JPH0574406B2 - - Google Patents

Info

Publication number
JPH0574406B2
JPH0574406B2 JP60085410A JP8541085A JPH0574406B2 JP H0574406 B2 JPH0574406 B2 JP H0574406B2 JP 60085410 A JP60085410 A JP 60085410A JP 8541085 A JP8541085 A JP 8541085A JP H0574406 B2 JPH0574406 B2 JP H0574406B2
Authority
JP
Japan
Prior art keywords
level
absorption tower
flue gas
caco
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60085410A
Other languages
Japanese (ja)
Other versions
JPS61245823A (en
Inventor
Susumu Kono
Ichiro Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60085410A priority Critical patent/JPS61245823A/en
Publication of JPS61245823A publication Critical patent/JPS61245823A/en
Publication of JPH0574406B2 publication Critical patent/JPH0574406B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水酸化カルシウム(Ca(OH)2)及
び/又は炭酸カルシウム(CaCO3)を用いて排
煙中に含まれる硫黄酸化物(以下SOxと称す)を
除去する湿式排煙脱硫装置の吸収塔レベル制御方
法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention uses calcium hydroxide (Ca(OH) 2 ) and/or calcium carbonate (CaCO 3 ) to remove sulfur oxides ( The present invention relates to a method for controlling the absorption tower level of a wet flue gas desulfurization equipment for removing SOx (hereinafter referred to as SOx).

〔従来の吸収塔レベル制御方法〕 従来、この種の制御方法としては第4図に示す
方法が知られている。例えば石炭だきボイラから
の排ガスは、排ガス入口ダクト1から吸収塔3に
導入され、吸収塔3の入口部分で、洗浄液によつ
て冷却、除じんされる。勿論吸収塔3に入る前
に、別に配置された冷却、除じん装置で排ガスを
冷却除じんする方法も知られている。排ガスの冷
却のために、洗浄液の水分が一部蒸発するが、配
管2からのメイクアツプ水によつて補給される。
つづいて、排ガスは吸収塔3の本体部分で更に冷
却除じんされると同時に、排ガス中のSOxは洗浄
液に反応、吸収される。
[Conventional absorption tower level control method] Conventionally, as this type of control method, the method shown in FIG. 4 is known. For example, exhaust gas from a coal-fired boiler is introduced into an absorption tower 3 through an exhaust gas inlet duct 1, and is cooled and dust-removed by a cleaning liquid at the entrance of the absorption tower 3. Of course, a method is also known in which the exhaust gas is cooled and dust removed using a separately arranged cooling and dust removal device before entering the absorption tower 3. Due to the cooling of the exhaust gas, some of the water in the cleaning liquid evaporates, but is replenished by make-up water from the pipe 2.
Next, the exhaust gas is further cooled and dust removed in the main body of the absorption tower 3, and at the same time, SOx in the exhaust gas is reacted with and absorbed by the cleaning liquid.

洗浄液中の吸収剤としてCaCO3を用いた場合
には次のような反応によりSOxが吸収される。
When CaCO 3 is used as an absorbent in the cleaning solution, SOx is absorbed through the following reaction.

CaSO3+SO2+H2O→Ca2++2HSO3 - (1) HSO3 -+1/2O2→H++SO4 2- (2) Ca2+SO4 2-→CaSO4 (3) CaCO3+2H+→Ca2++H2O+CO2 (4) Ca2++HOS3 -→CaSO3+H+ (5) 即ち、吸収塔3で生成したCaSO3は吸収した
SO2と(1)式でCa2+とHSO3 -となるが、この
HSO3 -の一部は排ガス中のO2により酸化されて
(2)式に示すようにH++SO4 2-になる。
CaSO 3 +SO 2 +H 2 O→Ca 2+ +2HSO 3 - (1) HSO 3 - +1/2O 2 →H + +SO 4 2- (2) Ca 2 +SO 4 2- →CaSO 4 (3) CaCO 3 +2H + →Ca 2+ +H 2 O+CO 2 (4) Ca 2+ +HOS 3 - →CaSO 3 +H + (5) In other words, CaSO 3 generated in absorption tower 3 was absorbed
SO 2 and equation (1) result in Ca 2+ and HSO 3 - , but this
A portion of HSO 3 - is oxidized by O 2 in the exhaust gas.
As shown in equation (2), it becomes H + +SO 4 2- .

