JPS59227124A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59227124A
JPS59227124A JP10082083A JP10082083A JPS59227124A JP S59227124 A JPS59227124 A JP S59227124A JP 10082083 A JP10082083 A JP 10082083A JP 10082083 A JP10082083 A JP 10082083A JP S59227124 A JPS59227124 A JP S59227124A
Authority
JP
Japan
Prior art keywords
film
etching
region
ion
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10082083A
Other languages
Japanese (ja)
Inventor
Masayasu Abe
正泰 安部
Jiro Oshima
次郎 大島
Masaharu Aoyama
青山 正治
Takashi Yasujima
安島 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10082083A priority Critical patent/JPS59227124A/en
Publication of JPS59227124A publication Critical patent/JPS59227124A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To enable highly-precise and highly-efficient etching of a film of Si or an Si compound, by implanting ions selectively into said film on a semiconductor substrate any further by etching this film by a chemical dry etching method. CONSTITUTION:After an SiO2 film 2 is formed on a semiconductor substrate 1, an Si3N4 film 3 is formed on the film 2, and further a metal film 4 is formed on the film 3. Then, a resist pattern 5 having an opening R is formed on the film 4. Next, with the pattern 5 used as a mask, ions of Si, for instance, are implanted into the film 3 through the film 4 exposed inside the opening R, and thereby a region 31 in which ion implantation parts are formed in lines is formed in the opening R. Then, the film 4 is etched by a chemical dry etching (CDE) method with the pattern 5 used as a mask, so as to expose the region 31. When annealing is applied subsequently, a number of stable Si-Si combinations are prepared in Si3N4. When the region 31 is removed by the CDE method with the film 4 used as a mask thereafter, the film 3 is etched selectively, and thus very high precision in etching can be attained.

Description

【発明の詳細な説明】 [発明の技術分野1 この発明は半導体装置の製造方法に関し、更に詳細には
解脱等を高能率且つ高精度で選択的にエツチングするこ
とができる半導体装置の製造方法に関づるものである。
[Detailed Description of the Invention] [Technical Field of the Invention 1] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device that can selectively etch etching, etc. with high efficiency and precision. It is related.

[発明の技術的背景] 最近の半導体装置生産ラインではりソゲラフイエ程の加
工設備として従来のウェットエツチング設備に代ってド
ライエツチング設備が使用されるようになっている。
[Technical Background of the Invention] In recent semiconductor device production lines, dry etching equipment has come to be used in place of conventional wet etching equipment as processing equipment similar to that of a bevel.

ドライ1ツヂング法にはよく知られているように、純化
学的反応を利用するケミカルドライエツチング(この中
には円筒形プラス゛マエッチングやマイクロ波プラズマ
エツチング等が含まれるが、以下にはCDE法と略記す
る)仁、物理的なエツチング作用を利用する物理的エツ
チング(スバツタエッヂングやイオンビームエツヂング
が含まれる)とがあるほか、化学的反応と物理的作用と
を併用する反応性イオンエツチング法(RIEFAと略
記する)が知られている。
As is well known, the dry etching method uses chemical dry etching that utilizes pure chemical reactions (this includes cylindrical plasma etching, microwave plasma etching, etc., but the following describes the CDE method and In addition to physical etching that uses physical etching action (including sputter etching and ion beam etching), there is also reactive ion etching that uses a combination of chemical reaction and physical action. (abbreviated as RIEFA) is known.

これらのドライエツチング法のうち、CDE法は下地を
損傷する恐れがないうえに、エツチング速度が大きくま
た被エツチング祠に対する選択比も大きいので高いスル
ープットが得られ、さらにテーバエツチング等も実施し
やずいという艮、所を有しており、それ故、現在では広
く利用されでいる。
Among these dry etching methods, the CDE method has no risk of damaging the underlying layer, has a high etching speed, and has a high selectivity to the etching target, resulting in a high throughput, and it is also difficult to perform Taber etching. Therefore, it is widely used today.

