JPS59225723A - Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process - Google Patents

Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process

Info

Publication number
JPS59225723A
JPS59225723A JP58101310A JP10131083A JPS59225723A JP S59225723 A JPS59225723 A JP S59225723A JP 58101310 A JP58101310 A JP 58101310A JP 10131083 A JP10131083 A JP 10131083A JP S59225723 A JPS59225723 A JP S59225723A
Authority
JP
Japan
Prior art keywords
flow rate
seed crystal
crystal slurry
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58101310A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Masahiro Tatsumoto
辰本 正弘
Ichiro Toyoda
一郎 豊田
Katsuyuki Morinaga
森永 勝行
Yutaka Nonogaki
野々垣 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58101310A priority Critical patent/JPS59225723A/en
Publication of JPS59225723A publication Critical patent/JPS59225723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To prevent scale adhesion in a washing apparatus, by measuring boiler load or a fuel flow amount, the O2-concn. in effluent gas from an oxidation apparatus, the flow amount of a washing liquid to the oxidation apparatus and the flow amount of a seed crystal slurry while manipulating the flow amount of the seed crystal slurry so as to make the operation result of the measured values constant. CONSTITUTION:A boiler load signal measured by a detector 24 is inputted to a function generator A23 while the O2-concn. signal in effluent gas from an oxidation apparatus 5 measured by an O2-densitometer 21 is inputted to a function generator B. The flow amount F of a washing liquid withdrawn to the oxidation apparatus 5 from a washing apparatus 3 and the flow amount F' of a seed crystal slurry supplied to the washing apparatus 3 from the oxidation apparatus 5 are measured by flow meters 27, 32 and the measured values are inputted to a subtractor A33. Operation shown by formula is performed and the flow amount of the seed crystal slurry in an arranged pipe 6 is manipulated so as to make a CaSO4-concn. constant by a regulator 29. The set value of the regulator 29 is set to a predetermined amount or more of the CaSO4-concn. generating no scale.

Description

【発明の詳細な説明】 および/又は炭酸カルシウム(以降CaCO3)〜を用
いて、排煙に含1れる硫黄酸化物(以降SOx )を除
去する湿式排煙脱硫装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet flue gas desulfurization device for removing sulfur oxides (hereinafter referred to as SOx) contained in flue gas using calcium carbonate (hereinafter referred to as CaCO3) and/or calcium carbonate (hereinafter referred to as CaCO3).

Ca(OH)2又はCaCO3のス2りを用いて、排煙
中のSOxを除去する脱硫方法においては、排煙洗浄装
置(以降スクラバー)内で生成する石こうがスクラバー
の内部にスケールとなって堆積するという困難な問題が
あり、スケールトラブル対策が、最も重要な、技術要因
である。このスケールトラブルi策として種晶供給すな
わちスクラバーの洗浄液に、ある所定毒以上の種晶石こ
うを添加する事により、スクラバー内で生成する石こう
を、当種晶石こうの結晶表面に析出。
In the desulfurization method that uses Ca(OH)2 or CaCO3 scrubber to remove SOx from flue gas, the gypsum generated in the flue gas cleaning equipment (hereinafter referred to as scrubber) becomes scale inside the scrubber. There is a difficult problem of deposition, and countermeasures against scale problems are the most important technical factor. As a measure against this scale problem, by adding seed crystal gypsum of a certain poison or higher to the seed crystal supply, that is, to the scrubber cleaning liquid, the gypsum produced in the scrubber is deposited on the crystal surface of the seed crystal gypsum.

成長させる事により、スクラバーの内部への析出を防止
するというスケール防止対策が、非常にすぐれた対策と
して、広く実用化されている。
A scale prevention measure that prevents precipitation inside scrubbers by growing scale is an excellent measure that has been widely put into practical use.

本発明は、このような、スクラバー内でのスケールトラ
ブルを防止する重要な技術要因である種晶供給方法に関
する発明である。
The present invention relates to a method for supplying seed crystals, which is an important technical factor for preventing such scale troubles within the scrubber.

Ca(OH)2又はCaCO3スラリにより、排煙中の
SOxを除去する方法では、洗浄液に、亜硫酸力ルンウ
ム(以降Ca5O3)および、硫酸カル/ラム(以降C
a5O,)が生成し、いずれも溶解度が小さいのでその
大部分は、各々同相に析出し、液中に懸濁している事は
、よく知られた事実である。
In the method of removing SOx in flue gas using Ca(OH)2 or CaCO3 slurry, the cleaning solution contains sulfite (hereinafter referred to as Ca5O3) and sulfate Cal/Rum (hereinafter referred to as C).
It is a well-known fact that a5O,) is produced, and since both have low solubility, most of them precipitate in the same phase and are suspended in the liquid.

