JP2637074B2 - Transmission line fault point location method and apparatus - Google Patents

Transmission line fault point location method and apparatus

Info

Publication number
JP2637074B2
JP2637074B2 JP61040263A JP4026386A JP2637074B2 JP 2637074 B2 JP2637074 B2 JP 2637074B2 JP 61040263 A JP61040263 A JP 61040263A JP 4026386 A JP4026386 A JP 4026386A JP 2637074 B2 JP2637074 B2 JP 2637074B2
Authority
JP
Japan
Prior art keywords
current
branch
load
fault point
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61040263A
Other languages
Japanese (ja)
Other versions
JPS62198773A (en
Inventor
正夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61040263A priority Critical patent/JP2637074B2/en
Publication of JPS62198773A publication Critical patent/JPS62198773A/en
Application granted granted Critical
Publication of JP2637074B2 publication Critical patent/JP2637074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は分岐負荷を有する送電線の故障点標定方法お
よびその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for locating a fault in a transmission line having a branch load.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、送電線の故障点標定方式としてサージ受信方
式、パルスレーダ方式、あるいはインピーダンス測定方
式等がある。前二者は高価な通信装置あるいは送電線へ
の信号結合装置を必要とする。
Conventionally, there are a surge receiving method, a pulse radar method, an impedance measuring method, and the like as a fault locating method of a transmission line. The former two require expensive communication equipment or signal coupling equipment to transmission lines.

これに対し後者のインピーダンス測定方式は、電圧変
成器および交流器より得られた電圧・電流により標定す
るもので、入力量を得るために新たな設備を必要としな
い。このため最近、インピーダンス測定方式が特に注目
されており、例えば特公昭58−29471号「事故点判別方
式」等が提案されている。
On the other hand, the latter impedance measurement method is based on the voltage and current obtained from the voltage transformer and the AC converter, and does not require new equipment to obtain the input amount. For this reason, recently, an impedance measurement method has received particular attention, and for example, Japanese Patent Publication No. 58-29471, "Accident Point Determination Method" has been proposed.

上記特公昭58−29471号の発明を含む従来のインピー
ダンス測定方式は送電線に分岐がないことを前提として
いる。分岐がある場合は分岐点までの標定を前提として
いる。このことは基幹送電線では特に支障はない。また
分岐があるとしても極く限られているので分岐毎に装置
を設定してもその設置数が著増することがないからであ
る。しかし66KV等の下位系送電線では需要家への引込み
が多数あり、その引込み点毎に装置を設置することは経
済的にも、また運用する上からも困難である。
The conventional impedance measurement system including the invention of Japanese Patent Publication No. 58-29471 presupposes that the transmission line has no branch. If there is a branch, it is assumed that the orientation is up to the branch point. This does not cause any problem for the backbone transmission line. Also, even if there is a branch, the number of installations does not increase significantly even if the apparatus is set for each branch because it is extremely limited. However, lower-level transmission lines, such as 66KV, have a lot of service to customers, and it is difficult to install equipment at each service point economically and in terms of operation.

〔発明の目的〕[Object of the invention]

本発明は、上記の事情に鑑みなされたもので、その目
的は分岐の多い送電線において分岐負荷の影響を受ける
ことのない故障点標定方式(方法およびその装置)を提
供しようとするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fault point locating method (method and apparatus thereof) which is not affected by a branch load in a transmission line having many branches. .

