JPH034940Y2 - - Google Patents

Info

Publication number
JPH034940Y2
JPH034940Y2 JP1989109623U JP10962389U JPH034940Y2 JP H034940 Y2 JPH034940 Y2 JP H034940Y2 JP 1989109623 U JP1989109623 U JP 1989109623U JP 10962389 U JP10962389 U JP 10962389U JP H034940 Y2 JPH034940 Y2 JP H034940Y2
Authority
JP
Japan
Prior art keywords
ground electrode
electrode
end connected
leakage point
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1989109623U
Other languages
Japanese (ja)
Other versions
JPH0250690U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1989109623U priority Critical patent/JPH034940Y2/ja
Publication of JPH0250690U publication Critical patent/JPH0250690U/ja
Application granted granted Critical
Publication of JPH034940Y2 publication Critical patent/JPH034940Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【考案の詳細な説明】 この考案は例えば地中に埋設された絶縁電線、
地中ケーブル等の漏電箇所を測定する装置に関す
る。
[Detailed explanation of the invention] This invention can be applied to, for example, insulated wires buried underground.
This invention relates to a device that measures electrical leakage points in underground cables, etc.

周知のように、この種の漏電箇所測定法として
は、マーレーループ法、バーレーループ法、パル
ス法、さぐりコイル法等がある。第1図はマーレ
ーループ法を示すものである。これは路線a,b
がO点で故障接地した場合、完全な路線b,cを
用いてホイートストンブリツジを構成し、抵抗
P,Qを調整してブリツジの平衡をとることによ
りa点から故障点0までの線路長lを求めるもの
である。ここで、線路長lは P/Q=2L−l/l ∴l=2Q/P+QL [m
] で表わされる。但し、Lは線路b,cの亘長であ
る。
As is well known, this type of earth leakage location measuring method includes the Murray loop method, the Burley loop method, the pulse method, the search coil method, and the like. FIG. 1 shows the Murray loop method. This is route a, b
If a fault occurs at point O, construct a Wheatstone bridge using complete lines b and c, and balance the bridge by adjusting resistances P and Q to calculate the line length from point a to fault point 0. This is to find l. Here, the line length l is P/Q=2L-l/l ∴l=2Q/P+QL [m
] It is expressed as . However, L is the length of the lines b and c.

また、第2図はバーレーループ法を示すもので
ある。この場合は抵抗P/Q=1の条件におい
て、抵抗Rを調整してブリツジの平衡をとり、a
点から故障点O点までの線路長lを求めるもので
ある。ここで、線路長lは l=L−R/2r [m] と表わされる。但し、Lは線路b,cの亘長、r
は電線単位長の抵抗[Ω]である。
Moreover, FIG. 2 shows the Burley loop method. In this case, under the condition of resistance P/Q = 1, adjust the resistance R to balance the bridge, and a
This is to find the line length l from the point to the fault point O. Here, the line length l is expressed as l=L-R/2r [m]. However, L is the length of lines b and c, r
is the resistance [Ω] of the unit length of the wire.

しかし、マーレーループ法やバーレーループ法
は次のような欠点を有している。即ち、故障した
線路以外に完全な線路がないと測定できず、しか
も、これら2線路の端部を接続する必要がある。
また、パルス法やさぐりコイル法は特殊な測定器
が必要であり、しかも測定方法が難解である。
However, the Murray loop method and the Burley loop method have the following drawbacks. That is, measurement cannot be performed unless there is a complete line other than the failed line, and it is necessary to connect the ends of these two lines.
Furthermore, the pulse method and the search coil method require special measuring equipment, and the measurement methods are difficult to understand.

以上のように従来の測定法は種々の問題点を有
していた。
As described above, conventional measurement methods have had various problems.

この考案は上記事情に基づいてなされたもの
で、測定に際して故障した電線路以外に完全な電
線路が不要であり、しかも、構成が簡単で測定も
容易な漏電箇所測定装置を提供しようとするもの
である。
This idea was made based on the above circumstances, and aims to provide an earth leakage point measuring device that does not require a complete electric line other than the failed electric line during measurement, and is simple in configuration and easy to measure. It is.