以下に、従来例のスケールトラブルを更に詳しく説明す
る。
The scale trouble in the conventional example will be explained in more detail below.

図−1は、従来の方法についてそのフローを図示したも
のである5、 例えば1石炭だきボイラからの排ガスは、排ガス入ロタ
リド1からスクラバ3に導入され。
Figure 1 illustrates the flow of a conventional method.5 For example, exhaust gas from a coal-fired boiler is introduced into a scrubber 3 from an exhaust gas-containing rotaryde 1.

スクラバ3の入口部分で、洗浄液によって冷却。The inlet of the scrubber 3 is cooled by the cleaning liquid.

除じんされる。勿論スクラバーに入る前に、別置きされ
た冷却、除しん装置で排ガスを冷却除じんする方法も従
来知られており1本発明は同様に適用できる。排ガスの
冷却のために、洗浄液の水分が一部蒸発するが、メイク
アップ水2によって補給される。続いて、排ガスは、ス
クラバ3の本体部分で、斐に冷却除じんされると同時に
、排ガス中のSOxは、洗浄液に吸収される。
Dust is removed. Of course, there is also a conventionally known method in which the exhaust gas is cooled and dust removed using a separate cooling and dust removal device before entering the scrubber, and the present invention can be applied in the same manner. Due to the cooling of the exhaust gas, some of the water in the cleaning liquid evaporates, but it is replenished by the makeup water 2. Next, the exhaust gas is cooled and dust removed in the main body of the scrubber 3, and at the same time, SOx in the exhaust gas is absorbed into the cleaning liquid.

吸収剤にCaCO3を使用した場合の反応は次の通りで
ある。
The reaction when CaCO3 is used as an absorbent is as follows.

Caso3+SO□+H2O−+Ca  +2H803
(a)H8O3−+−>O□  →H+5O4−(b)
Ca  +SO−−+Ca5O(c) CaCO3+H8O3+H−+CaSO3+H20+C
O2(d)So3+H20−+ 2H−1−5Q42−
       (e)即ち、スクラバで生成しだCaS
O3は吸収したS02と(a)式でCa  とHso;
  となるが、とのH8O3−の一部は排ガス中の0□
により酸化されて(b)式に示すように、 H”+SO
4”−になる。
Caso3+SO□+H2O-+Ca +2H803
(a) H8O3−+−>O□ →H+5O4−(b)
Ca +SO--+Ca5O(c) CaCO3+H8O3+H-+CaSO3+H20+C
O2(d)So3+H20-+ 2H-1-5Q42-
(e) That is, CaS generated by the scrubber
O3 is combined with absorbed S02 and Ca and Hso in formula (a);
However, some of the H8O3- in the exhaust gas becomes 0□
As shown in formula (b), H”+SO
It becomes 4”-.

又、 H3O3−とH+は吸収剤であルCaCO3テ中
和され(d)式に示す通り、 CaSO3とH20とC
02となりCO2はガスに放散される。生成したCa 
 と502−は、濃度が高くなると、(C)式に示すと
おりCaSO4となって、 CaSO3と同様、固相に
析出する。
In addition, H3O3- and H+ are neutralized by the absorbent, and as shown in equation (d), CaSO3, H20, and C
02 and CO2 is dissipated into the gas. Generated Ca
When the concentration of and 502- increases, it becomes CaSO4 as shown in equation (C) and precipitates in the solid phase like CaSO3.

なお、 CaSO4とCaSO3の生成割合は排ガス中
の02によって生成するS04”−の量によってきする
ものである。
Note that the production ratio of CaSO4 and CaSO3 depends on the amount of S04''- produced by 02 in the exhaust gas.