〔発明の概要〕[Summary of the Invention]

インピーダンス測定形の故障点標定方式は、要約すれ
ば自端から故障点までの電圧降下を、当該送電線の単位
長当りの電圧降下で除算して距離を求める方式である。
分岐のある送電線では区間によって電流が異なるため単
位長当りの電圧降下が異なる。そこで本発明は分岐を有
する送電線の故障点を標定する故障点標定方式におい
て、送電線の送出端(自端)の健全相の線間電流の計測
値から求めた負荷電流を設定値の比率で配分して各分岐
負荷の電流を推定し、この推定値を送出端の故障分電流
の計測値から順次差引いて各区間の電流とみなし、各区
間の単位長当りの電圧降下を求めることにより正しい距
離を算出しようとするものである。また、上記設定値と
しては例えば各分岐負荷の想定需要電力等を用いる。
In summary, the impedance measurement type fault point locating method is a method of calculating a distance by dividing a voltage drop from a self end to a fault point by a voltage drop per unit length of the transmission line.
In a transmission line with a branch, the current differs depending on the section, so that the voltage drop per unit length differs. Therefore, the present invention provides a fault point locating method for locating a fault point of a transmission line having a branch, wherein a load current obtained from a measured value of a line current of a healthy phase at a transmission end (own end) of the transmission line is determined by a ratio of a set value. By estimating the current of each branch load, sequentially subtracting the estimated value from the measured value of the faulty current at the sending end and treating it as the current in each section, and calculating the voltage drop per unit length in each section. The correct distance is to be calculated. As the set value, for example, an assumed demand power of each branch load or the like is used.

〔発明の実施例〕(Example of the invention)

第1図は本発明の一実施例のハードウエアを示す構成
図である。1は対象となる送電線、2は変成器、3は変
流器、4および5は入力変換回路、6はアナログデジタ
ル変換回路(以後AD変換回路と称す)、7は演算回路、
8は表示回路、L1〜L4は分岐負荷または末端負荷(以下
総称して分岐負荷と称す。)、F1〜F4は故障点、l1〜l4
は各区間の距離、x1〜x4は自端あるいは各分岐点から故
障点までの距離、Vは自端電圧、Iは自端電流である。
特に混乱のない限り、例えば3相電圧Va,Vb,Vcを代表し
てV、3相電流Ia,Ib,Icを代表してIで表してある。な
お故障点F1〜F4は、このうちの何れか一箇所のみ実際に
故障が発生しているものとする。
FIG. 1 is a configuration diagram showing hardware of one embodiment of the present invention. 1 is a target transmission line, 2 is a transformer, 3 is a current transformer, 4 and 5 are input conversion circuits, 6 is an analog-to-digital conversion circuit (hereinafter referred to as an AD conversion circuit), 7 is an arithmetic circuit,
8 display circuit, L 1 ~L 4 branch load or end load (referred to collectively branched load following.), F 1 ~F 4 fault point, l 1 to l 4
The distance of each segment, x 1 ~x 4 is a distance fault point from Zidane or each branch point, V is Zidane voltage, I is a Zidane current.
Unless confusion, for example 3-phase voltages V a, V b, V on behalf of the V c, 3-phase currents I a, is represented by I b, on behalf I c I. Note fault point F 1 to F 4, it is assumed that actually failed only any one point of this is occurring.

入力変換回路4は変成器2の出力を適当なレベルに変
換し、更に高域の周波数成分を除去するための前置フィ
ルタを経て出力を生ずる。これは通常用いられる手法で
あり、特に内部構成図を掲げない。入力変換回路5も同
様であり、変流器3の2次電流を適当な電圧レベルに変
換し、前置フィルタを経て出力を生ずる。AD変換回路6
は入力を一定間隔でサンプリングし、AD変換してデジタ
ル出力を演算回路7へ入力する。AD変換回路6のこの様
な内部構成についても周知の技術であり、その構成図は
省略する。
The input conversion circuit 4 converts the output of the transformer 2 to an appropriate level and generates an output through a pre-filter for removing high frequency components. This is a commonly used method and does not particularly show an internal configuration diagram. Similarly, the input conversion circuit 5 converts the secondary current of the current transformer 3 to an appropriate voltage level and generates an output through a pre-filter. AD conversion circuit 6
Samples the input at regular intervals, performs AD conversion, and inputs the digital output to the arithmetic circuit 7. Such an internal configuration of the AD conversion circuit 6 is also a well-known technique, and the configuration diagram is omitted.