一方、最近、超LSI等のりソグラフィ技術として実用
に供されているR I [法は異方性エツチングである
ためサイドエッヂmが小さく、従って2μm程痕0細線
幅のパターンをも精度良くエツチングすることができる
という長所を有しく゛いる。
On the other hand, since the R I method, which has recently been put into practical use as a lithography technique for VLSI, uses anisotropic etching, the side edge m is small, and therefore it is possible to accurately etch patterns with a fine line width of approximately 2 μm without any traces. It has the advantage of being able to

しかしながら、前記の二つの方体はいずれも以下のごど
き欠点を有しているので、これらの方法を含む従来の半
導体装置の製造方法にも下記欠点が内在していた。
However, since both of the above-mentioned two squares have the following drawbacks, conventional semiconductor device manufacturing methods including these methods also have the following drawbacks.

[背景技術の問題点] ODE法は化学反応を利用づるエツチング法であるため
、本質的に等方性エツチングであり、従ってサイドエッ
チ量が大きく、通常は被エツチング膜の膜厚のバラツキ
やエツチング条イ!1のバラツキがあるため、3μIl
l以下の細線幅のパターン加工には適していない。 例
えば、2μmのレジストパターンによって、0.5μm
厚の被エツチング膜をCD E法で1ツヂングづると等
方性エツチングのためにエツチングパターンは3μm幅
となり、さらに膜厚のバラツキ等を考慮して40%のオ
ーバーエツチングを施すと3.4μm幅のエツチングパ
ターンとなり、エツチング精度くレジストパターンとエ
ツチングパターンの比)が低く、高密度高精度のパター
ン形成ができない。
[Problems with the background technology] Since the ODE method is an etching method that utilizes a chemical reaction, it is essentially isotropic etching. Therefore, the amount of side etching is large, and usually there are variations in the thickness of the film to be etched and etching. Article! Since there is a variation of 1, 3μIl
It is not suitable for pattern processing with a thin line width of 1 or less. For example, with a 2 μm resist pattern, a 0.5 μm
If a thick film to be etched is etched one time using the CD E method, the etching pattern will be 3 μm wide due to isotropic etching, and if a 40% overetch is applied to account for variations in film thickness, the etching pattern will be 3.4 μm wide. The resulting etching pattern is low, and the etching accuracy (ratio of resist pattern to etching pattern) is low, making it impossible to form a high-density, high-precision pattern.

一方、RIE法は、異方性エツチングであるため、高密
度及び高精度のパターン形成ができるが、下地を損傷づ
るので半導体装置の製造過程にお()るJ−べでのエツ
チング工程で使用することができないという欠点を有し
ている上、スルーブツトが低いという問題点があった。
On the other hand, since RIE is an anisotropic etching, it is possible to form patterns with high density and precision, but it damages the underlying layer, so it is used in the J-plane etching process in the manufacturing process of semiconductor devices. In addition, there was a problem in that the throughput was low.

[発明の目的] それ故、この発明の目的は、前記二つの方法の長所のみ
を有する反面、短所を有しない半導体装置の製造方法を
提供することであり、更に詳細にいえば、この発明の目
的は、下地のh1傷をはとlυど発生させないという利
点を生かしながら異方性のCDE法を可能にし、それに
より薄膜等を高能率かつ高精度で選択的にエツチング覆
る(−どのできる半導体装置のの製造方法を提供するこ
とである。
[Object of the Invention] Therefore, an object of the present invention is to provide a method for manufacturing a semiconductor device that has only the advantages of the above two methods but does not have the disadvantages. The purpose is to enable the anisotropic CDE method while taking advantage of the fact that H1 scratches are not generated in the underlying substrate, and thereby to selectively cover thin films etc. with high efficiency and precision. An object of the present invention is to provide a method for manufacturing a device.

E発明の概要] 本発明者は、3i又はSi化合物(St 02 。Summary of E invention] 3i or Si compound (St 02).

Si 3N1等)の膜を(CD E法でエツチングする
場合、該St又はSi化合物の膜中に予めSi。
When etching a film of (Si 3N1, etc.) by the CDE method, Si is preliminarily added to the St or Si compound film.

