
Uses the voltage-current detector reverse-phase voltage V 2 is calculated from the phase voltages and current of the installation point 50 and the negative phase current I 2, can be calculated by Equation 6 (step S3).

【0025】[0025]

【数6】Zb=−V2/I2 ## EQU6 ## Z b = −V 2 / I 2

【0026】また、数式5におけるZ1は着目区間の全
線路正相インピーダンスであり、これは既知量である。
従って、数式5における未知量は、故障点Fまでの距離
を決定する比aだけとなる。
Further, Z 1 in Equation 5 is the positive impedance of all lines in the section of interest, which is a known quantity.
Therefore, the only unknown quantity in Equation 5 is the ratio a that determines the distance to the fault point F.

【0027】本実施形態では、数式5のaに仮の値を代
入してこの数式5により仮のIpを算出する。そして、
この仮のIpを数式1に代入して故障点Fまでの仮のリ
アクタンスを算出する。いま、aの仮の値をa’、数式
1により算出された仮のリアクタンスをX’、Z1のリ
アクタンス分をX1とすると、a’が真の比aに等しけ
れば、数式7が成立するはずである。
In the present embodiment, a temporary value is substituted for a in equation (5), and a temporary I p is calculated from equation (5). And
The temporary reactance up to the failure point F is calculated by substituting the temporary Ip into Expression 1. Now, the value of the temporary a a ', a temporary reactance calculated by Equation 1 X', when the reactance of Z 1 and X 1, if a 'is equal to true ratio a, Formula 7 is satisfied Should do it.

【0028】[0028]

【数7】X’=a’X1 X ′ = a′X 1

【0029】すなわち、a’が真の比aに等しくない場
合には数式7が成立せず、数式8に示す一定の誤差εが
発生する。
That is, when a 'is not equal to the true ratio a, Equation 7 does not hold, and a certain error ε shown in Equation 8 occurs.

【0030】[0030]

【数8】ε=|X’−a’X1Ε = | X′−a′X 1 |

【0031】従って、この誤差εが演算収束判定定数ε
0よりも小さければ、良好な精度のもとでの演算結果と
して、仮のリアクタンスX’を解(故障点Fまでのリア
クタンス)とする。
Therefore, this error ε is equal to the operation convergence judgment constant ε
If the value is smaller than 0 , the provisional reactance X ′ is set as a solution (reactance to the failure point F) as a calculation result under good accuracy.

【0032】ここまでの処理を図2に即して述べると次
のとおりである。すなわち、演算打ち切りカウンタの値
Aを0(初期値)とおき(ステップS4)、前述のよう
に仮のa’を例えば0.5(故障点Fが着目区間の中間
点であると仮定)とする(ステップS5)。次に、a’
が着目区間内の値かどうかを判定し(ステップS6,S
7)、着目区間内の値であれば次のステップS8に進
む。
The processing up to this point will be described below with reference to FIG. That is, the value A of the operation discontinuation counter is set to 0 (initial value) (step S4), and as described above, the temporary a 'is set to, for example, 0.5 (assuming that the fault point F is an intermediate point in the section of interest). (Step S5). Next, a '
Is determined to be a value in the section of interest (steps S6, S
7) If the value is within the focused section, the process proceeds to the next step S8.

【0033】ステップS8では数式5により仮のI
p(その値をIp’とする)を算出し、次のステップS9
では数式1により仮のX(その値をX’とする)を算出
する。そして、前述のように誤差ε=|X’−a’X1
|と定数ε0とにより演算収束判定を行い(ステップS
10)、誤差εがε0よりも小さければ仮のリアクタン
スX’を解として終了し(ステップS11)、このリア
クタンスX’に基づき測距された故障点Fによりリレー
の動作判定(保護範囲の内・外部判定)、故障点評定等
を行う。
In step S8, the temporary I
p (the value is defined as I p ′), and the next step S9
Then, a temporary X (the value is X ') is calculated by Expression 1. Then, as described above, the error ε = | X′−a′X 1
| And the constant ε 0 are used to determine the operation convergence (step S
10) If the error ε is smaller than ε 0 , the process is terminated with the provisional reactance X ′ as a solution (step S11), and the relay operation is determined based on the fault point F measured based on the reactance X ′ (within the protection range).・ External judgment), failure point evaluation, etc.