演算回路7は後に第2図により説明する演算を実施
し、その結果を表示回路8により表示する。
The arithmetic circuit 7 executes the arithmetic operation described later with reference to FIG. 2, and displays the result on the display circuit 8.

なお、ここで入力変換回路4および5の出力は、特に
混乱のおそれのない限り自端電圧Vおよび自端電流Iと
区別しないで説明する。これらの用法は通常用いられる
ものである。更にはAD変換回路6で変換されたデジタル
出力も混乱のない限りVおよびIで表わすものとする。
また分岐負荷L1〜L4は送電線1の直下あるいは極く近距
離にあるのが通常であり、分岐以後の距離は特に考えな
いものとする。
Here, the outputs of the input conversion circuits 4 and 5 will be described without distinction from the own-end voltage V and the own-end current I unless there is a possibility of confusion. These usages are commonly used. Further, the digital output converted by the AD conversion circuit 6 is represented by V and I unless there is confusion.
Further, the branch loads L 1 to L 4 are usually located immediately below the transmission line 1 or at a very short distance, and the distance after the branch is not particularly considered.

第2図は第1図の演算回路7の機能を説明するブロッ
ク図である。本発明は頻度の多い1線地絡故障を対象と
するものであり、以下a相地絡故障について説明する。
他相の地絡についても、地絡相を基準としてa相地絡故
障の場合と同様の演算をすることは通常の手法と同様で
ある。
FIG. 2 is a block diagram for explaining the function of the arithmetic circuit 7 of FIG. The present invention is intended for frequent single-line ground faults, and the a-phase ground fault will be described below.
Regarding the other-phase ground fault, the same operation as in the case of the a-phase ground fault is performed on the basis of the ground fault phase in the same manner as the normal method.

第2図において9は設定手段であり、定数Zα,Z0,l1
〜l4,K1〜K4等が設定され記憶されている。ZαおよびZ
0は夫々送電線単位長当りのαモードおよびOモードイ
ンピーダンス、l1〜l4は第1図と同様各区間の距離、K1
〜K4は各分岐負荷に関する定数である。定数K1〜K4とし
ては例えば各分岐負荷の設備容量あるいは実質的な最大
電力の想定値等が用いられる。
In FIG. 2, reference numeral 9 denotes setting means, which are constants Z α , Z 0 , l 1
~l 4, K 1 ~K 4 or the like is set is stored. Z α and Z
0 are each α mode and O-mode impedance of the transmission line per unit length, l 1 to l 4 is the distance of the first figure and similarly each section, K 1
~K 4 is a constant for each branch loads. As the constants K 1 to K 4 , for example, the installed capacity of each branch load or an assumed value of substantial maximum power is used.

10は演算手段で電圧V,電流I,定数Zα,およびZ0を入
力として次の演算を実施し、電圧電流積量JV,単位長電
圧降下電流積量JIおよび負荷分電圧降下電流積量JLを出
力する。
Numeral 10 denotes arithmetic means for executing the following arithmetic operation by inputting the voltage V, the current I, the constant Z α , and Z 0 to obtain the voltage / current product J V , the unit long voltage drop current product J I and the load voltage drop current. Outputs the product J L.

JV=Im(VaID ),JI=Im(Zαα+Z0I0), JL=Im(Zαβ<90゜・ID ) ID=故障分電流=[Iαの故障中の値]−[Iαの事前
潮流値] :共役複素数 これらの演算については特公昭58−29471号公報に記
載されているように周知のものである。11は演算手段で
次の演算を実施し出力G1,G2,G3を出力する。
J V = I m (V a I D *), J I = I m (Z α I α + Z 0 I 0), J L = I m (Z α I β <90 ° · I D *) I D = [value in the failure of I α] fault component current = - [pre-tide value of I α] *: complex conjugate These calculations are well known as described in JP-B-58-29471. Numeral 11 denotes arithmetic means for performing the following arithmetic operations and outputting outputs G 1 , G 2 and G 3 .