またH+は吸収剤であるCaCO3で中和され(4)式
のようにCa2+とH2OとCO2とになり、CO2はガス
として、第4図の排出口4から放散される。生成
したSO4 2-とHSO3 -は濃度が高くなると、(3)、(4)
式に示すようにCaSO4、CaSO3となり、固相に析
出する。なお、CaSO4とCaSO3の生成割合は排ガ
ス中のO2により生成するSO4 2-の量によつて決ま
るものである。
In addition, H + is neutralized by the absorbent CaCO 3 and becomes Ca 2+ , H 2 O, and CO 2 as shown in equation (4), and CO 2 is released as a gas from the exhaust port 4 in Figure 4. be done. As the concentration of the generated SO 4 2- and HSO 3 - increases, (3), (4)
As shown in the formula, it becomes CaSO 4 and CaSO 3 and precipitates in the solid phase. Note that the production ratio of CaSO 4 and CaSO 3 is determined by the amount of SO 4 2- produced by O 2 in the exhaust gas.

洗浄液は循環ポンプ5によつて循環配管6を通
して吸収塔3に供給され、排ガスと接する。吸収
塔3内の洗浄液には配管7からCaCO3(又はCa
(OH)2)のスラリが吸収したSO2のほぼ当量分供
給されており、吸収したSO2に比例して増減す
る。
The cleaning liquid is supplied to the absorption tower 3 through the circulation pipe 6 by the circulation pump 5 and comes into contact with the exhaust gas. CaCO 3 (or Ca
(OH) 2 ) slurry is supplied in an amount equivalent to approximately the amount of SO 2 absorbed, and the amount increases or decreases in proportion to the amount of SO 2 absorbed.

洗浄液の一部は配管8を通して系外に抜き出さ
れる。この抜き出し量は、吸収塔3内の洗浄液レ
ベルを一定にするようにレベル検出調節計9と調
節弁10によつて制御されている。
A portion of the cleaning liquid is drawn out of the system through piping 8. This withdrawal amount is controlled by a level detection controller 9 and a control valve 10 so as to keep the cleaning liquid level in the absorption tower 3 constant.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

ところで、最近の発電用ボイラは電力需要に合
せて発電量、つまりボイラ負荷を変動させるた
め、ボイラの発生する排ガス量も変動し、排ガス
量が変動すると、吸収塔3で吸収されるSO2量も
変動し、同SO2量にほぼ比例して供給する配管7
の吸収剤流量も変動する状況にある。ところで(4)
式に示す吸収剤であるCaCO3の中和反応の反応
量は(6)式で示す通りである。
By the way, recent power generation boilers vary the amount of power generated, or the boiler load, according to the electricity demand, so the amount of exhaust gas generated by the boiler also changes, and when the amount of exhaust gas changes, the amount of SO 2 absorbed by the absorption tower 3 increases. The amount of SO 2 fluctuates, and the pipe 7 that supplies it is almost proportional to the amount of SO 2.
The absorbent flow rate is also fluctuating. By the way(4)
The reaction amount of the neutralization reaction of CaCO 3 which is an absorbent shown in the equation is as shown in equation (6).

R=K×〔CaCO3〕×A×L (6) R:反応量(Kgmol/Hr) K:反応速度定数(1/Hr) 〔CaCO3〕:CaCO3濃度(Kgmol/m3) A:吸収塔の洗浄液の液だめ部の断面積(m2) L:洗浄液レベル(m) この反応量は吸収したSO2量の当量に等しい。
仮に、排ガス量が増加し、吸収塔3で吸収される
SO2量が増加したとき、これに比例して(6)式に示
す反応量(R)も増加する。
R=K×[CaCO 3 ]×A×L (6) R: Reaction amount (Kgmol/Hr) K: Reaction rate constant (1/Hr) [CaCO 3 ]: CaCO 3 concentration (Kgmol/m 3 ) A: Cross-sectional area of the cleaning liquid reservoir of the absorption tower (m 2 ) L: Cleaning liquid level (m) This reaction amount is equal to the equivalent amount of SO 2 absorbed.
Suppose that the amount of exhaust gas increases and is absorbed by the absorption tower 3.
When the amount of SO 2 increases, the reaction amount (R) shown in equation (6) also increases in proportion to this.

このとき、(6)式において、反応速度定数(K)、断
面積(A)は一定であり、またレベル(L)は前述のよう
にレベル制御されているので、一定と考えられ
る。したがつて、反応量が増加すると、CaCO3
濃度が高くなることになる。また、配管8を通じ
てCaCO3を含んだ洗浄液は系外に抜き出されて
おり、この洗浄液中に含まれたCaCO3はSO2吸収
に利用されることなく無駄にすてられることにな
る。
At this time, in equation (6), the reaction rate constant (K) and cross-sectional area (A) are constant, and the level (L) is considered to be constant because it is level-controlled as described above. Therefore, as the reaction amount increases, CaCO 3
The concentration will increase. Further, the cleaning liquid containing CaCO 3 is extracted from the system through the pipe 8, and the CaCO 3 contained in this cleaning liquid is wasted without being used for SO 2 absorption.