N、0.1−1等の元素をイオン注入し゛(d3<と、
特にイオン注入した後、適当温度eアニールしておくと
、イオン注入された領域の1ツヂング速度を非注入領域
のエツチング速度よりも速くしたりあるいは遅くしたり
4ることができるという事実に着目し、これを利用して
本発明の方法を完成させたものである。 すなわち、本
発明の方法は、半導体基板上に形成した3i又はSi化
合物(Si 02 、Si 3 N4等)のsにst 
、O,N。
An element such as N, 0.1-1 is ion-implanted (with d3<,
In particular, we focused on the fact that by annealing at a suitable temperature after ion implantation, the etching speed of the ion-implanted region can be made faster or slower than the etching speed of the non-implanted region. , which was used to complete the method of the present invention. That is, the method of the present invention provides a method for adding st to s of a 3i or Si compound (Si 02 , Si 3 N4, etc.) formed on a semiconductor substrate.
,O,N.

14等の元素のうち少くとも11’fi以上を選1ツク
的にイオン注入し、更にc r)E法で該膜を選択的に
1ツヂングすることにより該膜を大きなリイド]−ツブ
なしに高精度でかつ高能率で1ツヂングすることかでき
ることを特徴とする。
By selectively ion-implanting at least 11'fi or more of elements such as 14, etc., and selectively dipping the film using the CR)E method, the film can be formed with a large lead] - without any lumps. It is characterized by being able to perform one tweezing with high precision and high efficiency.

[発明の実施例] 以下に第1図ないし第3図を参照して本発明の実施例に
ついて説明する。
[Embodiments of the Invention] Examples of the present invention will be described below with reference to FIGS. 1 to 3.

第1図(a )ないし第1図((1)は本発明方法の第
一実施例における各工程での断面図である。
FIG. 1(a) to FIG. 1(1) are cross-sectional views at each step in the first embodiment of the method of the present invention.

同図におい°(,1はSiの半導体基板、2はS+02
膜、3はSI3N4膜、4はW(タングステン)などか
ら成る金属膜、5はレジストパターンである。
In the same figure, °(, 1 is a Si semiconductor substrate, 2 is S+02
3 is an SI3N4 film, 4 is a metal film made of W (tungsten), etc., and 5 is a resist pattern.

第1図(a )に示すように本発明の方法ではまず、半
導体基板1上に5in21112(この躾は本発明方法
には関係がない)を形成した後、該5i02膜2の上に
例えばプラズマCVD法Csi 3 N41t!3ヲ形
成L、サラニ、Si3 N4 IR3の上に例えばスパ
ッタ法で金属膜4を形成りる。
As shown in FIG. 1(a), in the method of the present invention, first, a 5-inch 21112 film (this method is not related to the method of the present invention) is formed on a semiconductor substrate 1, and then a plasma, for example, is applied on the 5i02 film 2. CVD method Csi 3 N41t! A metal film 4 is formed on the Si3N4 IR3 by sputtering, for example.

そして最後に金属膜4上に通常のl”EP法()Aトエ
ッチングプロセス)のようにU1口部Rをイ″I?lる
レジストパターン5を形成づる。
Finally, the opening R of U1 is etched on the metal film 4 using the normal EP method (etching process). A resist pattern 5 is formed.

次に第1図(b)に示すようにレジス1−パターン5を
マスクとして例えば3iをレジストパターン5の開口部
R内に露出した金属膜4を通しくSi 3 N4 [内
にイAンン土入りることによりレジストパターン5の開
口部Rに整列覆るイオン注入領域31を513Nn膜3
内に形成づ−る。
Next, as shown in FIG. 1(b), using the resist 1-pattern 5 as a mask, for example, 3i is passed through the metal film 4 exposed in the opening R of the resist pattern 5 to inject Si 3 N The 513Nn film 3 aligns and covers the ion implantation region 31 by inserting the 513Nn film 3 into the opening R of the resist pattern 5.
Formed within.

イオン注入は、第一段階加速電圧V、。=110keV
、注入mQd=−1,5x10” /c1、第二段階y
 ac = 2(iokcV 、注入場Q d−3,5
x 10′5/ cm’第二段階Vac= 480ke
V、 Qd” 5X 10” /C11l’と重ねて注
入するようにしで、st 3 N、l膜3の全層厚にわ
たってSiを注入す゛るのがよい。
The ion implantation is performed at the first stage acceleration voltage V. =110keV
, injection mQd=-1,5x10"/c1, second stage y
ac = 2 (iokcV, injection field Q d-3,5
x 10'5/cm'2nd stage Vac=480ke
It is preferable to implant Si over the entire thickness of the st 3 N,l film 3 by overlapping the implantation with V, Qd"5X10"/C11'.

次いで、レジメ1へパターン5をマスクとして第1図(
C)に承りように金属膜4をマイク【−1波CDE法[
ガス圧力P (CF4 ) =16Pa 、 P(’0
2)=14Pa 、?イクロ波電力600Wの条件]で
開口して513N4膜3のイオン注入領域31を露出さ
ける。 しかる後、窒素雰囲気中でアニール(800℃
、10分間)りると、イオン注入したpi/1lISi
3N、+中ニ多m ニQ 入L (It’ ルLl 原
子と置換して313Nq中に多数の安定した5i−8i
結合関係が作られる(一般にプラズマCVD法で形成し
た3 ! 3 N’4躾中には多すの1−1原子が取り
込まれているので、イオン注入したSiはH原子と置換
して3i−5iの結合を作つ、て安定しようとしており
、アニールがこの安定化を促進する)。 従って、イオ
ン注入領域31は3iの高淵麿領域になって多量の5i
−8i結合が生じるが、後に説明するように5i−3i
結合はCF、ガスに比較的侵されやすいので、他の領域
よりもC):、ガスでエツチングされやすくなる。
Next, pattern 5 is used as a mask for regimen 1 as shown in Figure 1 (
C) Microphone [-1 wave CDE method [
Gas pressure P (CF4) = 16Pa, P('0
2)=14Pa,? The ion implantation region 31 of the 513N4 film 3 is exposed by opening under the condition of microwave power of 600 W. After that, annealing (800℃) was performed in a nitrogen atmosphere.
, 10 minutes), then the ion-implanted pi/lISi
3N, + medium Ni multim NiQ input L (It'le Ll Substitute a large number of stable 5i-8i atoms in 313Nq
A bonding relationship is created (generally, 3!3N'4 atoms formed by plasma CVD method incorporate many 1-1 atoms, so the implanted Si ions replace H atoms and form 3i- 5i bonds, and annealing promotes this stabilization). Therefore, the ion implantation region 31 becomes a 3i Takafuchimaro region and a large amount of 5i
-8i bond occurs, but as explained later, 5i-3i
Since the bond is relatively easily attacked by CF gas, it is more easily etched by C) gas than other regions.

次に金属膜4をマスクとしてCOE法でイオン注入領域
31を除去すると、第1図(d )のJ、うに3 i 
3 N 4膜3が選択的にエツチングされる。
Next, using the metal film 4 as a mask, the ion-implanted region 31 is removed by the COE method, and as shown in FIG.
The 3N4 film 3 is selectively etched.

この場合、イオン注入領域31は5illi1度が非常
に高いため、5itNa193の他の部分よ、りも6倍
程疾エツチング速度が大きいのC急速にエツチングされ
るが、SiイΔンが注入されなかった部分のエツチング
時間度は非常に遅いlζめ、サイドエッチ量×は非常に
小さく(従来法のリイ1:1ツ′f790.5μmに対
して0.1μl11 ) 、あたかもW方性エツチング
を行ったかのように極めて高い、[ツブング精度が得ら
れる。 第2図は第1図の方法C使用したものとほぼ同
じ膜MA 31’j [この場合、被1ツヂング膜はプ
ラズマCVD法で形成した窒化シリコン膜(以下にはl
”−si 3Na膜と記載りる)である1を有する半導
体基板に従来のODE法を適用した場合のエツチング特
性と本発明方法におりるエツチング特性とを比較表示し
たちのである。
In this case, the ion-implanted region 31 has a very high 5illi1 degree, so the etching rate is about 6 times faster than other parts of the 5itNa 193. Although the ion-implanted region 31 is etched rapidly, no Si ion is implanted. The etching time for the etched area is very slow, and the side etching amount is very small (0.1 μl for the conventional method's 1:1 f790.5 μm), making it appear as if W directional etching had been performed. Extremely high accuracy can be obtained. FIG. 2 shows a film MA 31'j which is almost the same as that used in method C in FIG.
The etching characteristics obtained when the conventional ODE method is applied to a semiconductor substrate having 1, which is a "-si 3Na film", and the etching characteristics obtained by the method of the present invention are shown in comparison.

更に詳細には、従来方法と本発明方法とにおけるオーバ
エツチング時のエツチング時間とサイドエッヂ蟻との関
係を示したものである。
More specifically, the graph shows the relationship between the etching time during overetching and side edge ants in the conventional method and the method of the present invention.

第2図におい−C1横軸は相対1ツチング時間]−(=
71−バーエツチング時間を含むエツチング時間/正味
エツチング時間)であり、縦軸はり゛イドエッチ量ε(
μ111)を表す。 ま/=、直線lは本発明方法によ
るエツチング特性、直線■は従来1ノ法によるエツチン
グ特性をそれぞれ表しC(xる。
In Fig. 2, the -C1 horizontal axis is the relative one-touching time]-(=
71 - Etching time including bar etching time/Net etching time), and the vertical axis is the hard etching amount ε(
μ111). C(x), the straight line l represents the etching characteristics according to the method of the present invention, and the straight line {circle over (2)} represents the etching characteristics according to the conventional method 1.

第2図を参照すると、本発明方法ではサイドエッチ組の
絶対値及び4)−イドエッチψの増加率ともに従来方法
よりも極めて小さいということがわかる。
Referring to FIG. 2, it can be seen that in the method of the present invention, both the absolute value of the side etch group and the rate of increase in the 4)-side etch ψ are much smaller than in the conventional method.

このように、本発明方法によればサイドエッチ量を著し
く低減できることが明らかであるが、これは次のような
機序によるものeある。
As described above, it is clear that the amount of side etching can be significantly reduced according to the method of the present invention, and this is due to the following mechanism.

一般に、PSi3No膜の中にはS: 、N。Generally, S:, N is present in the PSi3No film.

Hの元素が含まれており、これらの元素によって該膜中
にはSi −8i 、 Si −N、 5t−1−1,
N−1−1等の結合が形成されている。 これらの結合
をCF4ガスに侵されやすい順に並べると5I−H,N
−H,>si −si >Si −Nとなるが、Si 
−1−を及びN−)(はト1原子が本来、P−8t 3
 Noの構成元素ではないが原料ガスの組成から形成さ
れる。
H elements are included in the film, and due to these elements, Si-8i, Si-N, 5t-1-1,
Bonds such as N-1-1 are formed. If these bonds are arranged in order of ease of attack by CF4 gas, they are 5I-H,N
-H, >si -si >Si -N, but Si
-1- and N-) (The 1 atom is originally P-8t 3
Although it is not a constituent element of No, it is formed from the composition of the source gas.

このような結合を内蔵するP  Sr 3 Ns成膜中
5iをイオン注入した後、特にアニールすると、イオン
注入領域では1」原子が3i原子に置換されて5i−8
i結合が著しく増大覆るが、イオン非注入領域ではアニ
ールによつ“C遊離1−1原子が外部に追い出されると
ともにS: −t1帖含の1−)がNによって置換され
るためSi −N結合が署しく増加づ゛ることになる。
After ion implantation of 5i during the formation of a P Sr 3 Ns film containing such a bond, especially when annealing is performed, the 1'' atoms are replaced by 3i atoms in the ion implanted region, forming 5i-8.
The number of i-bonds increases significantly, but in the non-ion-implanted region, due to annealing, the free 1-1 atoms of C are expelled to the outside and the 1-1 atoms in S: -t1 are replaced by N, resulting in Si -N The coupling will continue to increase significantly.

それ故、イオン注入領域では11ツチング速度が増大す
るのに反し、イオン非注入領域ではエツチング速瓜が減
少するため本質的には等方性エツチングであるC D 
Eを実施しても、あだから異方性エツチングを実施した
のと回じ効果を得ることができるのである。
Therefore, while the etching rate increases in the ion-implanted region, the etching speed decreases in the non-ion-implanted region, which is essentially isotropic etching.
Even if E is performed, it is possible to obtain the same turning effect as when performing anisotropic etching.

前記実施例ではj4xツヂング股として窒化シリコン膜
を示したが、本発明方法は、被エツチング膜として酸化
シリコン膜を有する半導体JJ板にも適用することがで
きる。
In the above embodiment, a silicon nitride film was used as the j4x cutting edge, but the method of the present invention can also be applied to a semiconductor JJ board having a silicon oxide film as the film to be etched.

被エツチング膜としてプラズマCV j)法で作られた
酸化シリコンl1u(P−3iQ、膜と記載する)を有
りる半導体基板に本発明り法を適用4る場合、p−s;
 02膜中に含まれる主なる結合は3i −H,5i−
0,5i−8iであり、これらをCF、ガスに侵され易
い順序に並べると、Si −f(>Si −8i >5
i−0となる。
When the method of the present invention is applied to a semiconductor substrate having silicon oxide l1u (P-3iQ, referred to as a film) made by the plasma CV j) method as a film to be etched, p-s;
The main bonds contained in the 02 film are 3i-H, 5i-
0.5i-8i, and when these are arranged in the order of ease of attack by CF and gas, Si -f(>Si -8i >5
It becomes i-0.

P  S + 02158の所定領域に3iをイオン注
入した後、アニールづると、イオン注入領域では3i−
3i結合が著しく増加]るのに対し、イオン非注入領域
では5i−0結合が増大するため、イオン注入領域はC
F4によって1ツチングされやりくなる反面、イオン非
注入領域ではCF4によるエツチングを受は鼎くなる。
After ion-implanting 3i into a predetermined region of P S + 02158, annealing results in 3i- in the ion-implanted region.
3i bonds increase significantly], whereas 5i-0 bonds increase in the non-ion-implanted region, so the ion-implanted region
On the other hand, the non-ion-implanted region is less susceptible to etching by CF4.

 P−8io、膜を被エツチング膜として有づる半導体
基板に本発明方法を適用した場合、イオン注入領域の1
ツチング速度はイオン非注入領域のそれに対しc2〜3
倍程度であった。
When the method of the present invention is applied to a semiconductor substrate having a P-8io film as a film to be etched, one of the ion implantation regions
The cutting speed is c2~3 compared to that in the non-ion implanted region.
It was about double that.

以上のような理由から、被エツチング膜に対りる注入イ
オンの種類やアニール温度を変えることにJこり、種々
の形式の膜加工方法を実現Cさる。
For the above reasons, various types of film processing methods are realized by changing the type of ions implanted into the film to be etched and the annealing temperature.

例えば、多結晶3i膜にNもしくは0を注入することに
より非エツチング領域の1ツチング速度を低下させる一
方、イオン非注入の1ツヂング領域の1ツチング速度を
相対的に増大さけることにより前記実施例とは異なった
異方性CD、E加]゛を行うこともできる。
For example, by implanting N or 0 into the polycrystalline 3i film, the etching speed of the non-etched region is reduced, while the etching speed of the non-ion-implanted etching region is relatively increased. It is also possible to perform different anisotropic CD, E additions.

なお、図示実施例ではタングステンl)+ +う成る金
属膜4をマスクとしてs+ 3N4 n%3を1ツヂン
グしているが、金属膜4はなくてもよい。
In the illustrated embodiment, s+ 3N4 n%3 is deposited by using the tungsten l)+ metal film 4 as a mask, but the metal film 4 may be omitted.

第3図(a )ないし第3図(C)は金R膜を形成しな
いで本発明方法を実施する例を示したものであり、同図
において第1図と同一の符号で表示され(−いる部分は
第1図と同じ部分eある。
FIGS. 3(a) to 3(C) show an example in which the method of the present invention is carried out without forming a gold R film, and in the same figures, the same symbols as in FIG. 1 are used (- The part where it is located is the same part e as in Fig. 1.

第3図(a )は、レジストパターン5の開口部R内に
露出しI=S+aN*膜3に3iをイオン注入して該5
iaN4膜3中にイオン注入領域31を形成させた状態
を示している。
FIG. 3(a) shows that 3i is ion-implanted into the I=S+aN* film 3 exposed in the opening R of the resist pattern 5.
A state in which an ion implantation region 31 is formed in the iaN4 film 3 is shown.

第3図(b)は、レジストパターン5を除去した後にア
ニールすることによりイオン江入領域31内のStを安
定化させた状態を示す。
FIG. 3(b) shows a state in which St in the ion entry region 31 is stabilized by annealing after removing the resist pattern 5.

第3図(C)は第3図(1))の状態の後にCD Eを
行ってイオン注入領域を除去した状態で。
FIG. 3(C) shows a state in which the ion implantation region has been removed by performing CD E after the state shown in FIG. 3(1)).

あり、第3図(C)に見られるように金属膜がないとC
D E後はSI3N4膜3に形成させたI?fl D3
2はデーパ孔となり、また、該聞[I32のD縁部は角
がとれた丸い形状となる。
As shown in Figure 3 (C), without the metal film, C
After DE, I? was formed on the SI3N4 film 3. fl D3
2 is a tapered hole, and the D edge of I32 has a rounded shape with rounded corners.

なお、前記のごとき本発明方法においては、従来のCD
E法に比べてサイド」゛ツチσが115になり、極めて
高い1ツヂング精度が得られることが判明した。
In addition, in the method of the present invention as described above, the conventional CD
It has been found that the side angle σ is 115 compared to the E method, and extremely high accuracy can be obtained.

[発明の効果] 以上に説明したように、この発明によれば、■RIE法
のように異方性エツチングすることができる、 ■エッチング工程に−3いて従来方法と同じ選択性があ
り高いスループットが得られる、 ■下地を傷めずにエラチングリ−ることがζ・きる、■
高密度及び高精度のりソグラフィが可能になる、■従来
のCD E 設備を使用することがでさる、■開口等の
形状の制御が容易である。
[Effects of the Invention] As explained above, according to the present invention, 1) it is possible to perform anisotropic etching like the RIE method, and 2) the etching process has the same selectivity and high throughput as the conventional method. ■Erasing can be done without damaging the base.■
High-density and high-precision lamination is possible; (1) conventional CD E equipment can be used; (2) shapes of openings, etc. can be easily controlled.

等の特徴を有した半導体装置製造方法が提供される。A semiconductor device manufacturing method having the following features is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を承り図、第2図は従来方法に
おけるエツチング特性と本発明り法にお番ノるエツチン
グ特性とを比較表示した図、第3図は本発明方法の他の
実施例を示1図である。 1・・・半導体基板、 2・・・S+0.膜、 33・
・・3 + 3 N 4膜、 4・・・金属膜、 5・
・・レジストパターン、 31・・・イオン注入領域、
 32・・・開口。 第1図 IJHJ↓↓1111↓Ill 第2図 一+r 第3図
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram comparing the etching characteristics of the conventional method and the method of the present invention, and FIG. 3 is a diagram showing the etching characteristics of the method of the present invention. FIG. 1 shows an embodiment of the invention. 1... Semiconductor substrate, 2... S+0. membrane, 33.
...3 + 3 N 4 film, 4...metal film, 5.
...Resist pattern, 31...Ion implantation region,
32...Opening. Figure 1 IJHJ↓↓1111↓Ill Figure 2 1+r Figure 3

Claims (1)

【特許請求の範囲】 1 半導体基板上に形成した3i又は3i化合物の膜に
s+ 、N、O,I−1の少なくとも1種以上のイオン
を選択的に注入した後、該Si又は3i化合物の膜をケ
ミカルドライエツチングすることを特徴とづる半導体装
置の製造方法。 2 イオン注入後、アニールを行い、次いでケミカルド
ライエツチングする特許請求の範囲第1項記載の半導体
装置の製造り法。
[Claims] 1. After selectively implanting ions of at least one of s+, N, O, and I-1 into a 3i or 3i compound film formed on a semiconductor substrate, the Si or 3i compound film is A method for manufacturing a semiconductor device characterized by chemically dry etching a film. 2. The method of manufacturing a semiconductor device according to claim 1, wherein after ion implantation, annealing is performed and then chemical dry etching is performed.
JP10082083A 1983-06-08 1983-06-08 Manufacture of semiconductor device Pending JPS59227124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082083A JPS59227124A (en) 1983-06-08 1983-06-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082083A JPS59227124A (en) 1983-06-08 1983-06-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59227124A true JPS59227124A (en) 1984-12-20

Family

ID=14283973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082083A Pending JPS59227124A (en) 1983-06-08 1983-06-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59227124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863556A (en) * 1985-09-30 1989-09-05 Siemens Aktiengesellschaft Method for transferring superfine photoresist structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666038A (en) * 1979-11-01 1981-06-04 Mitsubishi Electric Corp Formation of micro-pattern
JPS5773941A (en) * 1980-10-28 1982-05-08 Toshiba Corp Manufacture of semiconductor device
JPS5839777A (en) * 1981-08-31 1983-03-08 Sanyo Electric Co Ltd Etching method
JPS59135731A (en) * 1983-01-24 1984-08-04 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666038A (en) * 1979-11-01 1981-06-04 Mitsubishi Electric Corp Formation of micro-pattern
JPS5773941A (en) * 1980-10-28 1982-05-08 Toshiba Corp Manufacture of semiconductor device
JPS5839777A (en) * 1981-08-31 1983-03-08 Sanyo Electric Co Ltd Etching method
JPS59135731A (en) * 1983-01-24 1984-08-04 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863556A (en) * 1985-09-30 1989-09-05 Siemens Aktiengesellschaft Method for transferring superfine photoresist structures

Similar Documents

Publication Publication Date Title
JP3406302B2 (en) Method of forming fine pattern, method of manufacturing semiconductor device, and semiconductor device
JPS59163826A (en) Dry etching method
JPS58204538A (en) Method of producing metal silicide-polysilicon double layer on substrate containing integrated circuit
US6043164A (en) Method for transferring a multi-level photoresist pattern
JPS63117423A (en) Method of etching silicon dioxide
JPS59227124A (en) Manufacture of semiconductor device
US5409566A (en) Slope etching process
JPS59136943A (en) Element isolation process of semiconductor device
JP3109059B2 (en) Dry etching method
JP3205095B2 (en) Preparation method for transmission electron microscope sample
JP3257162B2 (en) Method for manufacturing semiconductor device
JPH11145144A (en) Method for forming conductive layer
JPH05343363A (en) Dry etching method
US20010051386A1 (en) Method of manufacturing a semiconductor device
JPH03278543A (en) Manufacture of field-effect transistor
JPS5856421A (en) Manufacture of semiconductor device
JPH0878414A (en) Semiconductor device and its manufacture
JPS6058636A (en) Forming of dielectric isolation region
JP3326662B2 (en) Plasma etching method for silicon oxide based material layer
JPH07135198A (en) Etching
JPS5967632A (en) Preserving method for alignment mark of wafer
JPH01184832A (en) Manufacture of semiconductor device
JPS62104139A (en) Manufacture of semiconductor device
JPH06244153A (en) Dry etching method
JPS62165333A (en) Formation of fine groove