G1=K1/KT,G2=K2/KT,G3=K3/KT,KT=K1+K2+K3+K4
(2) 12は演算手段で次の演算を実施し出力xiを生ずる。
G 1 = K 1 / K T , G 2 = K 2 / K T , G 3 = K 3 / K T , K T = K 1 + K 2 + K 3 + K 4
(2) 12 produces output x i to perform the following operations by the arithmetic means.

先ず、演算手段13によりJV/JI=xが実行され比較手
段14により入力xと入力l1とが比較され、xl1であれ
ば出力Aを生じゲート要素15を通じてこのxがxi(i=
1)として出力される。x>l1であれば出力Bを生じ演
算手段13は第2の組を除算する。第2の組とは演算手段
16および17の出力、即ちJV−l1JIおよびJI−G1JLであ
り、(JV−l1JI)/(JI−G1JL)=xが実行され、前述
と同様にしてxl2であればxi(i=2)として出力さ
れ、x>l2であれば第3の組に移る。第3の組は演算手
段18および19の出力であり同様にして{JV−l1JI−l
2(JI−G1JL)}/(JI−G1JL−G2JL)=xが実行さ
れ、xl3であればxi(i=3)として出力され、x>
l3であれば第4の組に移る。第4の組は演算手段20およ
び21の出力であり、前述と同様にして{JV−l1JI−l
2(JI−G1JL)−l3(JI−G1JL−G2JL)}/(JI−G1JL
−G2JL−G3JL)=xが実行され、xl4であればxi(i
=4)として出力され、x>l4であれば、比較手段14よ
り出力Cを生ずる。出力Cは第1図で表示回路8によ
り、例えば区間外故障として表示される。
First, the arithmetic unit 13 and the input x and the input l 1 is the J V / J I = x runs comparing means 14 are compared by, caused the output A if xl 1 gate element 15 through the x is x i ( i =
Output as 1). If x> l 1 produce output B calculation unit 13 divides the second set. The second set is arithmetic means
The output of 16 and 17, that is, J V -l 1 J I and J I -G 1 J L, is executed (J V -l 1 J I) / (J I -G 1 J L) = x, in the same manner as explained above is output as if xl 2 x i (i = 2 ), moves to the third set if x> l 2. The third set is the output of the arithmetic means 18 and 19, and similarly, {J V −l 1 J I −l
2 (J I -G 1 J L )} / (J I -G 1 J L -G 2 J L) = x is executed, is output as x i (i = 3) if xl 3, x>
If l 3 moves to a fourth set. The fourth set is the output of the arithmetic means 20 and 21, and is similar to that described above, where ΔJ V −l 1 J I −l
2 (J I −G 1 J L ) −l 3 (J I −G 1 J L −G 2 J L )} / (J I −G 1 J L
−G 2 J L −G 3 J L ) = x is executed. If x 4 , x i (i
= 4) is output as, if x> l 4, produce an output C from the comparator 14. The output C is displayed by the display circuit 8 in FIG. 1, for example, as an out-of-section failure.