レベルを一定に制御している従来の方法では排
ガス流量が増加したとき、上述の理由で、
CaCO3濃度が高くなるため無駄となるCaCO3
量が増加するという欠点があつた。
With the conventional method of controlling the level at a constant level, when the exhaust gas flow rate increases, for the reasons mentioned above,
The drawback was that the amount of wasted CaCO 3 increased as the CaCO 3 concentration increased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来法の欠点を解消すべくなされ
たもので、吸収塔に導入される排ガスの流量を測
定し、この排ガス流量の信号を予じめ設定された
関数を発生する関数発生器に入力し、一方吸収塔
の洗浄液レベルを検出し、このレベル検出信号を
制御量としてレベル調節計に入力し、さらに前記
関数発生器の出力信号をレベル設定値としてレベ
ル調節計に入力し、このレベル調節計の出力信号
によつて吸収塔から液又はスラリを抜き出す配管
に設けられた調節弁を操作することによつて、排
ガス流量が増加しても無駄にすてられるCaCO3
量を増加させることなく、ほぼ一定に制御できる
方法を提供しようとするものである。
The present invention was made to solve the above-mentioned drawbacks of the conventional method.The present invention measures the flow rate of exhaust gas introduced into the absorption tower, and sends a signal of this exhaust gas flow rate to a function generator that generates a preset function. On the other hand, the cleaning liquid level in the absorption tower is detected, this level detection signal is inputted as a control value to the level controller, and the output signal of the function generator is inputted as a level setting value to the level controller, and this level By operating the control valve installed in the piping that extracts liquid or slurry from the absorption tower using the output signal of the controller, CaCO 3 is wasted even if the exhaust gas flow rate increases.
The objective is to provide a method that allows the amount to be controlled to be almost constant without increasing it.

〔実施例〕〔Example〕

以下に本発明の実施例を第1図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIG.

まず、排ガスを排ガス入口ダクト1から吸収塔
3に導入し、吸収塔3の入口部分で洗浄液によつ
て冷却、除じんする。つづいて、排ガスは吸収塔
3の本体部分で更に冷却、除じんされると同時
に、排ガス中のSOxは洗浄液に反応、吸収され
る。
First, exhaust gas is introduced into the absorption tower 3 from the exhaust gas inlet duct 1, and is cooled and dust-removed by a cleaning liquid at the entrance of the absorption tower 3. Next, the exhaust gas is further cooled and dust removed in the main body of the absorption tower 3, and at the same time, SOx in the exhaust gas is reacted with and absorbed by the cleaning liquid.

洗浄液は循環ポンプ5によつて循環配管6を通
して吸収塔3に供給され、排ガスと接する。こう
した工程において、排ガス入口ダクト1に設置さ
れた流量計11でガス流量を検出し、この流量検
出信号を関数発生器12に入力する。関数発生器
には第2図のように排ガス流量とレベル設定値と
の関係を表わされる関数f(x)を発生するようにセ
ツトされている。
The cleaning liquid is supplied to the absorption tower 3 through the circulation pipe 6 by the circulation pump 5 and comes into contact with the exhaust gas. In these steps, the gas flow rate is detected by a flow meter 11 installed in the exhaust gas inlet duct 1, and this flow rate detection signal is input to the function generator 12. The function generator is set to generate a function f(x) representing the relationship between the exhaust gas flow rate and the level setting value, as shown in FIG.

この関数f(x)は次に示すものである。 This function f(x) is shown below.

f(x)=a・x/K・〔CaCO30・A ……(7) ただし a:(6)式の反応量(R)と排ガス量(x)はほぼ比例する
ので、R=a・xの関係が成立する。aはこの
比例定数を示す。
f(x)=a・x/K・[CaCO 3 ] 0・A …(7) However, a: Since the reaction amount (R) and exhaust gas amount (x) in equation (6) are almost proportional, R= The relationship a and x holds true. a indicates this proportionality constant.