洗浄液は循環ポンプ18によって循環配管4を通じてス
クラバ3に供給され、排ガスと接触している。CaCO
3又はCa(OH)2の吸収剤は配管13よす常時供給
され、洗浄液中のCaCO3濃度を一定に保持している
。洗浄液の一部は配管9を通じて酸化装置5に送られて
いる。この抜き出し量はスクラバ3内の洗浄液レベルを
一定にするようにレベル調節計11と調節弁12によっ
て制御されている。酸化装置5では空気又は酸素を含む
ガスが配管7を通じて供給され、抜き出した洗浄液中の
CaSO3を酸化してCaSO4を生成している。この
時、空気又は酸素を含むガス中の酸素は抜き出した洗浄
液中のCaSO3量に比例して消費される。空気又は酸
素を含むガス流量は一定になるように流量調節計19と
調節弁20に制御されている。また使用済の空気又は酸
素を含むガスは配管10を通じて酸化装置5より取り出
されている。
The cleaning liquid is supplied to the scrubber 3 through the circulation pipe 4 by the circulation pump 18, and is in contact with the exhaust gas. CaCO
An absorbent of Ca(OH)2 or Ca(OH)2 is constantly supplied to the pipe 13 to keep the concentration of CaCO3 in the cleaning liquid constant. A portion of the cleaning liquid is sent to the oxidizer 5 through a pipe 9. This amount of extraction is controlled by a level controller 11 and a control valve 12 so as to keep the cleaning liquid level in the scrubber 3 constant. In the oxidizer 5, air or a gas containing oxygen is supplied through a pipe 7, and oxidizes CaSO3 in the extracted cleaning liquid to generate CaSO4. At this time, oxygen in the air or oxygen-containing gas is consumed in proportion to the amount of CaSO3 in the extracted cleaning liquid. The flow rate of gas containing air or oxygen is controlled by a flow rate controller 19 and a control valve 20 so as to be constant. Also, used air or gas containing oxygen is taken out from the oxidizer 5 through a pipe 10.

酸化装置5においてスラリ中のCaSO3が酸化され、
固相の大部分がCaSO4となったスラリの一部は種晶
スラリとして配管6を通じてスクラバ3に供給し、洗浄
液中のCaSO4濃度を高めている。なお種晶スラリ流
量は一定となるように流量調節計14.調節弁15によ
って制御されている。
CaSO3 in the slurry is oxidized in the oxidizer 5,
A portion of the slurry whose solid phase is mostly CaSO4 is supplied to the scrubber 3 through the pipe 6 as a seed crystal slurry to increase the CaSO4 concentration in the cleaning liquid. Note that the flow rate controller 14 is used to keep the seed crystal slurry flow rate constant. It is controlled by a control valve 15.

また、酸化装置5内のスラリレベルは一定となるように
レベル調節計16と調節弁17によって配管8から抜き
出されるスラリ流量を操作している。
Further, the flow rate of the slurry extracted from the pipe 8 is controlled by the level controller 16 and the control valve 17 so that the slurry level in the oxidizer 5 is kept constant.

先に述べたようにスクラバ中のスケール付着を防止する
には洗浄液中の種晶濃度すなわち石こう(CaSO4)
濃度を所定濃度以上に保持する必要がある。種晶スラリ
のスクラバ3への供給は洗浄液中のCaSO4濃度をあ
げる効果がある。ところが、従来法では種晶スラリ流量
を定量供給(7) しているだけで、 CaSO4濃度は制御していないだ
め、常に所定濃度以上であるという保証はなく、場合に
よっては所定濃度以下となり、スクラバ内にスケールが
付着するという危険性があった。例えば排ガス中の02
濃度が小さくなると502− の生成量が減るのでスク
ラバ3内でのCa5O,の生成が少なくなり、逆にCa
SO3の生成が増える。このためスクラバ3内のCaS
O4濃度が小さくなるので、所定濃度以下になることが
考えられる。
As mentioned earlier, in order to prevent scale adhesion in the scrubber, the concentration of seed crystals in the cleaning solution, that is, gypsum (CaSO4)
It is necessary to maintain the concentration above a predetermined concentration. Supplying the seed crystal slurry to the scrubber 3 has the effect of increasing the CaSO4 concentration in the cleaning liquid. However, in the conventional method, the seed crystal slurry flow rate is only supplied at a constant rate (7), but the CaSO4 concentration is not controlled, so there is no guarantee that the concentration will always be above the specified concentration, and in some cases it may fall below the specified concentration, causing the scrubber to fail. There was a risk that scale would build up inside. For example, 02 in exhaust gas
As the concentration decreases, the amount of 502- generated decreases, so the generation of Ca5O in the scrubber 3 decreases, and conversely, the amount of Ca502- generated decreases.
Production of SO3 increases. Therefore, the CaS in the scrubber 3
Since the O4 concentration decreases, it is conceivable that the concentration becomes lower than the predetermined concentration.

本発明は従来法の以上欠点を是正することを目的に考案
されたものであり、洗浄液中のCaSO4濃度を一定に
制御していかなる運転条件でも所定濃度以上に保持する
ことによってスクラバ内へのスケール付着を防止するこ
とができるものである。
The present invention was devised for the purpose of correcting the above drawbacks of the conventional method, and by controlling the CaSO4 concentration in the cleaning liquid at a constant level and maintaining it at a predetermined concentration or higher under any operating conditions, it is possible to prevent scale from entering the scrubber. It can prevent adhesion.

本発明の一実施例を具体的に示したのが図2である。FIG. 2 specifically shows one embodiment of the present invention.

