JPS59230622A - Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method - Google Patents

Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method

Info

Publication number
JPS59230622A
JPS59230622A JP58105599A JP10559983A JPS59230622A JP S59230622 A JPS59230622 A JP S59230622A JP 58105599 A JP58105599 A JP 58105599A JP 10559983 A JP10559983 A JP 10559983A JP S59230622 A JPS59230622 A JP S59230622A
Authority
JP
Japan
Prior art keywords
seed crystal
flow rate
crystal slurry
gas
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58105599A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Ichiro Toyoda
一郎 豊田
Katsuyuki Morinaga
森永 勝行
Yutaka Nonogaki
野々垣 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58105599A priority Critical patent/JPS59230622A/en
Publication of JPS59230622A publication Critical patent/JPS59230622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To prevent the scale adhesion in a washing apparatus, by constantly controlling the CaSO4-concn. in the washing liquid in a washing apparatus by measuring the flow amount of exhaust gas, the O2-concn. in the gas emitting from an oxidation apparatus, the flow amount of a washing liquid to the oxidation apparatus and the supply amount of a seed crystal slurry to the washing apparatus. CONSTITUTION:An exhaust gas flow amount G measured by a flow meter is inputted to an amplifier 25 and the O2-concn. in the gas emitting from an oxidation apparatus 5 measure by a densitometer 21 is inputted to a function generator 2. The withdrawing flow amount F of a wshing liquid to the oxidation apparatus 5 from a washing apparatus 3 and the flow amount F' of a seed crystal 3 from the oxidation apparatus 5 are inputted to a subtractor 33. The CaSO4-concn. of the washing liquid is calculated by the obtained values and the flow amount of the seed crystal slurry in an arranged pipe 6 is manipulated through a controller 29 by the CaSO4-concn. signal. If the set value of the controller 29 is set to a predetermined amount or more of a CaSO4-concn. generating no scale, scale is not generated under any operational condition.

Description

【発明の詳細な説明】 および/又は炭酸力ル/ウム(以降CaCO, )を用
いて,排煙に含捷れる硫黄酸化物(以降SOx )を除
去する湿式排煙脱硫装置の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a wet flue gas desulfurization device that removes sulfur oxides (hereinafter referred to as SOx) contained in flue gas using carbonate (hereinafter referred to as CaCO).

Ca(OH)、、又1l−iCaCO,のスラリを用い
て、排煙中のSOxを除去する脱硫方法においては、排
煙洗滌装置i’f (以降スクラバー)内で生成する石
こうがスクラバーの内部にスケールとなって堆積すると
いう困難な問題があり、スケールトラブル対策が、最も
重要な、技術要因である。このスケールトラブル対策と
して種晶供給すなわちスクラバーの(A:、佳液に、あ
る所定置場」二の棟晶石こうスラリを添加する事により
、スクラバー内で生成する石こうを、当種晶石こうの結
晶表面に析出、成長させる事により、スクラバーの内部
への析出を防止するというスケール防止対果が、−11
−常にすぐれた対策として、広く実用化さ)1ている。
In the desulfurization method that removes SOx from flue gas using a slurry of Ca(OH) or 1l-iCaCO, the gypsum produced in the flue gas scrubber i'f (hereinafter referred to as scrubber) is removed from the inside of the scrubber. There is a difficult problem of scale build-up, and countermeasures against scale problems are the most important technological factor. As a countermeasure against this scale problem, by adding seed crystal gypsum slurry to the scrubber's liquid (A), the gypsum generated in the scrubber can be removed from the crystal surface of the seed crystal gypsum. -11 has the anti-scaling effect of preventing precipitation inside the scrubber by allowing it to precipitate and grow.
-Always an excellent countermeasure and widely put into practical use)1.

本発明し11.このような、スクラバー内でのスクール
[・ラブルを防止する重要な技術要因である紳晶惧給の
制御1方法に[y、1する発明である。
The present invention11. This invention is an invention that provides a method for controlling the cleaning supply, which is an important technical factor for preventing school troubles in the scrubber.

Ca(OH)、又はCaCO5スラリにより、排煙中の
SOXを除去する方法では、洗滌液に、亜硫酸カルシウ
ム(以降Ca503)および、硫酸カル7ウム(以降C
a5O,)が生成し、いずれも溶解度が小さいのでその
大部分は、各々同相に析出し、液中に懸濁している事は
、よく知られた事実である。
In the method of removing SOX in flue gas using Ca(OH) or CaCO5 slurry, calcium sulfite (hereinafter referred to as Ca503) and calcium sulfate (hereinafter referred to as C) are added to the cleaning solution.
It is a well-known fact that a5O,) is produced, and since both have low solubility, most of them precipitate in the same phase and are suspended in the liquid.

以下に、従来例のスケールトラブルを更に詳しく説明す
る。
The scale trouble in the conventional example will be explained in more detail below.

図−1は、従来の方法についてそのフローを図示したも
のである。
Figure 1 illustrates the flow of a conventional method.

例えば1石炭だきボイラからの刊ガスは、排ガス入口ダ
クト1からスクラバ3に導入され。
For example, gas from a coal-fired boiler is introduced into the scrubber 3 through the exhaust gas inlet duct 1.

スクラバ3の入口部分で、洗滌故によって冷却。At the inlet of scrubber 3, it is cooled by the washing process.

除じんされる。勿論スクラバーに入る前に、別置きされ
た冷却、除しん装置で排ガスを冷却除じんする方法も従
来知られており2本発明は同様に適用できる。排ガスの
冷却のために、洗替液の水分が一部蒸発するが、メイク
アソグ水2によって補給される。続いて、 Jdlガス
は、スクラバ3の本体部分で、更に冷却除じんされると
同時に、排カス中のSOxは、洗滌液に吸収きれる。
Dust is removed. Of course, there is also a conventionally known method in which the exhaust gas is cooled and dust removed using a separate cooling and dust removal device before entering the scrubber, and the present invention can be applied in the same manner. Due to the cooling of the exhaust gas, some of the water in the washing liquid evaporates, but it is replenished by the make-as-so water 2. Subsequently, the Jdl gas is further cooled and dust removed in the main body of the scrubber 3, and at the same time, the SOx in the waste gas is absorbed into the cleaning liquid.

吸収済にCaC0,f使用した場合の反応は次の1川り
である。
The reaction when CaC0,f is used for absorption is as follows.

、−1− CaSO,十So2+H,O→Ca  +2H8O,’
(a)ISO,−44o2   →H→−so、’−(
b) Ca””十So、 ”    −+Ca5O,(c)C
aCO,+H3O,+H’−→Ca5O,→−f(、O
→−CO2(d)S03 トH20→2H十So、 ”
        (e)即り1 スクラバで生成したC
aSO3は吸収したso、と(a)式でCa 2″−と
H2O3となるが、このH3O3−の−rrli N:
 411ガス中のO3により酸化されて(b)式に示す
ように、  H’ −1−So、 2−になる。
, -1- CaSO, 10 So2+H, O→Ca +2H8O,'
(a) ISO, -44o2 →H→-so,'-(
b) Ca""10So, " -+Ca5O, (c)C
aCO, +H3O, +H'-→Ca5O, →-f(, O
→−CO2(d)S03 tH20→2H1So,”
(e) That is, 1 C generated by the scrubber
aSO3 becomes Ca 2″- and H2O3 in equation (a) with absorbed so, but this H3O3- -rrli N:
It is oxidized by O3 in the 411 gas and becomes H'-1-So, 2-, as shown in formula (b).

父、  ISO,と■] は吸収済であるCaCO3で
中411され(d)式に示ず通り、  Ca5O,とI
(,0とCa2 となりC02はガスに放散される。生
成したCa”とSO1′−は、(6■度が高くなると、
(C)式に示すとおりCa5O,となって、  Ca5
O,と同様、固相に析出する。
father, ISO, and ■] are 411 in the absorbed CaCO3, and as shown in equation (d), Ca5O, and I
(,0 and Ca2, and CO2 is dissipated into the gas.The generated Ca'' and SO1'- are
As shown in formula (C), Ca5O, and Ca5
Like O, it precipitates in the solid phase.

なお、  Ca5O,とCaSO3の生成割合は排ガス
中のC9により生成するSo、2−の量によってき捷る
ものである。
Note that the production ratio of Ca5O and CaSO3 is determined by the amount of So,2- produced by C9 in the exhaust gas.

洗浄液は循環ポンプ18によって循環配管4より常時供
給され、洗浄液中のCaC0,濃度f 一定に保持して
いる。洗浄液の一部は配管9を通じて酸化装置5に送ら
れている。この抜き出し量はスクラバ3内の洗浄液レベ
ルを一定にするようにレベル調節計11と調節弁12に
よって制御されている。酸化装置5では空気又は酸素を
含むガスが配管7を通じて供給されスクラバ3から抜き
出した洗浄液中のCaSO3を酸化してCa5O,を生
成している。この時、空気又は酸素を含むガス中の酸素
は抜き出したスラリ中のCa5O,量に比例して消費さ
れる。空気又は酸素を含むガス流量は一定になるように
流量調節側19と調節弁20に開側1されている。また
使用済の空気又は酸素を含むガスは配管10を通じて酸
化装置ii 5より取り出されている。酸化装置5にお
いてスラリ中のCa5O,が酸化され、固相の大部分が
Ca5O,となったスラリの一部V1種晶スラリとして
配管6を通じてスクラバ3に供給し、(k、とf)液中
のCa5O,製置を高めている。なお種晶スラリ流量は
一定となるように流量調節計14、調節弁15によって
制御されている。また、酸化装置5内の洗浄液1ノベル
は一定となるようにlノベル調節言116と調節弁17
によって配管8から抜き出されるスラリ流量全制御して
いる。
The cleaning liquid is constantly supplied from the circulation pipe 4 by the circulation pump 18, and the CaC0 and concentration f in the cleaning liquid are kept constant. A portion of the cleaning liquid is sent to the oxidizer 5 through a pipe 9. This amount of extraction is controlled by a level controller 11 and a control valve 12 so as to keep the cleaning liquid level in the scrubber 3 constant. In the oxidizer 5, air or a gas containing oxygen is supplied through a pipe 7, and oxidizes CaSO3 in the cleaning liquid extracted from the scrubber 3 to generate Ca5O. At this time, oxygen in the air or oxygen-containing gas is consumed in proportion to the amount of Ca5O in the extracted slurry. A flow rate adjustment side 19 and a control valve 20 are provided on the open side 1 so that the flow rate of gas containing air or oxygen is constant. Also, used air or gas containing oxygen is taken out from the oxidizer ii 5 through a pipe 10. In the oxidizer 5, Ca5O in the slurry is oxidized and most of the solid phase becomes Ca5O. A part of the slurry is supplied as V1 seed crystal slurry to the scrubber 3 through the pipe 6, and (k and f) in the liquid The production of Ca5O is increasing. Note that the seed crystal slurry flow rate is controlled by a flow rate controller 14 and a control valve 15 so as to be constant. In addition, a novel adjustment valve 116 and a regulating valve 17 are provided so that the cleaning liquid in the oxidizer 5 is kept constant.
The flow rate of the slurry extracted from the piping 8 is completely controlled.

先に述べたようにスクラバ中のスケール付着を防止する
には洗浄液中の4!1!晶濃度すなわち石こう(CaS
O,)濃度を所定濃要以」二に保持する必要がある。種
晶スラリのスクラバ3への供給はスクラバ3内洗/4)
液中のCa5O,濃度をあげる効果がある。ところが、
従来法では種晶スラリ流;11金定耽(Jl、給してい
るだけで、スクラバ内洗浄液中のCa5O,濃度は制御
していないため、常に所定濃度以上であるという保証は
なく、場合によっては所定一度板下となり、スケールが
付着するという危険性があった。例えば、排ガス中のO
1濃度が小さくなるとso、 2−の生成量が減るので
スクラバ3内でのCa5O,の生成が少なくなり、逆に
Ca5O,の生成が増える。このだめスクラバ3内のC
a5O,濃度が小さくなるので、所定濃度以下になるこ
とが考えられる。本発明は従来法の上述欠点を是正する
ことを目的にとしたち ものでべり、スクラバ内洗浄液中のCa5O,濃度を一
定に制御していかなる運転条件でもスクラバ内洗浄液中
のCa5O,濃度を所定濃度以上に保持し、スクラバで
のスケールイーJ’ 17を防止することができるもの
である。
As mentioned earlier, in order to prevent scale buildup in the scrubber, there are 4!1! crystal concentration, i.e. gypsum (CaS
It is necessary to maintain the concentration below a predetermined concentration. Seed crystal slurry is supplied to the scrubber 3 by washing inside the scrubber 3/4)
It has the effect of increasing the concentration of Ca5O in the liquid. However,
In the conventional method, seed crystal slurry flow; There was a danger that once the gas was under the board, scale would adhere.
When the 1 concentration decreases, the amount of so and 2- produced decreases, so the generation of Ca5O, in the scrubber 3 decreases, and conversely, the generation of Ca5O, increases. C in this useless scrubber 3
Since the concentration of a5O becomes smaller, it is possible that the concentration becomes lower than the predetermined concentration. The present invention has been developed with the aim of correcting the above-mentioned drawbacks of the conventional method, and by controlling the concentration of Ca5O in the cleaning liquid in the scrubber to a constant level, the concentration of Ca5O in the cleaning liquid in the scrubber can be maintained at a predetermined concentration under any operating conditions. This can prevent scale E J' 17 in the scrubber.

以下本発明を図面に基づいて更に詳に111に説明する
Hereinafter, the present invention will be explained in more detail at 111 based on the drawings.

第2図は2本発明の実施態様例の例示図である。寸ずス
クラバ内洗浄液中のCa5O,濃度の測定原理について
説明する。排ガスより吸収される硫黄酸−化物の:【;
、は(11式となる。
FIG. 2 is an illustration of two embodiments of the present invention. The principle of measuring the concentration of Ca5O in the cleaning liquid in the Zuzu scrubber will be explained. Sulfur oxides absorbed from exhaust gas: [;
, becomes (Equation 11).

Δs = G+yso、 ・ηso、 −(1)ただし
、ここでΔSは吸収される硫黄酸化物量(kgmo I
/H) G @ Jl[ガス量(kgmol/H,] 
r  VBOsは未熟*114’JJ1ガス中のイ〆ご
黄酸化物□i、’)so2は脱硫率〔−〕、を示す。洗
浄装置3に供給されるイオウ化合物は(1)弐の他に配
管6より供給される種晶スラリかある。また、スクラバ
3がら抜き出される洗al液は配管9のみであり、抜き
出されるイオウ化合物はt?f+に述べたようにCa5
O,とCa5O。
Δs = G+yso, ・ηso, -(1) However, here ΔS is the amount of sulfur oxide absorbed (kgmo I
/H) G @ Jl [Gas amount (kgmol/H,]
r VBOs is immature*114'Irvine yellow oxide □i in JJ1 gas, ') so2 indicates desulfurization rate [-]. The sulfur compounds supplied to the cleaning device 3 include (1) seed crystal slurry supplied from the pipe 6 in addition to (1) 2; Further, the washing alkaline liquid extracted from the scrubber 3 is only from the pipe 9, and the sulfur compound extracted is t? As mentioned in f+, Ca5
O, and Ca5O.

と考えられるので2静的な状態では物質収支より(27
式の関係が成立する。
Therefore, in a static state, from the material balance (27
The relationship of the formula holds true.

ΔS  トF’  [Ca5O,1=F((:Ca5O
,]+(CaSO,])  −12ン1:Ca5O,)
’=l:Ca5O,)+[Ca5O,〕 曲−(2どた
たし仁こでFは配管9の抜き出し流量Cn?/H’] 
ΔS toF' [Ca5O, 1=F((:Ca5O
,]+(CaSO,]) -12-1:Ca5O,)
'=l: Ca5O, ) + [Ca5O,] Song - (2 Dotashi Jinko, F is the extraction flow rate of pipe 9 Cn?/H']
.

[Ca5O,〕は61〕浄液中のCa5O,モル濃度[
: kgmo l /nI′]+[Ca5O,] i、
j a (′4+液中のCa5O,モル濃度1:kgm
o l/n?〕rF′は配管6の種晶スラリ流量61/
/H) 、  [:Ca5O,]’種晶種晶ワラCa5
O,濃度[kgmol/m’〕?:示す。酸化装置5で
Ca5O,が酸化されCa5O,になっても。
[Ca5O,] is 61] Ca5O in purified liquid, molar concentration [
: kgmol/nI′]+[Ca5O,] i,
j a (Ca5O in '4+ liquid, molar concentration 1: kgm
o l/n? ] rF' is the seed crystal slurry flow rate 61/
/H), [:Ca5O,]' seed crystal seed straw Ca5
O, concentration [kgmol/m']? :show. Even if Ca5O is oxidized to Ca5O in the oxidizer 5.

イオウ化合物としての合計は変化しないので=’式が成
立することがわかる。
Since the total as a sulfur compound does not change, it can be seen that the formula =' holds true.

次に酸化装置5の配管1oの使用後の空気又は酸素を含
むガス中00.濃度と、洗浄液中のCa5Osモル濃度
には次の関係がある。酸化装置ξ5での酸化ガスを空気
として説明する。酸化装置5に配管9を通じて流入する
スラリ中のCa5O,モル置5で酸化してCa5O,と
なるCa5O,の量Z(kgmoI/H)は(3ン式吉
なる。
Next, the pipe 1o of the oxidizer 5 is filled with air or oxygen-containing gas after use. The following relationship exists between the concentration and the molar concentration of Ca5Os in the cleaning solution. The explanation will be given assuming that the oxidizing gas in the oxidizing device ξ5 is air. The amount Z (kgmol/H) of Ca5O in the slurry flowing into the oxidizer 5 through the pipe 9 is oxidized to become Ca5O in the molar ratio 5.

酸化したCa5O,の量の半分で良いので、(4)式と
なる。
Since half of the amount of oxidized Ca5O is sufficient, equation (4) is obtained.

Z’=42=−i”y”F”(CaSO,)’−’+4
1他方、酸化装置5に配管7より供給する空気の流i3
. Fair(kgmol/H) + 酸素濃度χ1(
−)とすると供給される酸素量A(kgmol/H) 
 は(5ン式となる。
Z'=42=-i"y"F"(CaSO,)'-'+4
1 On the other hand, the air flow i3 supplied to the oxidizer 5 from the pipe 7
.. Fair (kgmol/H) + oxygen concentration χ1 (
−), the amount of oxygen supplied A (kgmol/H)
is (5-inch type).

A=Fair・χ、       −・・−(5)(4
1,(5)式より配管10よりでていく酸素量A’(k
grno l/H)は(6)式となる。
A=Fair・χ, −・・−(5)(4
1. From equation (5), the amount of oxygen coming out of the pipe 10 A'(k
grno l/H) is expressed as equation (6).

1、 + A’=A−Z’=Fair・χ1−7aF・〔CaSO
3〕(6)寸だ、酸化装置5では酸素のみ消費し、その
他のガスは消・1ψしないので、酸素を除くその他のガ
スのi−、t−c(kgmo l/H)は配管7.配管
10で同量である。
1, + A'=A-Z'=Fair・χ1-7aF・[CaSO
3] (6) The oxidizer 5 consumes only oxygen and does not extinguish other gases by 1ψ, so the i-, t-c (kgmol/H) of the other gases other than oxygen are determined by the pipe 7. The amount is the same for piping 10.

(:=Fa i r (]−χ、 )        
−=171配管10でのO26n IWχ2(−)は(
8)式となりχ・−八・+c゛°゛(8) (6) 、 (’71人合代人すると(9)式となる。
(:=Fair(]−χ, )
-=171 O26n IWχ2(-) at pipe 10 is (
8) becomes the equation χ・−8・+c゛°゛(8) (6) , ('If 71 people are combined, the equation (9) becomes.

(9)式より[Ca5O,]を求める式に変形すると(
l[1式QG式において配管10の0.濃度と洗浄液中
のCa5O,濃度の関係が求捷りだ。
Transforming equation (9) into the equation for calculating [Ca5O,], (
l[0. The relationship between the concentration and the concentration of Ca5O in the cleaning solution is interesting.

(1) (2) t2J”00式より洗浄液中のCa5
O,21度を求めると00式となる。
(1) (2) Ca5 in the cleaning solution from the t2J”00 formula
O, 21 degrees is determined by formula 00.

09式において排ガスを発生するボイラの燃料に含まれ
るイオウの含有率が一定のとき排ガス中のso、 p度
yso、はほぼ一定となり1通常脱硫率ηso、i一定
するように運転しているので一定とみなすことができる
。また、配管7の空気流惜Fairは制御しているので
一定とみなし、1¥12化率αも一定とする。空気のO
2濃度χ1は言う寸でもなく一定である。以上のことよ
り、定数部分全2まとめてQlJ式は02式となる。
In formula 09, when the sulfur content in the fuel of the boiler that generates exhaust gas is constant, so, p degree yso, in the exhaust gas are almost constant, 1 Normal desulfurization rate ηso, i is operated so as to be constant. It can be considered constant. Furthermore, since the air flow rate of the pipe 7 is controlled, it is assumed to be constant, and the 1 yen conversion rate α is also constant. air o
2 concentration χ1 is fairly constant. From the above, the QlJ formula including all two constant parts becomes the 02 formula.

ただし、  K、=yso−ηs O2”””α32°
1゛°”″・−7′ ・・・・・斡f(χ、)= α    1−χ2 (〜たかって、03式より排ガス流量G、配管10の使
用済空気の0.IA吸χ7.配管9の抜き出し洗浄液流
iIi、 F、配管6の種晶スラリ流量F′を測定する
ことによってスクラバ内洗浄液の(:aSO,濃度が求
することがわかる。このCa5O,濃度を一定にするよ
うに種晶スラリ流量を加減するようe(シ/このが5本
発明である。
However, K,=yso−ηs O2”””α32°
1゛°""・-7' ...... 斡f(χ,)=α 1-χ2 (~According to formula 03, the exhaust gas flow rate G, the 0.IA suction of the used air in the pipe 10, χ7. By measuring the extraction cleaning liquid flow ii, F in the pipe 9 and the seed crystal slurry flow rate F' in the pipe 6, it can be seen that the (:aSO, concentration) of the cleaning liquid in the scrubber is determined. The flow rate of the seed crystal slurry can be adjusted to adjust the flow rate of the seed crystal slurry.

具体的に第2図によって説明する。This will be explained in detail with reference to FIG.

排ガス人口ダクト1に流量側24を設置しカス流;「1
G全測定し、このガス流量信号を増幅器25しζ入力し
てに7倍に増幅する。なお、に、は03式に示す価全設
定する。
The flow rate side 24 is installed in the exhaust gas artificial duct 1, and the waste flow is
The gas flow rate signal is input to the amplifier 25 and amplified seven times. In addition, the valence shown in formula 03 is set.

配管10にO2濃度泊21を設置し、0.濃度χ2を副
>il l−、、この02′IA度信号を(ダ1数発生
器22に人力する。1y31故発生器にiI′ill+
Φ式に示すf(χ、)全発生する関数が組み込剪れてい
る。配管9に流1ii3127を設置し抜き出し流量F
を測定し、捷た配管6に流量計32を設置し種晶スラリ
流量F′を測定する。この2つの流量信号を減算器■3
3に入力し、前記増幅器25の出力信号とMiJ記減算
器の33の出力信号lI器の34に人力する。さらに、
前記関数発生器22の出力信号と前記流量計27の流量
信号を除算器■28に入力する。前記除算器■34の出
力信号と^1j記除算器■28の出力信号゛全減饅−器
26に入力する。
An O2 concentration filter 21 is installed in the pipe 10, and the O2 concentration level is set to 0. The concentration χ2 is sub>il l-, and this 02'IA degree signal is manually inputted to the number generator 22.
All the functions that occur in f(χ,) shown in the Φ equation are embedded and sheared. Install flow 1ii3127 in pipe 9 and extract flow rate F
A flowmeter 32 is installed in the cut pipe 6 to measure the seed crystal slurry flow rate F'. Subtractor ■3 for these two flow rate signals
3, and input the output signal of the amplifier 25 and the output signal of the MiJ subtracter 33 to the II circuit 34. moreover,
The output signal of the function generator 22 and the flow rate signal of the flow meter 27 are input to a divider 28. The output signal of the divider 34 and the output signal of the divider 28 are input to the total reducer 26.

前記減算器■26の出力信号υ、O2式の右辺の値を示
すことになる。したがって+ !j’J記減尊器■26
の出力信号は洗浄液のCa5O,濃度と等価である。前
記減譜ニ器■26の出力信”i k調節言129の匍]
御量として入力し、調節■129の出力信号で配管6の
種晶スラリ光景を操作する。種晶スラリ流量を操作する
とき、第2図のように流量調節計14と調節弁15で種
晶スラリ流)Iニー全制御し、前記流量調節計14の設
定値を1)II記調節計29の出力信号で変化さすカス
ケード結合方式、又は調節計28の出力信号で厘接諷節
弁15を作動さず方式のいずれでもよい。前記調節側2
9の設定値をスケールが発生しないある所定量以」二の
Ca50.1jkD3−に設定しておけば。
The output signal υ of the subtracter 26 represents the value on the right side of the O2 equation. Therefore +! j'Jki decrease vessel ■26
The output signal is equivalent to the Ca5O concentration of the cleaning solution. Output signal of the music reduction device 26 “i k adjustment word 129”
The seed crystal slurry view in the pipe 6 is controlled by the output signal of the adjustment 129. When operating the seed crystal slurry flow rate, the flow rate controller 14 and the control valve 15 fully control the seed crystal slurry flow as shown in Fig. Either a cascade coupling method in which the change is made by the output signal of the controller 29, or a method in which the control valve 15 is not operated by the output signal of the controller 28 may be used. Said adjustment side 2
If the setting value of 9 is set to a certain predetermined amount or more at which scale does not occur, Ca50.1jkD3- is set.

いかなる運転条件でも洗浄′tLCaSO,濃要は所定
量以」−に保持され、スケールは発生しない。
Under any operating conditions, the cleaning concentration is maintained at a predetermined level or higher, and scale does not occur.

以−]二2本発明を一実施態様例にもとづいて具体的に
説明したが1本発明はこの実施態様例に限定されるもの
ではなく、要は排ガス流量と酸化装置からでる空気又は
酸素を含むガス中のO1濃度、洗浄装置から抜き出し酸
化装置に導入する洗浄液流量、酸化装置から洗浄装置に
供給する種晶スラリ流量の4項目を測定し04式に示す
演算を行ない、そのび算結果を一定に制御するように前
記酸化装置から洗浄装置に供給する種晶スラリ流量を操
作するものであればよい。例えば、02式に示す演算は
電子計算機で行なってもよい。才だ、種晶スラリ流量計
32を種晶スラリ流1!+、調節計14とは別にしたが
1種晶スラリ流量調流J計14刀・ら′!Il[添1g
号がと9出せる構造であれは種晶スラリ流量計32を省
略してもよい。
Hereinafter, the present invention has been specifically explained based on one embodiment. However, the present invention is not limited to this embodiment, and the point is that the exhaust gas flow rate and the air or oxygen discharged from the oxidizer are Measure four items: the O1 concentration in the gas contained, the flow rate of the cleaning liquid extracted from the cleaning device and introduced into the oxidation device, and the flow rate of the seed crystal slurry supplied from the oxidation device to the cleaning device, perform the calculation shown in formula 04, and calculate the multiplication result. Any method may be used as long as the flow rate of the seed crystal slurry supplied from the oxidizing device to the cleaning device is controlled to be constant. For example, the calculation shown in equation 02 may be performed by an electronic computer. Great, the seed crystal slurry flowmeter 32 is the seed crystal slurry flow 1! +, Separate from the controller 14, there is a type 1 crystal slurry flow rate adjustment J meter 14 swords/ra'! Il [additional 1g
The seed crystal slurry flowmeter 32 may be omitted if the structure is such that the number can be outputted.

このよりな構成VCより2本発明は、スクラノ(内の洗
浄液中Ca5O,a1& k一定に制°御することがで
き、スクラノ(の内部におけるスケールの堆積全防止す
ることができるという幼果ヲ委する。
From this more structured VC, the present invention has the advantage of being able to control Ca5O, a1 & k in the cleaning liquid inside the scrubber to a constant level, and completely preventing the accumulation of scale inside the scrubber. do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来法による排煙脱硫装置の1例の例示図、
第2図6−1零発すjの一実施態様例の例示図である。 1・・・排ガス入口ダクト、2・・・メイクアッグ水。 3・・・スクラバ、4・・・循環配管、5・・・酸化装
置。 6、7,3.9.10・・・配管、11.16・・・レ
ベル調節針。 1  2、 1.  5. 1  7. 2  0  
・・・ g4  節 升 、14.19  ・・・ @
W二 ta節計、18・・・循環ポンプ、13・・・e
、収済供給ライン、21・・・O1濃度計、22・・・
関数発生器。 24・・・ガス流量計、25・・・増幅器、33.26
・・・減算器、28.34・・・除算器、29・・・調
節fj’r +27.32・・流力を言゛1゜ 第1図
FIG. 1 is an illustrative diagram of an example of a conventional flue gas desulfurization device;
FIG. 2 is an illustrative diagram of an example of an embodiment of j that emits zero. 1... Exhaust gas inlet duct, 2... Make-up water. 3...Scrubber, 4...Circulation piping, 5...Oxidizer. 6, 7, 3.9.10...Piping, 11.16...Level adjustment needle. 1 2, 1. 5. 1 7. 2 0
... g4 section square, 14.19 ... @
W2 ta meter, 18...circulation pump, 13...e
, collected supply line, 21... O1 concentration meter, 22...
Function generator. 24...Gas flow meter, 25...Amplifier, 33.26
... Subtractor, 28.34 ... Divider, 29 ... Adjustment fj'r +27.32 ... Express the fluid force ゛1゜ Fig. 1

Claims (1)

【特許請求の範囲】 水酸化カル/ラムおよび/又は、炭酸カルンウム全含む
スラリを用いて、排煙を洗滌し、排煙中の硫黄酸化物を
除去する湿式排煙処理装置で、洗滌装置から洗滌液の一
部又は、全部を抜き出し、空気又は酸素を含むガスを供
給して酸化する酸化装置コtに導入し、排煙からof:
、酸液に吸収された硫黄酸化物を酸化した後、当該石こ
うスラリの一部を種晶スラリとして再び上記洗滌装置に
供給する方法において、前記刊煙のガスがr、−iI+
を測定し、そのガス流量信号を増幅器に入カシ2.− 
力前記酸化装置から出る使用済空気又Cよ使用済酸素を
含むガスの酸素61反を測定し。 その酸素濃度信号をあらかじめ設定された関数を発生ず
る関数発生器に入力し、さらに′前記洗浄装置から抜き
出し、前記酸化装置に導入する洗浄液流量と前記酸化装
置から前記洗浄装置に供給する種晶スラリ流it測定し
、前記洗浄液流量信号と種晶スラリ流量信号を減算器の
に入力し、前記増幅器出力信号と前記減算器■の出力信
号を除算器■に入力し、また前記関数発生器の出力信号
と前記洗浄液流量信号を除算器■に入力し、前記除算器
■の出力信号と前記除算器■の出力信号を減算器■に入
力し、その減算器■の出力信号を制御量とし、前記酸化
装置から洗浄装置に供給する種晶スラリ流量を操作量と
して前記減算器■出力信号値を一定に制御することを特
徴とする湿式石灰石こう法排煙脱硫装置における種晶ス
ラリ供給方法。
[Claims] A wet flue gas treatment device that cleans flue gas and removes sulfur oxides from the flue gas using a slurry containing all of cal/rum hydroxide and/or caloonium carbonate. Part or all of the cleaning liquid is extracted and introduced into an oxidizer that supplies air or oxygen-containing gas to oxidize it, and removes it from the exhaust gas:
, a method in which after oxidizing the sulfur oxides absorbed in the acid solution, a part of the gypsum slurry is again supplied to the cleaning device as a seed crystal slurry, in which the sulfur gas is r, -iI+
2. Measure the gas flow rate signal and input it to the amplifier. −
Measure the amount of oxygen in the spent air or gas containing spent oxygen coming out of the oxidizer. The oxygen concentration signal is inputted to a function generator that generates a preset function, and the flow rate of the cleaning liquid extracted from the cleaning device and introduced into the oxidation device and the seed crystal slurry supplied from the oxidation device to the cleaning device are The cleaning liquid flow rate signal and the seed crystal slurry flow rate signal are input to a subtracter, the amplifier output signal and the output signal of the subtracter (2) are input to a divider (2), and the output of the function generator is The signal and the cleaning liquid flow rate signal are input to the divider (2), the output signal of the divider (2) and the output signal of the divider (2) are input to the subtracter (2), the output signal of the subtractor (2) is taken as the control amount, and the A method for supplying seed crystal slurry in a wet lime-gypsum flue gas desulfurization system, characterized in that the flow rate of seed crystal slurry supplied from the oxidizing device to the cleaning device is used as a manipulated variable to control the output signal value of the subtractor (1) to a constant value.
JP58105599A 1983-06-13 1983-06-13 Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method Pending JPS59230622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105599A JPS59230622A (en) 1983-06-13 1983-06-13 Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105599A JPS59230622A (en) 1983-06-13 1983-06-13 Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method

Publications (1)

Publication Number Publication Date
JPS59230622A true JPS59230622A (en) 1984-12-25

Family

ID=14411956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105599A Pending JPS59230622A (en) 1983-06-13 1983-06-13 Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method

Country Status (1)

Country Link
JP (1) JPS59230622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245823A (en) * 1985-04-23 1986-11-01 Mitsubishi Heavy Ind Ltd Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245823A (en) * 1985-04-23 1986-11-01 Mitsubishi Heavy Ind Ltd Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process
JPH0574406B2 (en) * 1985-04-23 1993-10-18 Mitsubishi Heavy Ind Ltd

Similar Documents

Publication Publication Date Title
EP0246758A2 (en) Method for controlling wetprocess flue gas desulfurization
JP3268127B2 (en) Method for controlling oxidation of sulfite
JPH02152522A (en) Treatment of exhaust gas
JPS59230622A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method
EP0752910A1 (en) Method for removing sulphur dioxide from a gas
JPS59225724A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPS59225723A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPH09248420A (en) Wet type flue gas desulfurization apparatus
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JP3068452B2 (en) Wet flue gas desulfurization equipment
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
US10449487B2 (en) Mercury control in a seawater flue gas desulfurization system
JP2004243169A (en) Desulfurization method for waste gas by double decomposition method
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
EP1472186A1 (en) Improvement of flue gas desulfurization gypsum-dewatering through crystal habit modification by carboxylic acids
JP2000005556A (en) Method for controlling absorbent slurry concentration of stack gas desulfurizer and device therefor
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device
Karlsson et al. Technical Aspects of Lime/Limestone Scrubbers for Coal-Fired Power Plants: Part I: Process Chemistry and Scrubber Systems
JP3704181B2 (en) Exhaust gas desulfurization method
JPS6087833A (en) Wet type stack gas desulfurization apparatus
JPS60235629A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JPH07116456A (en) Method for controlling flue gas wet desulfurization apparatus
JPS6351054B2 (en)
JPH0574406B2 (en)
JP2765868B2 (en) Alkali agent supply control device for wet flue gas desulfurization unit