【0034】さて、前記ステップS9により算出された
X’が正確でないため誤差εが定数ε0より大きい場合
でも、X’の誤差要因はI2’の算出誤差だけであるた
め、仮のリアクタンスa’X1よりは正確である。そこ
で、一度算出したX’とX1とを用いて新たな仮のaを
a’=X’/X1として求め(ステップS12)、カウ
ンタの値Aをインクリメントしてから(ステップS1
3)、再度、ステップS8以後の処理を繰り返す。な
お、カウンタの値Aが所定値Kを超えた場合には、演算
打ち切りとし(ステップS14)、その時のX’を解と
して(ステップS15)処理を終了する。このように、
ステップS10の演算収束判定条件を満たさない場合に
はa’を設定し直してIp'の演算、X’の演算を再度行
い、誤差εが定数ε0より小さくなるまで一連の処理を
繰り返し実行する収束演算方法により、故障点Fまでの
リアクタンスXを良好に算出することができる。
Now, even if the error ε is larger than the constant ε 0 due to the inaccuracy of X ′ calculated in step S9, the error factor of X ′ is only the calculation error of I 2 ′. 'is accurate than X 1. Accordingly, once determined the calculated X 'and the new provisional a with the X 1 a' as = X '/ X 1 (step S12), the after incrementing the value A of the counter (step S1
3) The process after step S8 is repeated again. If the value A of the counter exceeds the predetermined value K, the operation is terminated (step S14), and the process is terminated by solving X 'at that time (step S15). in this way,
If the calculation convergence determination condition in step S10 is not satisfied, a ′ is reset and the calculation of I p ′ and the calculation of X ′ are performed again, and a series of processing is repeatedly performed until the error ε becomes smaller than the constant ε 0. By the convergence calculation method described above, the reactance X up to the failure point F can be favorably calculated.

【0035】[0035]

【発明の効果】以上のように本発明によれば、1線地絡
故障時の逆相電流を基本として、故障点電流の推定とリ
アクタンス演算とを1セットにして繰り返し演算を行
い、その収束値を算出して故障点電流ひいては正確なイ
ンピーダンスの算出を可能にしているため、地絡距離継
電器や故障点標定装置における地絡故障点の検出、測距
を正確に行うことができる。
As described above, according to the present invention, the estimation of the fault point current and the reactance calculation are repeatedly performed as a set based on the reverse-phase current at the time of the one-line ground fault, and the convergence is obtained. Since the value is calculated to enable the fault point current and, therefore, the accurate impedance to be calculated, it is possible to accurately detect and measure a ground fault point in a ground fault distance relay or a fault point locating device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態が適用される系統構成図であ
る。
FIG. 1 is a system configuration diagram to which an embodiment of the present invention is applied.

【図2】本発明の実施形態の動作を示すフローチャート
である。
FIG. 2 is a flowchart showing the operation of the embodiment of the present invention.

【図3】図1において1線地絡故障が発生した場合の等
価回路図である。
FIG. 3 is an equivalent circuit diagram when a one-line ground fault occurs in FIG.

【図4】1線地絡故障時の故障相に関わる電圧・電流ベ
クトル図である。
FIG. 4 is a voltage / current vector diagram relating to a failure phase at the time of a one-line ground fault.

【符号の説明】[Explanation of symbols]

10 電源 21,22 送電線 30 変圧器 40 負荷 50 電圧・電流検出器 DESCRIPTION OF SYMBOLS 10 Power supply 21,22 Transmission line 30 Transformer 40 Load 50 Voltage / current detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送電線の1線地絡故障時に、正相電源が
存在する方の送電線一端から故障点までのインピーダン
スを算出して地絡故障点を検出する方法において、 系統健全時の送電線一端における三相電圧・電流を電圧
・電流検出器により検出し、これらの電圧・電流の正相
分を用いて前記送電線に接続された負荷インピーダンス
を算出する第1の処理と、 1線地絡故障時に、前記電圧・電流検出器により検出し
た電圧・電流の逆相分を用いて前記電圧・電流検出器の
設置点から見た系統の背後インピーダンスを算出する第
2の処理と、 前記着目区間内に設定した仮の故障点につき、前記負荷
インピーダンス、背後インピーダンス、送電線着目区間
の既知である正相インピーダンス及び逆相電流を用い
て、仮の故障点電流を仮の極性電流として算出する第3
の処理と、 第3の処理により算出した仮の極性電流と既知の送電線
インピーダンス定数とを用いて故障点までの仮のリアク
タンスを求める第4の処理と、 第4の処理により求めた仮のリアクタンスと、前記仮の
故障点につき算出したリアクタンスとの誤差が所定範囲
内であれば前記仮のリアクタンスを地絡故障点までのリ
アクタンスとして同定する第5の処理と、 第4の処理により求めた仮のリアクタンスと前記仮の故
障点につき算出したリアクタンスとの誤差が所定範囲外
であるときに、前記仮のリアクタンスと前記正相インピ
ーダンスのリアクタンス分との比により新たな仮の故障
点を求める第6の処理とを有し、 第6の処理により求めた新たな仮の故障点につき、故障
点が収束するまで前記第3の処理から第6の処理を繰り
返し実行することを特徴とする地絡故障点検出方法。
1. A method for detecting a ground fault point by calculating an impedance from one end of a transmission line having a positive-phase power supply to a fault point when a one-line ground fault of the transmission line occurs, comprising the steps of: A first process of detecting a three-phase voltage / current at one end of the transmission line with a voltage / current detector, and calculating a load impedance connected to the transmission line using a positive phase component of the voltage / current; At the time of a line ground fault, a second process of calculating the impedance behind the system as viewed from the installation point of the voltage / current detector using the negative phase component of the voltage / current detected by the voltage / current detector, For the temporary fault point set in the target section, the load impedance, the back impedance, the known positive-phase impedance and the negative-phase current of the transmission line target section are used, and the temporary fault point current is set as the temporary polarity current. The third calculated
A fourth process of obtaining a temporary reactance up to the failure point using the temporary polarity current calculated by the third process and the known transmission line impedance constant; and a temporary process of obtaining the temporary reactance up to the failure point. If the error between the reactance and the reactance calculated for the tentative failure point is within a predetermined range, the tentative reactance is identified as the reactance up to the ground fault point, and the fifth process is used to determine the reactance. When an error between the tentative reactance and the reactance calculated for the tentative fault point is outside a predetermined range, a new tentative fault point is obtained by a ratio of the tentative reactance and the reactance of the positive-phase impedance. And repeatedly executing the third to sixth processes for the new temporary fault point obtained by the sixth process until the fault point converges. A ground fault point detection method.
JP9302515A 1997-11-05 1997-11-05 Ground-fault point detecting method Withdrawn JPH11142465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9302515A JPH11142465A (en) 1997-11-05 1997-11-05 Ground-fault point detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9302515A JPH11142465A (en) 1997-11-05 1997-11-05 Ground-fault point detecting method

Publications (1)

Publication Number Publication Date
JPH11142465A true JPH11142465A (en) 1999-05-28

Family

ID=17909903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9302515A Withdrawn JPH11142465A (en) 1997-11-05 1997-11-05 Ground-fault point detecting method

Country Status (1)

Country Link
JP (1) JPH11142465A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057344A (en) * 2008-08-29 2010-03-11 Toshiba Corp Short circuit distance relay
CN102608498A (en) * 2012-03-27 2012-07-25 山东电力集团公司 Fault phase selection method of new energy transmission line
CN102707197A (en) * 2012-06-11 2012-10-03 福建省电力有限公司检修分公司 Distance measuring method and type diagnostic method of single-phase grounding fault of electric transmission line
CN103163423A (en) * 2013-01-31 2013-06-19 福建省电力有限公司 Method using dynamic extraction coefficient to achieve line single-phase ground connection fault single end distance measurement
CN104316768A (en) * 2014-10-28 2015-01-28 国家电网公司 Negative sequence impedance parameter estimation method for locating three-phase unbalanced disturbance source
JP2015099058A (en) * 2013-11-18 2015-05-28 中国電力株式会社 Location estimation apparatus and location estimation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057344A (en) * 2008-08-29 2010-03-11 Toshiba Corp Short circuit distance relay
CN102608498A (en) * 2012-03-27 2012-07-25 山东电力集团公司 Fault phase selection method of new energy transmission line
CN102707197A (en) * 2012-06-11 2012-10-03 福建省电力有限公司检修分公司 Distance measuring method and type diagnostic method of single-phase grounding fault of electric transmission line
CN103163423A (en) * 2013-01-31 2013-06-19 福建省电力有限公司 Method using dynamic extraction coefficient to achieve line single-phase ground connection fault single end distance measurement
JP2015099058A (en) * 2013-11-18 2015-05-28 中国電力株式会社 Location estimation apparatus and location estimation method
CN104316768A (en) * 2014-10-28 2015-01-28 国家电网公司 Negative sequence impedance parameter estimation method for locating three-phase unbalanced disturbance source
CN104316768B (en) * 2014-10-28 2018-01-19 国家电网公司 A kind of negative sequence impedance parameter evaluation method of three-phase imbalance disturbance source locating

Similar Documents

Publication Publication Date Title
US6601001B1 (en) Fault-detection for power lines
EP2313791B1 (en) Method and device for fault location of series-compensated transmission line
EP1992954B1 (en) Method for determining location of phase-to-earth fault
EP1982395B1 (en) Method and adaptive distance protection relay for power transmission lines
US6721671B2 (en) Directional element to determine faults on ungrounded power systems
US20180284180A1 (en) Fault location detection and distance protection apparatus and associated method
US20030085715A1 (en) System and method for locating a fault on ungrounded and high-impedance grounded power systems
WO1995024014A2 (en) One-terminal data fault location system
US20060291113A1 (en) System and method for determining location of phase-to-earth fault
EP0876620B1 (en) Method of detecting and locating a high-resistance earth fault in an electric power network
EP2000811A9 (en) Method for determining location of phase-to-earth fault
US6636823B1 (en) Method and apparatus for motor fault diagnosis
JPS5829471B2 (en) Accident point determination method
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
US6476613B2 (en) Method of fault location in parallel transmission lines with series compensation
US20140309953A1 (en) Method for Locating of Single-Phase-to-Ground Faults of Ungrounded Power Distribution Systems
JPH11142465A (en) Ground-fault point detecting method
JPH06347503A (en) Ground fault position locating apparatus
JP2000171505A (en) Method and device for testing relay for protecting distribution line from ground fault
JPH09257858A (en) Ground fault detector
JPH0384475A (en) Measurement of insulation resistance for dc circuit
LV13922B (en) Method for determination of distance to fault place by phase-to-earth fault in distribution networks
US20020012540A1 (en) Method of fault location in parallel lines with series compensation
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
JP2000227453A (en) Spotting of failure position in electric power transmission system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201