まず洗浄液中のCaSO3〕度の測定原理につい(8) て説明する。First, regarding the principle of measuring the degree of CaSO3 in the cleaning solution (8) I will explain.

排ガスより吸収される硫黄酸化物の量は(1)式%式% ただし、ここでΔSは、吸収した硫黄酸化物(K9mo
i/H) 、 Gはスクラバ導入前の排ガス量(Kym
ol/H〕、ySO2は未処理排ガス中の硫黄酸化物濃
度〔−〕、η8o2は脱硫率〔−〕を示す。
The amount of sulfur oxides absorbed from exhaust gas is expressed by the formula (1) (%). However, here, ΔS is the amount of absorbed sulfur oxides (K9mo
i/H), G is the amount of exhaust gas before introducing the scrubber (Kym
ol/H], ySO2 represents the sulfur oxide concentration in the untreated exhaust gas [-], and η8o2 represents the desulfurization rate [-].

スクラバ3に供給されるイオウ化合物は(1)式の他に
配管6より供給される種晶スラリかある。
In addition to formula (1), the sulfur compound supplied to the scrubber 3 is a seed crystal slurry supplied from the pipe 6.

壕だ、スクラバ3から抜き出される洗浄液は配管9のみ
であり、抜き出される硫黄化合物は前に述べたようにC
aSO4とCaSO3と考えられるので、静的な状態で
はマスバランスより(2)式の関係が成立する。
Well, the cleaning liquid that is extracted from the scrubber 3 is only from the pipe 9, and the sulfur compounds that are extracted are C as mentioned before.
Since they are considered to be aSO4 and CaSO3, the relationship of equation (2) holds true from mass balance in a static state.

ΔS+F’ (CaSO4)’ = F’([:CaS
O4]+CCaSO3:] ) ・= 121[Ca5
O4)’=(CaSO4)十(CaS03:l    
 ・12rとこでFは配管9の抜き出し洗浄液の流量(
、//)I )。
ΔS+F'(CaSO4)' = F'([:CaS
O4]+CCaSO3:] ) ・= 121[Ca5
O4)' = (CaSO4) ten (CaS03:l
・Where F is the flow rate of the cleaning liquid extracted from the pipe 9 (
,//)I).

〔CaSO4〕は、洗浄液中のCaSO4モル濃度V?
 mol/m’〕。
[CaSO4] is the CaSO4 molar concentration V in the cleaning solution?
mol/m'].

〔CaSO3〕洗浄液中のCaSO3モル濃度(Kym
ol / ??11:] 。
[CaSO3] Molar concentration of CaSO3 in the cleaning solution (Kym
ol/? ? 11:].

F′は配管6の種晶スラリ流量(tr?/H) 、CC
a SO4〕’は種晶スラリのCaSO4濃度(Kgm
o l / m’ 、1゜酸化装置5でCaSO3が酸
化され、 CaSO4になっても硫黄酸化物としての合
計は変化しないのでC2)1式が成立することがわかる
F' is the seed crystal slurry flow rate (tr?/H) in pipe 6, CC
aSO4]' is the CaSO4 concentration (Kgm
ol/m', 1° Even when CaSO3 is oxidized in the oxidizer 5 and becomes CaSO4, the total amount as sulfur oxides does not change, so it can be seen that Equation C2)1 holds true.

次に酸化装置5の配管10の使用後の空気又は酸素を含
むガス中の02濃度と洗浄液中のCaSO3モル濃度に
は次の関係がある。酸化装置5での酸化ガスを空気とし
て説明する。
Next, the following relationship exists between the 02 concentration in the air or oxygen-containing gas after the piping 10 of the oxidizer 5 has been used and the CaSO3 molar concentration in the cleaning liquid. The explanation will be given assuming that the oxidizing gas in the oxidizing device 5 is air.

酸化装置5に配管9を通じて流入するスラリ中のCaS
O3モル濃度を(CaSO3)(Kymol /rr?
 )とし。
CaS in the slurry flowing into the oxidizer 5 through the pipe 9
O3 molar concentration (CaSO3) (Kymol /rr?
)year.

流入流量をF(i/H)とし、酸化装置5でのCa5o
 3の酸化率をαとすると、酸化装置5で酸化してCa
SO4となるCaSO3の量Z (Kfmo l/H)
は(31式となる。
Let the inflow flow rate be F(i/H), and Ca5o in the oxidizer 5
If the oxidation rate of 3 is α, it is oxidized in the oxidizer 5 and Ca
Amount Z of CaSO3 that becomes SO4 (Kfmol/H)
is (formula 31).

2=α ・ F ・ 〔CaSO3〕   ・・・ (
3)この時消費される酸素量Z’ (Kqm、ol /
 、H)はモル比で酸化したCaSO3の量の半分で良
いので、(41式となる。
2=α・F・[CaSO3]... (
3) The amount of oxygen consumed at this time Z' (Kqm, ol /
, H) need only be half the amount of oxidized CaSO3 in terms of molar ratio, so the formula (41) is obtained.

Z′=!Z−!俸α・F・(CaSO3:]  =−t
4)2 他方酸化装置5に配管7より供給する空気の流fit 
Fair (Kqmol / H) r酸素濃度x、(
−)とすると供給される酸素量A (Kfmol / 
H)は(5)式となる。
Z′=! Z-! Salary α・F・(CaSO3:] =-t
4) 2 On the other hand, the air flow supplied from the piping 7 to the oxidizer 5 fits
Fair (Kqmol/H) roxygen concentration x, (
-), the amount of oxygen supplied A (Kfmol /
H) is expressed as equation (5).

A = Fair−x        …(5)+4+
、+5+式より配管10よりでていく酸素計A’ (K
gmot / H)は(6)式となる。
A = Fair-x...(5)+4+
, +5+ formula, the oxygen meter A' (K
gmot/H) is expressed as equation (6).

A’= A −Z’=Fairax、−2*α・F・〔
CaSO3〕・・(6)1だ、酸化装置5では酸素のみ
消費し、その他のガスは消費しないので、酸素を除くそ
の他のガスの量C(KLimo +/H)は配管7.配
管10で同量である。
A'= A -Z'=Fairax, -2*α・F・[
CaSO3]... (6) 1. Since the oxidizer 5 consumes only oxygen and not other gases, the amount C (KLimo +/H) of other gases other than oxygen is determined by the pipe 7. The amount is the same for piping 10.

C= Fair (1−x、 )          
   −f71配管10でのO2濃度x21−)は(8
)式となり。
C= Fair (1-x, )
-f71 O2 concentration x21-) at pipe 10 is (8
) is the formula.

A′ X・−T同            −+81(6+ 
+71式を代入すると(9)式となる。
A' X・-T same as -+81(6+
Substituting the +71 formula yields formula (9).

(9)式より〔CaSO3〕を求める式に変形すると(
10)式となる。
When formula (9) is transformed into a formula for calculating [CaSO3], (
10) Equation becomes.

+11式において配管10のO2濃度と洗浄液中のCa
SO3濃度の関係が求まった。
In equation +11, O2 concentration in pipe 10 and Ca in cleaning liquid
The relationship between SO3 concentration was found.

il+ +21 +21’ +IfI式より洗浄液中の
CaSO4濃度を求めると(11)式となる。
il+ +21 +21' +IfI calculates the CaSO4 concentration in the cleaning liquid using the formula (11).

通常脱硫率ηs02を一定にするように運転しているの
で定数とみなすことができる。
Since the desulfurization rate ηs02 is normally operated to be constant, it can be regarded as a constant.

1だ、ボイラ燃料に含まれるイオウ含有率が一定のとき
排ガス中のSOx濃度濃度o2け一定とみなすことがで
きる。排ガス流量はボイラの負荷によって変動するが、
排ガス流量とボイラ負荷の間には強い相関があり1図3
に示すような関係がある。この関係を関数の形であられ
したのが02式である。
1. When the sulfur content in the boiler fuel is constant, it can be assumed that the SOx concentration in the exhaust gas is constant. Although the exhaust gas flow rate varies depending on the boiler load,
There is a strong correlation between exhaust gas flow rate and boiler load.1Figure 3
There is a relationship as shown in Equation 02 expresses this relationship in the form of a function.

G = fo(w)         ・・・(抑型だ
、配管7の空気流量Fai rは制御しているので、定
数とみなし、酸化率αも定数とする。空気のO2濃度X
1は言うまでもなく一定である。
G = fo (w) ... (It is a suppressed type. Since the air flow rate Fair in the pipe 7 is controlled, it is regarded as a constant, and the oxidation rate α is also a constant. O2 concentration of air
Needless to say, 1 is constant.

以上より、定数部分をまとめると(11)式は(1(資
)式となる。
From the above, when the constant parts are summarized, equation (11) becomes equation (1).

ただし f2(W)=yS02・ηSO2・fo(w)
  ’・・+1412F1air Xl−X2 ”f(x2)= ”−□   ・・・+151α 1−
X2 したがって、’ +131式よりボイラ負荷W、配管1
0の使用済空気のO2濃度X2 +配管9の抜き出し洗
浄液流量F、配管6の種晶スラリ流量F′を測定するこ
とによって洗浄液のCaSO4濃度が求まることがわか
る。このCaSO4濃度を一定にするように種晶スラリ
流量を加減するようにしたのが本発明である。
However, f2(W)=yS02・ηSO2・fo(w)
'...+1412F1air Xl-X2 "f(x2)= "-□...+151α 1-
X2 Therefore, from the +131 formula, boiler load W, piping 1
It can be seen that the CaSO4 concentration of the cleaning liquid can be determined by measuring the O2 concentration of the used air at 0. In the present invention, the flow rate of the seed crystal slurry is adjusted so as to keep the CaSO4 concentration constant.

具体的に第2図によって説明する。This will be explained in detail with reference to FIG.

ボイラ30においてボイラ負荷を検出器24で測定する
。ボイラ負荷のかわりにボイラ負荷と比例関係のボイラ
燃料流量を測定して使用してもよい。ここではボイラ負
荷を用いた場合について説明する。前記検出器24で測
定したボイラ負荷信号を関数発生器の23に入力する。
The boiler load in the boiler 30 is measured by the detector 24. Instead of the boiler load, the boiler fuel flow rate, which is proportional to the boiler load, may be measured and used. Here, a case using a boiler load will be explained. The boiler load signal measured by the detector 24 is input to the function generator 23.

関数発生器■23は(141式に示す関数f2(w)を
発生するようにあらかじめ設定しているものとする。
It is assumed that the function generator 23 is set in advance to generate the function f2(w) shown in equation (141).

配管10にO2濃度計21を設置し、02濃1fX2を
測定し、このO2濃度信号を関数発生器■22に入力す
る。関数発生器には+151式に示すf(x2)を発生
する関数が組み込まれている。配管9に流量計27を設
置し抜き出し流量Fを測定し、また配管6に流量計32
を設置し種晶スラリ流量F′を測定する。この2つの流
量信号を減算器■33に入力し、前記関数発生器の23
の出力信号と前記減算器■33の出力信号を除算器■3
4に入力する。さらに、前記関数発生器■22の出力信
号と前記流量計27の流量信号を除算器■28に入力す
る。前記除算器■34の出方信号と前記除算器■28の
出カ信−づを減勢−器26に入力する。
An O2 concentration meter 21 is installed in the pipe 10 to measure 02 concentration 1fX2, and this O2 concentration signal is input to the function generator 22. The function generator has a built-in function that generates f(x2) shown in equation +151. A flow meter 27 is installed in the pipe 9 to measure the extraction flow rate F, and a flow meter 32 is installed in the pipe 6.
and measure the seed crystal slurry flow rate F'. These two flow rate signals are input to the subtracter 33, and the function generator 23
The output signal of the subtracter ■33 and the output signal of the subtracter ■33 are divided by the divider ■3.
Enter 4. Furthermore, the output signal of the function generator 22 and the flow rate signal of the flow meter 27 are input to a divider 28. The output signal of the divider (2) 34 and the output signal of the divider (28) are input to the attenuator 26.

前記減算器■26の出力信号は(13i式の右辺の値を
示すことになる。したがって、前記減算器■26の出力
信号は洗浄液のCa5O,濃度と等価である。前記減算
器■26の出力信号を調節計28の制御量として入力し
、調節側□28の出方信号で配管6の種晶スラリ流量を
操作する。種晶スラリ流量を操作するとき、第2図のよ
うに流量調節計14と調節弁15で種晶スラリ流量を制
御し、前記流量調節計14の設定値を前記調節計28の
出力信号で変化さすカスケード結合方式、又は調節計2
8の出方信号で直接調節弁15を作動さす方式のいずれ
でもよい。前記調節計28の設定値をスケールが発生し
々いある所定量以上のCa5O,濃度に設定しておけば
The output signal of the subtractor (2) 26 indicates the value on the right side of equation (13i).Therefore, the output signal of the subtractor (26) is equivalent to the Ca5O concentration of the cleaning liquid.The output of the subtractor (26) The signal is input as a control amount to the controller 28, and the output signal from the controller 28 is used to control the seed crystal slurry flow rate in the piping 6.When controlling the seed crystal slurry flow rate, the flow rate controller is used as shown in Fig. 2. 14 and a control valve 15 to control the seed crystal slurry flow rate, and the set value of the flow rate controller 14 is changed by the output signal of the controller 28, or the controller 2
Any method in which the control valve 15 is directly actuated by the output signal No. 8 may be used. If the setting value of the controller 28 is set to a concentration of Ca5O above a predetermined amount at which scaling is likely to occur.

いかなる運転条件でも洗浄液のCa SO4濃度は所定
量以上に保持され、スケールは発生しない。
Under any operating conditions, the CaSO4 concentration of the cleaning fluid is maintained at a predetermined level or higher, and scale does not occur.

以上本発明を一実施例にもとづいて、具体的に説明した
が1本発明はこの実施例に限定されるものではなく、要
はボイラ負荷又は燃料流量酸化装置からでる空気又は酸
素を含むガス中00□濃度、洗浄装置から抜き出し酸化
装置に導入する洗浄液流量、酸化装置から洗浄装置に供
給する種晶スラリ流量の4項目を測定しf131式に示
す演算を行ない、その演算結果を一定に制御するように
前記酸化装置から洗浄装置に供給する種晶スラリ流量を
操作するものであればよい。
Although the present invention has been specifically explained above based on one embodiment, the present invention is not limited to this embodiment. 00□Measure four items: concentration, flow rate of cleaning liquid extracted from the cleaning device and introduced into the oxidation device, and flow rate of seed crystal slurry supplied from the oxidation device to the cleaning device, perform calculations shown in formula f131, and control the calculation results to a constant value. Any device may be used as long as it controls the flow rate of the seed crystal slurry supplied from the oxidation device to the cleaning device.

例えば、aJ式に示す演算は電子計算機で行なってもよ
い。また1種晶スラリ流量計32を種晶スラリ流量調節
計14とは別にしたが2種晶スラリ流量調節計14から
流量信号がとり出せる構造であれば1種晶スラリ流量計
32を省略してもよい。
For example, the calculation shown in the aJ formula may be performed by an electronic computer. In addition, although the first type crystal slurry flow meter 32 is separate from the seed crystal slurry flow rate controller 14, if the structure is such that a flow rate signal can be taken out from the second type crystal slurry flow rate controller 14, the first type crystal slurry flow meter 32 can be omitted. Good too.

このような構成により1本発明によればスクラバ内洗浄
液中のCa2O3濃度を一定に保つことができ、ひいて
は、スクラーバ内へのスケールの付、着を防止すること
ができるという効果を奏するものである。
With such a configuration, according to the present invention, the concentration of Ca2O3 in the cleaning liquid in the scrubber can be kept constant, and as a result, it is possible to prevent scale from accumulating and depositing inside the scrubber. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法、第2図は本発明の一実施態様例を示す
。第3図はボイラ負荷と排ガス流量の関係の一例を示す
。 1・・・排ガス入口ダクト、2・・・メイクアップ水。 3・・・スクラバ、4・・・循環配管、5・・・酸化装
置。 6.7,8,9.I O・・・配管、  11. 16
・・レベル調節計、  12. 15. 17. 2(
1・・調節弁。 14.19・・・流量調節計、18・・・循環ポンプ。 13・・・吸収剤供給ライン、21・・・o2濃度計、
22゜23・・・関数発生器、24・・・ボイラ負荷検
出器。 26.33・・・減算器、28;  34・・・除算器
、29・・調節計、30・・・ボイラ、ゎ訟=養##、
  27 。 32・・・流量計。 第1図
FIG. 1 shows a conventional method, and FIG. 2 shows an embodiment of the present invention. FIG. 3 shows an example of the relationship between boiler load and exhaust gas flow rate. 1...Exhaust gas inlet duct, 2...Make-up water. 3...Scrubber, 4...Circulation piping, 5...Oxidizer. 6.7,8,9. IO...Piping, 11. 16
...Level controller, 12. 15. 17. 2(
1. Control valve. 14.19...Flow rate controller, 18...Circulation pump. 13...Absorbent supply line, 21...O2 concentration meter,
22゜23...Function generator, 24...Boiler load detector. 26.33... Subtractor, 28; 34... Divider, 29... Controller, 30... Boiler,
27. 32...Flow meter. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 水酸化カルシウムおよび/又は7炭酸カルシウムを含む
スラリを用いて、排煙を洗浄し、排煙中の硫黄酸化物を
除去する湿式排煙処理装置で、洗浄装置から洗浄液の一
部又は、全部を抜き出し、空気又は酸素を含むガスを供
給して酸化する酸化装置に導入し、排煙から洗浄液に吸
収された硫黄酸化物を酸化した後、当該石こうスラリの
一部を種晶スラリとして再び上記洗浄装置に供給する方
法において、前記排煙を発生するボイ2の負荷又は燃料
流量を測定し、前記負荷又は燃料流量の信号をあらかじ
め設定された関数を発生する関数発生器■に入力し、一
方前記酸化装置から出る使用済空気又は使用済酸素を含
むガスの酸素#に度を測定し、その酸素濃度信号をあら
かじめ設定−された関数を発生する関数発生器■に入力
し、さらに前記洗浄装置から抜き出し、前記酸化装置に
導入する洗浄液流量と前記酸化装置から前記洗浄装置眞
供給する種晶スラリ流量を測定し、前記洗浄液流量信号
と種晶スラリ流量信号を減算器■に入力し、前記関数発
生器■出力信号と前記減算器■の出力信号を除算器■に
入力し1寸だ前記関数発生器■の出力信号と前記洗浄液
流量信号を除算器■に入力し、前記除算器■の出力信号
と前記除算器■の出力信号を減算器■に入力し、その減
算器■、の出力信号を制御計とし、前記酸化装置から洗
浄装置に供給する種晶スラリ流量を操作数として前記減
算器出力信号値を一定に制御することを特徴とする湿式
石灰石こう法排煙脱硫装置における種晶スラリ供給方法
A wet flue gas treatment device that uses a slurry containing calcium hydroxide and/or 7-calcium carbonate to clean flue gas and remove sulfur oxides from the flue gas. Part or all of the cleaning liquid is removed from the cleaning device. The gypsum slurry is extracted and introduced into an oxidizing device by supplying air or oxygen-containing gas to oxidize the sulfur oxides absorbed by the cleaning liquid from the flue gas, and then a part of the gypsum slurry is used as a seed crystal slurry for the above-mentioned cleaning again. In the method of supplying to the device, the load or fuel flow rate of the boiler 2 that generates the exhaust smoke is measured, and the signal of the load or fuel flow rate is input to the function generator (2) that generates a preset function; Measure the oxygen concentration of the used air or gas containing spent oxygen coming out of the oxidizer, input the oxygen concentration signal to a function generator that generates a preset function, and then input the oxygen concentration signal from the cleaning device. Measure the flow rate of the cleaning liquid extracted and introduced into the oxidation device and the flow rate of the seed crystal slurry supplied from the oxidation device to the cleaning device, and input the cleaning liquid flow rate signal and the seed crystal slurry flow rate signal to a subtractor (2) to generate the function. The output signal of the function generator ■ and the output signal of the subtractor ■ are input to the divider ■, and the output signal of the function generator ■ and the cleaning liquid flow rate signal are input to the divider ■, and the output signal of the divider ■ is and the output signal of the divider ■ are input to the subtracter ■, the output signal of the subtractor ■ is used as a control meter, and the flow rate of the seed crystal slurry supplied from the oxidation device to the cleaning device is used as the operation number to output the subtractor. A method for supplying seed crystal slurry in a wet lime gypsum flue gas desulfurization equipment characterized by controlling a signal value to a constant value.
JP58101310A 1983-06-07 1983-06-07 Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process Pending JPS59225723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101310A JPS59225723A (en) 1983-06-07 1983-06-07 Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101310A JPS59225723A (en) 1983-06-07 1983-06-07 Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process

Publications (1)

Publication Number Publication Date
JPS59225723A true JPS59225723A (en) 1984-12-18

Family

ID=14297232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101310A Pending JPS59225723A (en) 1983-06-07 1983-06-07 Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process

Country Status (1)

Country Link
JP (1) JPS59225723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246758A2 (en) * 1986-04-23 1987-11-25 Babcock-Hitachi Kabushiki Kaisha Method for controlling wetprocess flue gas desulfurization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246758A2 (en) * 1986-04-23 1987-11-25 Babcock-Hitachi Kabushiki Kaisha Method for controlling wetprocess flue gas desulfurization

Similar Documents

Publication Publication Date Title
US5560893A (en) Method for controlling the oxidation of sulfites
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPH02152522A (en) Treatment of exhaust gas
JPS59225723A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
JPS59225724A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JPS59230622A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method
JP3748861B2 (en) Exhaust gas desulfurization method by metathesis method
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JP2607871B2 (en) Wet flue gas desulfurization equipment
JPS63229126A (en) Control method for wet exhaust gas desulfurizer
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JPH03213125A (en) Absorbent ph control apparatus of wet exhaust gas desulfurizer
JPS58214320A (en) Method for adjusting concentration of recirculating slurry of absorbing tower
JPH1199316A (en) Method of controlling sludge in waste water for wet flue gas desulfurizer
JP2873037B2 (en) Method for supplying calcium compound and sodium compound to absorption tower in wet exhaust gas desulfurization unit
JP2765868B2 (en) Alkali agent supply control device for wet flue gas desulfurization unit
JP2547803B2 (en) Wet flue gas desulfurization equipment
JPS6351054B2 (en)
JPH02229525A (en) Controlling device for drainage amount of cooling tower in desulfurization equipment
JPH055936Y2 (en)
JPS61245824A (en) Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device