第3図は第2図の作用を説明するための等価回路図で
ある。第3図では、第2図の一般的な作用を説明する前
に理解を容易にする様に公知の内容の復習を兼ねて、故
障点F1に限定した等価回路図を示してある。すなわち同
図はa相1線地絡故障の等価回路を表わしており、ここ
でVsは電源電圧、ZαBおよびZ0Bは自端背後のαモー
ドおよび0モードインピーダンス、Z0Tは末端負荷背後
の0モードインピーダンス、VFは故障点電圧、I0Fおよ
びI0Tは夫々故障点および末端側からの零相電流で、こ
の他の記号は前出しているのでその説明は省略する。こ
の図で Va=Vα+V0=x1Zαα+x1Z0I0+VF …(3) であり、前述の故障分電流IDは故障点電圧と近似的に同
相で Im(VFID )≒0 …(4) であるから JV=Im(VaID ) ≒Im{(x1Zαα+x1Z0I0)ID }=x1JI ∴x1≒JV/JI …(5) 以上のように故障点が第1区間にあるときの第2図の
演算回路の機能が正しいことが説明される。
FIG. 3 is an equivalent circuit diagram for explaining the operation of FIG. In Figure 3, also serves as a review of known content so as to facilitate the understanding Before describing the general operation of the second view is shown an equivalent circuit diagram for limiting the fault point F 1. That figure represents an equivalent circuit of a phase 1 line ground fault, where V s is the supply voltage, Z alpha B and Z 0B are α mode and 0 mode impedance behind Zidane, Z 0T the terminal loads behind , V F is the fault point voltage, I 0F and I 0T are the zero-phase currents from the fault point and the terminal side, respectively. This is a view in V a = V α + V 0 = x 1 Z α I α + x 1 Z 0 I 0 + V F ... (3), I is the fault component current I D of the above-described approximately by phase with the fault point voltage m (V F I D *) ≒ 0 ... since a (4) J V = I m (V a I D *) ≒ I m {(x 1 Z α I α + x 1 Z 0 I 0) I D * } = X 1 J I ∴x 1 ≒ J V / J I (5) As described above, it is explained that the function of the arithmetic circuit in FIG. 2 when the fault point is in the first section is correct.

第4図及び第5図は第2図の作用を説明するための等
価回路図である。この図では故障点F4つまり第4区間に
ある場合の前述と同様の等価回路図を示す。故障点F2
るいはF3の場合についても容易に類推できるので、F4
場合の説明を以って一般的な説明とする。同図でILα1,
ILα2,ILαは各分岐負荷のαモード電流である。末端
負荷以外の分岐負荷は通常非接地であるので、a相1線
地絡で同図の様な等価回路となることは周知のところで
ある。この等価回路から次式を得る。
4 and 5 are equivalent circuit diagrams for explaining the operation of FIG. In this figure shows the same manner as described above equivalent circuit diagram in the case in the fault point F 4 clogging fourth section. Since easily analogized also when the fault point F 2 or F 3, and general description drives out described in the case of F 4. In the figure, I L α 1 ,
I L α 2 and I L α 3 are α mode currents of the respective branch loads. It is well known that a branch load other than a terminal load is normally ungrounded, and an equivalent circuit as shown in FIG. The following equation is obtained from this equivalent circuit.

Va=Vα+V0=l1(Zαα+Z0I0)+l2{Zα(Iα −ILα)+Z0I0}+l3{Zα(Iα−ILα −ILα)+Z0I0}+x4{Zα(Iα−ILα−ILα −ILα)+Z0I0}+VF …(6) ところで1線地絡事故時のβモード電流は周知のごと
く事故様相に影響されないためこの電流により事故時の
αモードの負荷電流を算出することが可能である。即
ち、第5図の各負荷へのβモード電流はαモードの負荷
電流に対し大きさは等しく、位相は90゜遅れである。し
たがって となる。
V a = V α + V 0 = l 1 (Z α I α + Z 0 I 0 ) + l 2 {Z α (I α -I L α 1 ) + Z 0 I 0 } + l 3 {Z α (I α -I L α 1 −I L α 2 ) + Z 0 I 0 } + x 4 {Z α (I α −I L α 1 −I L α 2 −I L α 3 ) + Z 0 I 0 } + V F (1) As is well known, the β-mode current at the time of a line ground fault is not affected by the accident mode, so that the α-mode load current at the time of the accident can be calculated from this current. That is, the β mode current to each load in FIG. 5 is equal in magnitude to the α mode load current, and the phase is delayed by 90 °. Therefore Becomes

そして分岐負荷の配分比に関する限り、線路インピー
ダンスl1Zα等は省略できるので(2)式より次式を得
る。
As far as the distribution ratio of the branch load is concerned, the line impedance l 1 Zα and the like can be omitted, so the following equation is obtained from the equation (2).

ILα=GiIβ<90゜,(i=1〜n−1) …(7) ここでGiは、各分岐負荷の力率が略々等しいとする
と、近似的に実数となる。この様な近似は極めて有効で
あり、その条件で説明する。
I L α i = G i I β <90 °, (i = 1~n-1) ... (7) where G i is the power factor of each branch loads the approximately equal, and approximately real Become. Such an approximation is extremely effective, and will be described under the conditions.

(7)式より次式を得る。 The following equation is obtained from the equation (7).

従って(1),(6),(8)およびIm(VFID )≒
0より次式を得る。
Thus (1), (6), (8) and I m (V F I D * ) ≒
The following equation is obtained from 0.

JV≒l1JI+l2(JI−G1JL)+l3(JI−G1JL−G2JL) +x4(JI−G1JL−G2JL−G3JL) …(9) ∴x4={JV−l1JI−l2(JI−G1JL)−l3(JI−G1JL−G2
JL)}/{JI−G1JL−G2JL−G3JL} …(10) 以上により第2図の作用が説明された。
J V ≒ l 1 J I + l 2 (J I -G 1 J L ) + l 3 (J I -G 1 J L -G 2 J L ) + x 4 (J I -G 1 J L -G 2 J L- G 3 J L )… (9) ∴x 4 = {J V −l 1 J I −l 2 (J I −G 1 J L ) −l 3 (J I −G 1 J L −G 2
J L )} / {J I -G 1 J L -G 2 J L -G 3 J L … (10) The operation of FIG. 2 has been described above.

以上の様に本実施例は、各分岐負荷の力率が略々等し
いとして、最大電力の想定値等の設定値として、分岐負
荷電力の総和Iβ<90゜をその設定の比で配分して各分
岐負荷電流を推定し、これを用いて送電線の各区間の電
流を算出し、分岐負荷の影響を消去することができた。
This embodiment as described above, the power factor of each branch loads as a approximately equal, as the set value of the assumed value or the like of the maximum power, distributed by the sum I beta <90゜Wo ratio of the set of branch load power Each branch load current was estimated, and the current in each section of the transmission line was calculated using this to eliminate the effects of the branch load.

この方式はβモード電流を用いることにより分岐負荷
電流を想定するため、零相回路の影響がないという利点
がある。
This method has an advantage that there is no influence of a zero-phase circuit because a branch load current is assumed by using a β-mode current.

〔発明の効果〕〔The invention's effect〕

以上のように本発明は自端の健全相間電流(健全線間
電流)から分岐負荷電流の総和を求め、これと設定値に
よる配分比から各分岐負荷電流を推定することにより故
障点を標定するものであり、分岐負荷の影響を除去する
ことができる。また、この設定値は有効分電力の配分比
のみ、あるいは無効分電力の配分比を加味したものでも
よいが、近似的に線路電圧降下を省略しているので、電
流の配分比とも考えてもよい。
As described above, according to the present invention, the fault point is located by obtaining the sum of the branch load currents from the self-end healthy interphase current (healthy line current) and estimating each branch load current from this and the distribution ratio based on the set value. Therefore, the influence of the branch load can be eliminated. Also, this set value may be based on only the distribution ratio of the active component power or the distribution ratio of the reactive component power, but since the line voltage drop is omitted approximately, it may be considered as the current distribution ratio. Good.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の構成図、第2図は第1図の
一部を詳細に説明するブロック図、第3図ないし第5図
は第2図の作用を説明するための等価回路図である。 1……送電線、2……変成器 3……変流器、4,5……入力変換回路 6……アナログデイジタル変換回路 7……演算回路、8……表示回路 9……設定手段 10〜13,16〜21……演算手段 14……比較手段、15……ゲート要素
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a block diagram for explaining a part of FIG. 1 in detail, and FIGS. 3 to 5 are diagrams for explaining the operation of FIG. It is an equivalent circuit diagram. DESCRIPTION OF SYMBOLS 1 ... Transmission line 2 ... Transformer 3 ... Current transformer 4,5 ... Input conversion circuit 6 ... Analog digital conversion circuit 7 ... Calculation circuit 8 ... Display circuit 9 ... Setting means 10 ~ 13,16 ~ 21 Calculation means 14 Comparison means 15, Gate element

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分岐を有する送電線の故障点を標定する故
障点標定方法において、分岐負荷に対して予め配分比を
設定しておき、1線地絡事故時に、自端電流の事故相に
関与しない他の2相の線間電流を用いて事故時の負荷電
流を算出し、この算出した値を用いて前記配分比に従っ
て分岐負荷に流れる負荷電流を求め、この分岐負荷電流
を自端電流の計測値から差引いたものと、自端電圧の計
測値とを用いて故障点を標定することを特徴とする送電
線故障点標定方法。
In a fault point locating method for locating a fault point of a transmission line having a branch, a distribution ratio is set in advance for a branch load, and in the event of a one-line ground fault, the fault phase of the self-terminal current is determined. The load current at the time of an accident is calculated using the other two-phase line currents that are not involved, the load current flowing through the branch load is calculated using the calculated value in accordance with the distribution ratio, and the branch load current is calculated as the local end current. A method of locating a fault point using a value obtained by subtracting the measured value from the measured value and a measured value of the own terminal voltage.
【請求項2】特許請求の範囲第1項記載の送電線故障点
標定方法において、前記配分比は分岐負荷電力の想定さ
れる配分比とすることを特徴とする送電線故障点標定方
法。
2. A transmission line fault point locating method according to claim 1, wherein said distribution ratio is an assumed distribution ratio of branch load power.
【請求項3】分岐を有する送電線の1線地絡事故の故障
点を標定する故障点標定装置において、各分岐負荷に対
しての配分比を予め記憶する設定手段と、この配分比お
よび自端健全相の線間電流から求める分岐負荷に流れる
負荷電流を自端電流の計測値から差引いたものと、自端
電圧の計測値とを用いて故障点を標定する標定演算手段
とを備えることを特徴とする送電線故障点標定装置。
3. A fault point locating apparatus for locating a fault point of a single-line ground fault in a transmission line having a branch, comprising: setting means for storing in advance a distribution ratio for each branch load; Provision of a location calculation means for locating a fault point using a value obtained by subtracting a load current flowing through a branch load obtained from a line current of a terminal healthy phase from a measured value of the own terminal current and a measured value of the own terminal voltage. Transmission line fault point locating device characterized by the above-mentioned.
【請求項4】特許請求の範囲第3項記載の送電線故障点
標定装置において、前記標定演算手段は、自端電流及び
自端電圧から電圧電流積量JV及び単位長電圧降下電流積
量JIを演算するとともに自端健全相の線間電流から負荷
分電圧降下電流積量JLを演算する第1の演算手段と、前
記電圧電流積量JVから当該分岐区間以前の区間までの線
路降下電圧量を減算する第2の演算手段と、前記負荷分
電圧降下電流積量JLおよび前記配分比から求める当該分
岐区間以前の区間までの分岐負荷電流量を前記単位長電
圧降下電流積量JIから減算する第3の演算手段と、前記
第2の演算手段の演算出力を前記第3の演算手段の演算
出力で除算して標定値を算出する第4の演算手段と、前
記標定値が当該分岐区間距離を越えていないときこの標
定値を出力し、前記標定値が当該分岐区間距離を越えて
いるとき次の分岐区間における前記第2,第3および第4
の演算手段を実行させる比較手段とを備えたことを特徴
とする送電線故障点標定装置。
4. A transmission line fault point locating system of patents recited claims third term of the orientation calculation unit, local end current and voltage current product weight from Zidane voltage J V and unit length voltage drop current tonnage first calculating means as well as calculating the J I calculates a load-related voltage drop current tonnage J L from the line current of the local end healthy phase, from the voltage current tonnage J V until the branch section earlier sections A second calculating means for subtracting the line drop voltage amount; and a branch load current amount up to the section before the branch section obtained from the load voltage drop current product amount J L and the distribution ratio, and the unit length voltage drop current product. a third calculation means for subtracting from the amount J I, and fourth calculating means for calculating an orientation value is divided by the operation output of the third computing means computing an output of said second arithmetic means, the orientation If the value does not exceed the branch section distance, output this orientation value, Wherein in the next branch section when the orientation value exceeds the branch section distance second, third and fourth
And a comparing means for executing the calculating means.
JP61040263A 1986-02-27 1986-02-27 Transmission line fault point location method and apparatus Expired - Lifetime JP2637074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040263A JP2637074B2 (en) 1986-02-27 1986-02-27 Transmission line fault point location method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040263A JP2637074B2 (en) 1986-02-27 1986-02-27 Transmission line fault point location method and apparatus

Publications (2)

Publication Number Publication Date
JPS62198773A JPS62198773A (en) 1987-09-02
JP2637074B2 true JP2637074B2 (en) 1997-08-06

Family

ID=12575770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040263A Expired - Lifetime JP2637074B2 (en) 1986-02-27 1986-02-27 Transmission line fault point location method and apparatus

Country Status (1)

Country Link
JP (1) JP2637074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364692B (en) * 2013-07-12 2016-03-23 国家电网公司 A kind of power distribution network single-phase grounded malfunction in grounded system selection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208675A (en) * 1982-05-31 1983-12-05 Fuji Electric Co Ltd Fault point locating system
JPS59230175A (en) * 1983-06-11 1984-12-24 Japanese National Railways<Jnr> Spotting method of short-circuited point of three-phase high-voltage distribution line
JP2961294B2 (en) * 1994-06-30 1999-10-12 良三 太田 Elevator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364692B (en) * 2013-07-12 2016-03-23 国家电网公司 A kind of power distribution network single-phase grounded malfunction in grounded system selection method

Also Published As

Publication number Publication date
JPS62198773A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
US9118181B2 (en) Method of fault phase selection and fault type determination
US6483435B2 (en) Method and device of fault location for distribution networks
US5455776A (en) Automatic fault location system
EP3570400A1 (en) Method and apparatus for use in earth-fault protection
US9476930B2 (en) Locating multi-phase faults in ungrounded power distribution systems
US20150226781A1 (en) Method for Fault Location Analysis of Ungrounded Distribution Systems
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
US20020121903A1 (en) Systems and methods for locating faults on a transmission line with a single tapped load
WO1995024014A2 (en) One-terminal data fault location system
US4261038A (en) Protection of electrical power supply systems
US6420876B1 (en) Fault location in a medium-voltage network
US9488682B2 (en) Method for determining power consumption of loads in ungrounded power distribution systems
US4333151A (en) Method for protecting an electric power system and digital protective system
US6173216B1 (en) Protective relay with improved, sub-window cosine filter
JP2637074B2 (en) Transmission line fault point location method and apparatus
JP5492495B2 (en) Ground fault distance protection relay device
JPH10248168A (en) Preventive apparatus for single operation of dispersed power source
JP4921246B2 (en) Ground fault distance relay
Lehtonen et al. Calculational fault location for electrical distribution networks
Klapper et al. Reliability of transmission by means of line impedance and K-Factor measurement
EP2232280A1 (en) Method and fault locator for determining a fault location value
Sun et al. Fault location analysis of ungrounded distribution system based on residual voltage distribution
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
JPH0812220B2 (en) Transmission line fault locator
KR0179744B1 (en) Electric relay

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term