K:CaCO3反応速度定数((6)式とKと同じ) 〔CaCO3〕:目標洗浄液CaCO3濃度 A:断面積((6)式のAと同じ) 前記関数発生器12の出力信号すなわち(7)式で
示す関数f(x)をレベル検出調節計9のレベル設定
値として入力する。レベル検出調節計9はレベル
をこのレベル設定値すなわち(7)式で示す関数f(x)
になるように調節弁10を操作している。
K: CaCO 3 reaction rate constant (same as K in equation (6)) [CaCO 3 ]: Target cleaning liquid CaCO 3 concentration A: Cross-sectional area (same as A in equation (6)) Output signal of the function generator 12, i.e. The function f(x) shown by equation (7) is input as the level setting value of the level detection controller 9. The level detection controller 9 determines the level using the level setting value, that is, the function f(x) expressed by equation (7).
The control valve 10 is operated so that

この結果、洗浄液中のCaCO3濃度〔CaCO3
は(6)式と(7)式から(8)式となる。
As a result, the CaCO 3 concentration in the cleaning solution [CaCO 3 ]
becomes equation (8) from equations (6) and (7).

〔CaCO3〕=R/K・A・L =R・K〔CaCO30・A/K・A・a・x =R・〔CaCO30/a・x ここで反応量(R)は前述したようにR=a・xで
あるので、これを代入する。
[CaCO 3 ] = R/K・A・L = R・K [CaCO 3 ] 0・A/K・A・a・x = R・[CaCO 3 ] 0 /a・x Here, reaction amount (R) As mentioned above, since R=a·x, this is substituted.

〔CaCO3〕=a・x・〔CaCN30/a・x =〔CaCO30 ……(8) 本発明は(8)式から洗浄液中のCaCO3濃度
〔CaCO3〕は排ガス量によらず目標洗浄CaCO3
度〔CaCO30一定となることは明らかである。こ
の結果、無駄にすてられるCaCO3量の低減が計
られることになる。
[CaCO 3 ] = a・x・[CaCN 3 ] 0 /a・x = [CaCO 3 ] 0 ...(8) According to the present invention, from equation (8), the CaCO 3 concentration [CaCO 3 ] in the cleaning liquid is the amount of exhaust gas. It is clear that the target cleaning CaCO 3 concentration [CaCO 3 ] remains constant at 0 regardless of the condition. As a result, the amount of wasted CaCO 3 will be reduced.

また、上記実施例では、レベル検出調節計9の
出力信号で調節弁10を直接操作したが、これに
限定されない。例えば第3図に示すようにレベル
検出調節計9の出力信号により配管8の抜き取り
量を検出する流量検出調節計13の設定値を操作
し、この流量検出調節計13によりレベル検出調
節計9の出力信号で設定された流量となるように
調節弁10を操作してもよい。
Further, in the above embodiment, the control valve 10 is directly operated by the output signal of the level detection controller 9, but the present invention is not limited thereto. For example, as shown in FIG. 3, the output signal of the level detection controller 9 is used to operate the setting value of the flow rate detection controller 13 that detects the amount of pipe 8 to be extracted. The control valve 10 may be operated so that the flow rate is set by the output signal.

〔本発明の効果〕[Effects of the present invention]