この考案は接地抵抗計の原理を応用したもので
あり、先ず、第3図を用いて基本原理について説
明する。
This invention is an application of the principle of a ground resistance meter, and first, the basic principle will be explained using FIG.

11は接地抵抗計の交流電源である。この電源
11の一端および他端はそれぞれ地中に設けられ
た測定接地電極12、固定接地電極13に接続さ
れる。しかして、電源11から供給される電流I
は測定接地電極12、土壌抵抗14,15、固定
接地電極13を通じて流れる。この場合、電源1
1の電圧Eは第4図に示す如く測定接地電極12
と固定接地電極13のほぼ中間部でEaとEbに分
割される。したがつて、測定接地電極12の接地
抵抗RaはEa/Iであり、固定接地電極13の接
地抵抗RbはEb/Iであるから、測定接地電極1
2と固定接地電極13との中間に設けた補助接地
電極16と測定接地電極12との間の電圧Eaを
測定すれば測定接地電極12の接地抵抗Raを求
めることができる。尚、土壌抵抗14,15には
測定接地電極12、固定接地電極13の導線およ
び電極自体の抵抗、並びに電極と周囲の土壌との
接触抵抗も含まれるが、これらは一般に無視し得
る程度微少である。
Reference numeral 11 is an AC power source for the earth resistance meter. One end and the other end of this power source 11 are respectively connected to a measurement ground electrode 12 and a fixed ground electrode 13 provided underground. Therefore, the current I supplied from the power supply 11
flows through the measurement ground electrode 12, the soil resistance 14, 15, and the fixed ground electrode 13. In this case, power supply 1
The voltage E of 1 is applied to the measuring ground electrode 12 as shown in FIG.
It is divided into Ea and Eb approximately in the middle of the fixed ground electrode 13. Therefore, since the ground resistance Ra of the measurement ground electrode 12 is Ea/I and the ground resistance Rb of the fixed ground electrode 13 is Eb/I, the measurement ground electrode 1
By measuring the voltage Ea between the measurement ground electrode 12 and the auxiliary ground electrode 16 provided between the ground electrode 2 and the fixed ground electrode 13, the ground resistance Ra of the measurement ground electrode 12 can be determined. Note that the soil resistances 14 and 15 include resistances of the conductors of the measurement grounding electrode 12 and the fixed grounding electrode 13 and the electrodes themselves, as well as contact resistance between the electrodes and the surrounding soil, but these are generally negligible and negligible. be.

次に、この考案の一実施例について説明する。
第5図において、21は例えば接地抵抗計の交流
電源であり、この電源21の一端には漏電箇所2
2が生じた電線路、例えば埋設された絶縁電線2
3の導体が接続される。また、前記電源21の他
端には地中に設けられた固定接地電極24が接続
されるとともに電圧計25の一端が接続される。
この電圧計25の他端は移動接地電極26に接続
される。しかして、前記電源21から供給される
交流電流Iは絶縁電線23、漏電箇所23、固定
接地電極24を通じて流れる。この場合の電気的
等価回路は第6図に示すようになる。尚、第5図
と同一部分には同一符号を付す。抵抗31は漏電
箇所の接地抵抗であり、抵抗32は固定接地電極
24と漏電箇所22間の土壌抵抗である。したが
つて、電圧計25に指示される電圧は固定接地電
極24と移動接地電極26との間の電圧であり、
移動接地電極26が漏電箇所22に接近する程大
きくなり、絶縁電線23の導体に接触すれば電源
21の両端電圧を測定することになり最大とな
る。このように、移動接地電極26を数回地中に
差し込み最大電圧を求めれば漏電箇所を発見する
ことができる。
Next, one embodiment of this invention will be described.
In FIG. 5, 21 is, for example, an AC power source for a ground resistance meter, and one end of this power source 21 is connected to a leakage point 2.
2, for example, a buried insulated wire 2
3 conductors are connected. Further, a fixed ground electrode 24 provided underground is connected to the other end of the power source 21, and one end of a voltmeter 25 is connected thereto.
The other end of this voltmeter 25 is connected to a moving ground electrode 26. Therefore, the alternating current I supplied from the power source 21 flows through the insulated wire 23, the leakage point 23, and the fixed ground electrode 24. The electrical equivalent circuit in this case is shown in FIG. Note that the same parts as in FIG. 5 are given the same reference numerals. The resistance 31 is the ground resistance at the leakage point, and the resistance 32 is the soil resistance between the fixed ground electrode 24 and the leakage point 22. Therefore, the voltage indicated by the voltmeter 25 is the voltage between the fixed ground electrode 24 and the moving ground electrode 26;
The closer the movable grounding electrode 26 is to the leakage point 22, the larger it becomes, and when it comes into contact with the conductor of the insulated wire 23, the voltage across the power supply 21 is measured and becomes maximum. In this way, by inserting the movable ground electrode 26 into the ground several times and determining the maximum voltage, it is possible to discover the location of the leakage.

上記実施例によれば、一般に使用されている接
地抵抗計の電源21に電圧計25を接続した構成
とし、測定は移動接地電極26を地中に差し込み
最大電圧を求めるものである。したがつて、簡単
な構成、容易な作業で漏電箇所を発見できるもの
である。
According to the above embodiment, the voltmeter 25 is connected to the power source 21 of a commonly used earth resistance meter, and the measurement is performed by inserting the movable earth electrode 26 into the ground to determine the maximum voltage. Therefore, the leakage point can be found with a simple configuration and easy work.

また、従来のように漏電が生じた電線路以外に
完全な線路が不要であるため、これらを接続する
必要もなく便利である。
In addition, since there is no need for a complete line other than the electric line where leakage occurs as in the conventional case, there is no need to connect these lines, which is convenient.

さらに、電圧計で最大値を求めるのみで測定が
可能であり、従来のような計算が何ら必要ないた
め都合がよい。
Furthermore, measurement can be performed simply by finding the maximum value with a voltmeter, which is convenient because no calculations as in the prior art are required.

また、電圧計25の一端を電源21の一端に接
続し、電圧計25の他端を移動接地電極26に接
続するようにしたので、電源21電圧が低くて
も、電源21の他端から漏電箇所22を通じて流
れる漏電電流によつて発生する、固定接地電極2
4と移動接地電極26との間の電位差を大きくと
ることができ、十分に測定が可能となるととも
に、絶縁電線23の埋設ルートが曲折して不明の
場合でも、容易に探索することができる。
Furthermore, one end of the voltmeter 25 is connected to one end of the power supply 21, and the other end of the voltmeter 25 is connected to the movable grounding electrode 26, so even if the voltage of the power supply 21 is low, there is no leakage from the other end of the power supply 21. A fixed earthing electrode 2 generated by a leakage current flowing through a point 22
4 and the movable ground electrode 26, sufficient measurement is possible, and even if the buried route of the insulated wire 23 is curved and unknown, it can be easily searched.

尚、高精度の電圧計を用いれば漏電箇所の接地
抵抗が高くとも測定可能である。
Note that if a high-precision voltmeter is used, it is possible to measure even if the ground resistance at the leakage point is high.

また。トンネル等の空間に架線された電線が接
地した場合でも、固定接地電極24、移動接地電
極26を設置できる場合は測定可能である。
Also. Even if an electric wire installed in a space such as a tunnel is grounded, measurement is possible if the fixed ground electrode 24 and the movable ground electrode 26 can be installed.

さらに、第5図では漏電箇所22が絶縁電線2
3の端部と固定接地電極24との間であつたが、
固定接地電極24が絶縁電線23と漏電箇所22
との間であつても上記同様に測定できることは言
うまでもない。
Furthermore, in FIG. 5, the leakage point 22 is the insulated wire 2.
3 and the fixed ground electrode 24,
The fixed grounding electrode 24 connects the insulated wire 23 and the leakage point 22
It goes without saying that measurements can be made in the same manner as above even if the difference is between.

以上、詳述したようにこの考案によれば、測定
に際して故障した電線路以外に完全な電線路が不
要であり、しかも、構成が簡単で測定も容易な漏
電箇所測定装置を提供できる。
As described in detail above, according to this invention, it is possible to provide an earth leakage point measuring device that does not require a complete electric line other than the failed electric line during measurement, has a simple configuration, and is easy to measure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ従来の漏電箇所測定
法を示す構成図、第3図はこの考案に係わる漏電
箇所測定装置の基本原理を説明するために示す構
成図、第4図は第3図における各部の電圧を示す
図、第5図はこの考案に係わる漏電箇所測定装置
の一実施例を示す構成図、第6図は第5図の等価
回路図である。 21……電源、22……漏電箇所、23……絶
縁電線、24……固定接地電極、25……電圧
計、26……移動接地電極。
Figures 1 and 2 are block diagrams showing the conventional earth leakage point measuring method, Figure 3 is a block diagram shown to explain the basic principle of the earth leakage point measuring device according to this invention, and Figure 4 is a block diagram showing the FIG. 5 is a block diagram showing an embodiment of the leakage point measuring device according to the present invention, and FIG. 6 is an equivalent circuit diagram of FIG. 5. 21... Power source, 22... Leakage point, 23... Insulated wire, 24... Fixed grounding electrode, 25... Voltmeter, 26... Moving grounding electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一端が漏電箇所の生じた電線路の導体に接続さ
れ、他端が固定接地電極に接続され、これらに交
流電流を供給する交流電源と、この交流電源の前
記固定接地電極に接続された他端に一端が接続さ
れ、他端が移動接地電極に接続された電圧計とを
具備し、前記移動接地電極を移動して最大電圧を
求めることにより前記電線路の漏電箇所を測定す
ることを特徴とする漏電箇所測定装置。
An AC power supply having one end connected to the conductor of the electric line where the leakage occurred and the other end connected to a fixed grounding electrode to supply alternating current to these, and the other end connected to the fixed grounding electrode of this AC power supply. and a voltmeter having one end connected to a movable ground electrode and the other end connected to a movable ground electrode, and measures the leakage point of the electric line by moving the movable ground electrode and determining the maximum voltage. Earth leakage point measuring device.
JP1989109623U 1989-09-21 1989-09-21 Expired JPH034940Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989109623U JPH034940Y2 (en) 1989-09-21 1989-09-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989109623U JPH034940Y2 (en) 1989-09-21 1989-09-21

Publications (2)

Publication Number Publication Date
JPH0250690U JPH0250690U (en) 1990-04-09
JPH034940Y2 true JPH034940Y2 (en) 1991-02-07

Family

ID=31346036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989109623U Expired JPH034940Y2 (en) 1989-09-21 1989-09-21

Country Status (1)

Country Link
JP (1) JPH034940Y2 (en)

Also Published As

Publication number Publication date
JPH0250690U (en) 1990-04-09

Similar Documents

Publication Publication Date Title
US20060226850A1 (en) Ground circuit impedance measurement
ES8704019A1 (en) Method for detecting and obtaining information about changes in variables.
JP3169921B2 (en) Ground resistance measuring method and ground resistance measuring system
JP2006234800A (en) Device for measuring ground resistance
JPH034940Y2 (en)
US4929900A (en) Method for locating conductive faults in telephone and similar cables
SU943610A1 (en) Method of localizing cable damage
JPH06222093A (en) Method for measuring grounding resistance
JP2003057288A (en) Fault-point specifying method for branch cable line
SU813326A1 (en) Method of locating sheath faults in cable lines
JPH03180771A (en) Measurement of grounding resistance
SU728097A1 (en) Method of locating cable line wires insulation flaws
SU1368825A1 (en) Device for detecting cable insulation damage place
JP2882198B2 (en) Insulation resistance tester
SU1262429A1 (en) Method of locating cable core fault
JP2568097B2 (en) Power cable accident section detection method
SU819731A1 (en) Method of underground potential determination
JPH02231580A (en) Method for surveying accident point of three-phase cable
JP2895994B2 (en) Fault location method for three-phase cable
JPH0473755B2 (en)
SU756322A1 (en) Method of determining damaged phase at single-phase earthing in mains with insulated neutral wire
JPH0428065Y2 (en)
JPS62207972A (en) Searching system for fault of distribution line
JP2750713B2 (en) Simple insulation resistance measurement method for low voltage wiring etc.
JPH0575980B2 (en)