以上詳述したように、本発明によれば、排ガス
流量が変動しても洗浄液中のCaCO3濃度を変動
させることなく、ほぼ一定に制御しうる湿式石灰
石こう法排煙脱硫装置における吸収塔レベル制御
方法を提供できる。
As detailed above, according to the present invention, the absorption tower level in the wet lime-gypsum flue gas desulfurization equipment can control the CaCO 3 concentration in the cleaning liquid to be almost constant without changing even if the flue gas flow rate fluctuates. A control method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の排煙脱硫装置の吸収塔レベル
制御方法を説明するための一実施例を示す概略
図、第2図は排ガス量とレベル設定値との関係を
示す線図、第3図は本発明の吸収塔レベル制御方
法を説明するための他の実施例を示す概略図であ
る。第4図は従来の排煙脱硫装置の吸収塔レベル
制御方法を説明するための概略図である。 1……排ガス入口ダクト、3……吸収塔、4…
…排ガス出口ダクト、5……循環ポンプ、6……
循環配管、7……吸収剤供給用の配管、8……洗
浄液抜き取り用の配管、9……レベル検出調節
計、10……調節弁、11……ガス流量計、12
……関数発生器、13……流量検出調節計。
FIG. 1 is a schematic diagram showing an embodiment of the absorption tower level control method of the flue gas desulfurization equipment of the present invention, FIG. 2 is a diagram showing the relationship between the amount of exhaust gas and the level setting value, and FIG. The figure is a schematic diagram showing another embodiment for explaining the absorption tower level control method of the present invention. FIG. 4 is a schematic diagram for explaining a conventional absorption tower level control method of a flue gas desulfurization apparatus. 1...Exhaust gas inlet duct, 3...Absorption tower, 4...
...Exhaust gas outlet duct, 5...Circulation pump, 6...
Circulation piping, 7... Piping for supplying absorbent, 8... Piping for removing cleaning liquid, 9... Level detection controller, 10... Control valve, 11... Gas flow meter, 12
...Function generator, 13...Flow rate detection controller.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化カルシウム及び/又は炭酸カルシウム
を含むスラリを用いて排煙を洗浄し、排煙中の硫
黄酸化物を除去する湿式排煙処理装置の吸収塔レ
ベル制御方法において、前記吸収塔に導入される
排ガスの流量を測定し、該排ガス流量の信号を予
じめ設定された関数を発生する関数発生器に入力
し、一方前記吸収塔の洗浄液レベルを検出し、こ
のレベル検出信号を制御量としてレベル調節計に
入力し、さらに前記関数発生器の出力信号をレベ
ル設定値としてレベル調節計に入力し、該レベル
調節計の出力信号によつて吸収塔から液又はスラ
リを抜き出す配管に設けられた調節弁を操作する
ことを特徴とする湿式石灰石こう法排煙脱硫装置
における吸収塔液レベル制御方法。
1. In an absorption tower level control method for a wet flue gas treatment device in which flue gas is cleaned using a slurry containing calcium hydroxide and/or calcium carbonate to remove sulfur oxides from the flue gas, The flow rate of the flue gas is measured, and the signal of the flue gas flow rate is input to a function generator that generates a preset function.Meanwhile, the level of the cleaning liquid in the absorption tower is detected, and this level detection signal is used as the control variable. The output signal of the function generator is input to the level controller as a level setting value, and the output signal of the level controller is used to extract liquid or slurry from the absorption tower. A method for controlling the level of liquid in an absorption tower in a wet lime-gypsum flue gas desulfurization apparatus, which comprises operating a control valve.
JP60085410A 1985-04-23 1985-04-23 Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process Granted JPS61245823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085410A JPS61245823A (en) 1985-04-23 1985-04-23 Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085410A JPS61245823A (en) 1985-04-23 1985-04-23 Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process

Publications (2)

Publication Number Publication Date
JPS61245823A JPS61245823A (en) 1986-11-01
JPH0574406B2 true JPH0574406B2 (en) 1993-10-18

Family

ID=13858030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085410A Granted JPS61245823A (en) 1985-04-23 1985-04-23 Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process

Country Status (1)

Country Link
JP (1) JPS61245823A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492847B1 (en) * 2002-03-15 2005-06-03 고등기술연구원연구조합 Device that dregs of high pressure occurrence gas rinse equipment dusts included wastewater in atmospheric pressure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225724A (en) * 1983-06-07 1984-12-18 Mitsubishi Heavy Ind Ltd Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPS59230622A (en) * 1983-06-13 1984-12-25 Mitsubishi Heavy Ind Ltd Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225724A (en) * 1983-06-07 1984-12-18 Mitsubishi Heavy Ind Ltd Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPS59230622A (en) * 1983-06-13 1984-12-25 Mitsubishi Heavy Ind Ltd Seed crystal slurry supply method in waste gas desulfurization apparatus due to wet lime gypsum method

Also Published As

Publication number Publication date
JPS61245823A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
JP7390431B2 (en) Non-drainage exhaust gas treatment system and non-drainage exhaust gas treatment method
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPH0574406B2 (en)
JP3519498B2 (en) Wet flue gas desulfurization equipment
JPH0557141A (en) Flue gas desulfurization apparatus
JPS61245824A (en) Method for controlling liquid level of absorbing tower in flue gas desulfurization apparatus according to wet limestone/gypsum process
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JP3068452B2 (en) Wet flue gas desulfurization equipment
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JPH11147024A (en) Flue-gas treatment method
JP2883365B2 (en) Control device for wet flue gas desulfurization unit
JP2002224533A (en) Method and apparatus for flue gas desulfurization
JP2547803B2 (en) Wet flue gas desulfurization equipment
JPS60235626A (en) Level controlling process of absorption tower in stack gas desulpfurization apparatus for wet slaking gypsum production
JPS59102425A (en) Supply method of adsorbent for wet type stack gas desulfurizer
JPS60235629A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JPS61249527A (en) Wet type stack-gas desulfurization device
JP2004016856A (en) Flue gas desulfurization method and apparatus therefor
JPS60235628A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
JPH0427530Y2 (en)
JPS59225723A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPS59225724A (en) Seed crystal slurry supply method in waste gas desulfurization apparatus according to wet lime gypsum process
JPH03213125A (en) Absorbent ph control apparatus of wet exhaust gas desulfurizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees