JPH0427530Y2 - - Google Patents
Info
- Publication number
- JPH0427530Y2 JPH0427530Y2 JP6738684U JP6738684U JPH0427530Y2 JP H0427530 Y2 JPH0427530 Y2 JP H0427530Y2 JP 6738684 U JP6738684 U JP 6738684U JP 6738684 U JP6738684 U JP 6738684U JP H0427530 Y2 JPH0427530 Y2 JP H0427530Y2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- blowdown
- chlorine concentration
- circulating fluid
- dust removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 26
- 239000000428 dust Substances 0.000 claims description 25
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 21
- 239000000460 chlorine Substances 0.000 claims description 21
- 229910052801 chlorine Inorganic materials 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 19
- 238000002485 combustion reaction Methods 0.000 claims description 17
- 238000004065 wastewater treatment Methods 0.000 claims description 10
- 239000004071 soot Substances 0.000 claims description 5
- 238000007664 blowing Methods 0.000 claims 1
- 239000000284 extract Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 20
- 239000007787 solid Substances 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000446 fuel Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000011328 necessary treatment Methods 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Particles Using Liquids (AREA)
Description
【考案の詳細な説明】
〔考案の利用分野〕
本考案は、ボイラ等の燃焼排ガス処理装置等に
適用され、気液接触により排ガス中の煤じん等を
捕捉する除じん機能を有する除じん塔や吸収塔等
にあつて、その循環液を抜き出して排水処理装置
等へ送出するブローダウン量の制御装置に関す
る。[Detailed description of the invention] [Field of application of the invention] The invention is applied to combustion exhaust gas treatment equipment such as boilers, etc., and is a dust removal tower that has a dust removal function that captures soot and dust in exhaust gas through gas-liquid contact. The present invention relates to a blowdown amount control device for extracting circulating fluid from an absorption tower or the like and sending it to a wastewater treatment device or the like.
〔考案の背景〕
このような除じん機能を具備した排ガス処理装
置等の一例として、第1図に示す構成の湿式排煙
脱硫装置が知られており、以下、これを例にとつ
て本考案を説明する。[Background of the invention] A wet flue gas desulfurization equipment having the configuration shown in Fig. 1 is known as an example of an exhaust gas treatment equipment equipped with such a dust removal function. Explain.
第1図図示の排煙脱硫装置は、いわゆる石灰−
石膏法と称されるプロセスのもので、石灰石を吸
収剤とし、ボイラ等の燃焼排ガス中に含まれる亜
硫酸ガスSO2を吸収・除去し、副生品として石膏
を回収するものである。即ち、図示のように、ボ
イラ等から排出される燃焼排ガス1は、煙道2に
より除じん塔3の頂部に導びかれる。この除じん
塔4の頂部には循環ポンプ4から供給される洗浄
水が噴霧されており、燃焼排ガス中の煤じんは気
液接触により水滴に捕捉されて除じん塔の底部に
流下され、除じんされた燃焼排ガスは吸収塔5に
導びかれるようになつている。吸収塔5には循環
ポンプ6により石灰石スラリからなる吸収塔液が
循環されており、燃焼排ガス中のSO2は石灰と反
応して亜硫酸カルシウムCaSO4,2/1H2Oとな
り、吸収液中に吸収・除去される。循環されてい
る吸収液の一部は受槽7を介して酸化塔9に抜き
出され、ここで酸化処理されて石膏CaSO4・2H2
Oが生成され、この石膏はシツクナ10、脱水機
供給槽11、ポノプ13を介して脱水機14に送
られて脱水されるようになつている。シツクナ1
0の上澄液は上澄液槽16を介して、石灰石スラ
リ槽19および吸収塔5の頂部に戻されるように
なつている。また、吸収塔5にはスラリポンプ1
8を介して石灰石スラリ槽19から、吸収液が補
充されるようになつている。 The flue gas desulfurization equipment shown in FIG.
This is a process called the gypsum method, which uses limestone as an absorbent to absorb and remove sulfur dioxide gas SO 2 contained in combustion exhaust gas from boilers, etc., and recovers gypsum as a byproduct. That is, as shown in the figure, combustion exhaust gas 1 discharged from a boiler or the like is guided to the top of a dust removal tower 3 through a flue 2. Washing water supplied from the circulation pump 4 is sprayed onto the top of the dust removal tower 4, and the soot and dust in the combustion exhaust gas is captured by water droplets through gas-liquid contact and flows down to the bottom of the dust removal tower, where it is removed. The blown combustion exhaust gas is led to an absorption tower 5. Absorption tower liquid consisting of limestone slurry is circulated through the absorption tower 5 by a circulation pump 6, and SO 2 in the combustion exhaust gas reacts with lime to become calcium sulfite CaSO 4 , 2/1H 2 O, and is dissolved in the absorption liquid. Absorbed and removed. A part of the circulating absorption liquid is extracted through the receiving tank 7 to the oxidation tower 9, where it is oxidized and converted into gypsum CaSO 4 2H 2
Oxygen is generated, and this gypsum is sent to a dehydrator 14 via a dryer 10, a dehydrator supply tank 11, and a ponop 13 to be dehydrated. Shitukuna 1
0 supernatant liquid is returned to the limestone slurry tank 19 and the top of the absorption tower 5 via the supernatant liquid tank 16. In addition, a slurry pump 1 is provided in the absorption tower 5.
Absorbing liquid is replenished from a limestone slurry tank 19 via 8.
一方、除じん塔3の底部に流下された含じん液
は、抜き出されて一旦受槽12に貯留された後、
循環ポンプ4によつて再び除じん塔3の頂部に洗
浄水として供給されるようになつている。このと
き、循環される洗浄水(以下、循環液と称する。)
の一部が流量調節弁25を介して抜き出され、排
水処理装置26において、凝集処理およびPH調
整等の必要な処理がなされるようになつている。
なお、循環液の量は燃焼排ガスとの気液接触によ
る蒸発により、また流量調節弁25を介して抜き
出されることにより減少する。そこで、循環液の
量を確保するため、図示していない液面検出器に
より受槽12の液面レベルを検出し、受槽12の
液面レベルを一定に維持するように、受槽レベル
調節弁21を制御して補給水を補充するようにし
ている。 On the other hand, the dust-containing liquid that has flown down to the bottom of the dust removal tower 3 is extracted and temporarily stored in the receiving tank 12, and then
The circulation pump 4 supplies the cleaning water to the top of the dust removal tower 3 again. At this time, the cleaning water that is circulated (hereinafter referred to as circulating fluid)
A part of the water is extracted through a flow rate control valve 25, and is subjected to necessary treatments such as agglomeration treatment and pH adjustment in a wastewater treatment device 26.
Note that the amount of circulating fluid is reduced by evaporation due to gas-liquid contact with combustion exhaust gas and by being extracted via the flow control valve 25. Therefore, in order to ensure the amount of circulating fluid, the liquid level in the receiving tank 12 is detected by a liquid level detector (not shown), and the receiving tank level control valve 21 is operated to maintain the liquid level in the receiving tank 12 at a constant level. We are controlling and replenishing the supply water.
ところで、除じん塔3の循環液を抜き出して排
水処理すべき、いわゆるブローダウン量は、本
来、その循環液中の浮遊固形分(SS)濃度を基
準として、つまりSS濃度を所定値以下に保持す
るように制御するのが望ましい。しかし、従来、
ブローダウン量の制御に適したSS濃度の検出手
段がなかつたことから、第1図に示すように、ガ
ス量検出器20により燃焼排ガス1の流量を検出
し、これに基づいて流量調節弁25の弁開度を調
節してブローダウン量を制御していた。即ち、ブ
ローダウン量を燃焼排ガス量に比例させて制御し
ていた。 By the way, the so-called blowdown amount, which is the amount of circulating fluid in the dust removal tower 3 to be extracted and treated as wastewater, is originally based on the suspended solids (SS) concentration in the circulating fluid, that is, to maintain the SS concentration below a predetermined value. It is desirable to control the However, conventionally,
Since there was no SS concentration detection means suitable for controlling the blowdown amount, the flow rate of the combustion exhaust gas 1 was detected by the gas amount detector 20, as shown in FIG. The amount of blowdown was controlled by adjusting the valve opening. That is, the amount of blowdown was controlled in proportion to the amount of combustion exhaust gas.
しかしながら、通常、循環液中のSS濃度は燃
料の灰分含有量および燃焼により発生する煤じん
量に相関することが知られている。したがつて、
炭種等のボイラ燃料の種類や燃焼状態が変わる
と、同じ燃焼排ガス量であつても循環液中のSS
濃度が変化することになる。そのため、ブローダ
ウン量を燃焼排ガス量に比例させて制御する場合
は、応々にして、ブローダウン量は安全側に設定
制御されるため、必要量以上となりがちであつ
た。そして、必要量以上に抜き出されたブローダ
ウン液を処理するために、排水処理装置における
PH調整及び凝集処理の薬液が、必要量以上に消
費されてしまうという欠点があつた。また、同様
の理由から、排水処理に係る動力費、および洗浄
水の補給水量などが増大されるとともに、装置が
必要以上に大形なものになるという欠点があつ
た。 However, it is generally known that the SS concentration in the circulating fluid is correlated with the ash content of the fuel and the amount of soot and dust generated by combustion. Therefore,
If the type of boiler fuel such as coal type or combustion condition changes, the SS in the circulating fluid will change even if the amount of combustion exhaust gas is the same.
The concentration will change. Therefore, when the blowdown amount is controlled in proportion to the amount of combustion exhaust gas, the blowdown amount is set and controlled to be on the safe side depending on the situation, and therefore tends to exceed the required amount. Then, in order to treat the blowdown liquid extracted in excess of the required amount, the wastewater treatment equipment is
The drawback was that more chemical solution for pH adjustment and aggregation treatment was consumed than necessary. Further, for the same reason, the power cost associated with wastewater treatment and the amount of replenishing water for washing water are increased, and the device becomes larger than necessary.
本考案の目的は、ブローダウン量を循環液中の
SS濃度に相関させて精度よく制御することがで
きる除じん塔等のブローダウン量制御装置を提供
することにある。
The purpose of this invention is to reduce the amount of blowdown in the circulating fluid.
An object of the present invention is to provide a blowdown amount control device such as a dust removal tower that can be controlled accurately in correlation with SS concentration.
本考案は、循環液中のSS濃度が同液中の塩素
濃度に比例するということに鑑みなされたもので
あり、循環液中の塩素濃度を検出し、その検出濃
度とその設定値との差に基づいて、ブローダウン
量を制御することにより、ブローダウン量をSS
濃度に相関させたものとし、これによつてブロー
ダウン量を最小化し、排水処理における薬液消費
量および動力費を低減するとともに、洗浄水の補
給水量を低減しようとするものである。
This invention was developed based on the fact that the SS concentration in the circulating fluid is proportional to the chlorine concentration in the same fluid.The present invention detects the chlorine concentration in the circulating fluid and calculates the difference between the detected concentration and the set value. By controlling the blowdown amount based on
This is intended to be correlated to the concentration, thereby minimizing the amount of blowdown, reducing chemical consumption and power costs in wastewater treatment, and reducing the amount of make-up water for cleaning water.
ここで、循環液中のSS濃度と塩素濃度とが比
例することについて説明する。ボイラ等の燃料と
して一般に用いられる石炭、重油等の化石燃料に
は、不燃固形物の他に塩素分が含有されているこ
とが広く知られている(例えば、文献「日立評
論」Vo62,1980年4月、第17頁;又は「Prog.
Energy Combust.Sci.」Vo6、第69頁
TABLE7、Pergamon Press Ltd.1980年、
Printed in Great Britain 参照)。また、それ
らの含有率は燃料の種類が定まれば一定とみなせ
る。したがつて、燃焼排ガスに含まれてくるSS
成分(煤じんと燃焼灰等)と塩素分ガスの割合が
一定の比例関係になることは明らかである。ま
た、気液接触にて循環液に捕集されるSS成分の
捕集率および同液に吸収される塩素の吸収率は定
まつてくるものであるから、循環液中のSS濃度
と塩素濃度との相関に一定の比例関係が成立する
ことも明らかである。参考までに、2種類の石炭
A,Bについて実測した排ガス量と循環液中の塩
素濃度との関係を第3図に示す。同図から明らか
なように、排ガス量に比例して、つまり燃料量に
比例して塩素濃度が変化しており、また炭種によ
つて塩素濃度が異なつている。したがつて、この
関係を予め計測するとともに、合わせてSS濃度
との関係を分析等により把握しておくことによ
り、循環液中の塩素濃度を基準にしてSS濃度を
制御できる。 Here, the fact that the SS concentration and chlorine concentration in the circulating fluid are proportional will be explained. It is widely known that fossil fuels such as coal and heavy oil, which are commonly used as fuel for boilers, contain chlorine in addition to non-flammable solids (for example, Hitachi Hyoron, Vol. 62, 1980). April, p. 17; or “Prog.
Energy Combust.Sci.” Vo6, page 69
TABLE7, Pergamon Press Ltd.1980,
(See Printed in Great Britain). Furthermore, their content can be considered constant once the type of fuel is determined. Therefore, SS contained in combustion exhaust gas
It is clear that the proportions of components (soot, dust, combustion ash, etc.) and chlorine gas have a certain proportional relationship. In addition, since the collection rate of SS components collected in the circulating fluid during gas-liquid contact and the absorption rate of chlorine absorbed by the same fluid are fixed, the SS concentration and chlorine concentration in the circulating fluid are determined. It is also clear that a certain proportionality holds true in the correlation with . For reference, Fig. 3 shows the relationship between the amount of exhaust gas actually measured for two types of coal A and B and the chlorine concentration in the circulating fluid. As is clear from the figure, the chlorine concentration changes in proportion to the amount of exhaust gas, that is, in proportion to the amount of fuel, and also varies depending on the type of coal. Therefore, by measuring this relationship in advance and understanding the relationship with the SS concentration through analysis or the like, the SS concentration can be controlled based on the chlorine concentration in the circulating fluid.
以下、本考案を実施例に基づいて説明する。 The present invention will be explained below based on examples.
第2図に本考案を第1図図示排煙脱硫装置の除
じん塔に適用した一実施例の要部系統構成図を示
す。第2図において、第1図と同一符号の付され
たものは、同一機能、構成を有するものである。 FIG. 2 shows a system configuration diagram of the main parts of an embodiment in which the present invention is applied to the dust removal tower of the flue gas desulfurization equipment shown in FIG. 1. In FIG. 2, components given the same reference numerals as those in FIG. 1 have the same functions and configurations.
第2図に示すように、循環液の受槽12に塩素
濃度検出器27が設けられ、これにより検出され
る循環液中の塩素濃度の検出値は、調節計28の
加算部に入力されている。この加算部には設定器
29から、所定のSS濃度に対応させて定められ
た塩素濃度の設定値が入力されており、この設定
値と前記検出値の差が求められる。調節計28は
この差を比例積分処理して流量調節弁25に弁開
度指令信号を出力し、排水処理装置26に送出さ
れるブローダウン量を制御するようになつてい
る。 As shown in FIG. 2, a chlorine concentration detector 27 is provided in the circulating fluid receiving tank 12, and the detected value of the chlorine concentration in the circulating fluid detected by this detector is inputted to the addition section of the controller 28. . A set value of the chlorine concentration determined corresponding to a predetermined SS concentration is inputted to this adding section from the setter 29, and the difference between this set value and the detected value is determined. The controller 28 performs proportional-integral processing on this difference, outputs a valve opening command signal to the flow rate control valve 25, and controls the amount of blowdown sent to the waste water treatment device 26.
このように構成されることから、循環液中の
SS濃度に相関して変化する塩素濃度が設定値を
越えたとき、その差に応じた量のブローダウン液
が抜き出されることから、ブローダウン量は上記
SS濃度に対応したものとなる。したがつて、本
実施例によれば、ブローダウン量を最小化するこ
とができる。 Because of this configuration, the amount of water in the circulating fluid
When the chlorine concentration, which changes in correlation with the SS concentration, exceeds the set value, an amount of blowdown liquid is extracted according to the difference, so the blowdown amount is
It corresponds to the SS concentration. Therefore, according to this embodiment, the amount of blowdown can be minimized.
なお、上記実施例においては、本考案を排煙脱
硫装置の吸収塔の上流側に設置された除じん塔に
適用したものとして説明したが、本考案はこのよ
うな除じん塔の循環液のブローダウン量制御に限
らず、一般の洗浄除じん装置等は勿論、上記実施
例の除じん塔を吸収塔に一体化してなる吸収塔の
吸収塔液のブローダウン量制御に適用することが
でき、上記実施例と同一の効果が得られる。 In the above embodiment, the present invention was explained as being applied to a dust removal tower installed upstream of an absorption tower of a flue gas desulfurization equipment, but the present invention is applicable to the circulating liquid of such a dust removal tower. It can be applied not only to blowdown amount control, but also to general cleaning dust removal equipment, etc., as well as blowdown amount control of absorption tower liquid of an absorption tower formed by integrating the dust removal tower of the above embodiment into an absorption tower. , the same effect as the above embodiment can be obtained.
以上説明したように、本考案によれば、ブロー
ダウン量制御を循環液中のSS濃度に基づいた制
御とすることができることから、ブローダウン量
を最小化することができ、これによつて、排水処
理における薬液消費量および動力費、さらに洗浄
水の補給水量が低減されるとともに、排水処理装
置が小形化されるという効果がある。
As explained above, according to the present invention, since the blowdown amount can be controlled based on the SS concentration in the circulating fluid, the blowdown amount can be minimized, and thereby, This has the effect of reducing chemical consumption and power costs in wastewater treatment, as well as the amount of make-up water for washing water, and downsizing the wastewater treatment apparatus.
第1図は従来例の全体系統構成図、第2図は本
考案の一実施例の要部系統構成図、第3図は排ガ
ス量と循環液中の塩素濃度との関係の実測値を示
す線図である。
1……燃焼排ガス、3……除じん塔、4……循
環ポンプ、5……吸収塔、12……受槽、21…
…受槽レベル調節弁、25……流量調節弁、26
……排水処理装置、27……塩素濃度検出器、2
8……調節計、29……設定器。
Figure 1 shows the overall system configuration of a conventional example, Figure 2 shows the main system configuration of an embodiment of the present invention, and Figure 3 shows actual measured values of the relationship between the amount of exhaust gas and the chlorine concentration in the circulating fluid. It is a line diagram. 1... Combustion exhaust gas, 3... Dust removal tower, 4... Circulation pump, 5... Absorption tower, 12... Receiving tank, 21...
... Receiving tank level control valve, 25 ... Flow rate control valve, 26
...Wastewater treatment equipment, 27...Chlorine concentration detector, 2
8... Controller, 29... Setting device.
Claims (1)
る除じん塔等に循環されている循環液の一部を抜
き出して排水処理装置等へ送出するブローダウン
量の制御をする除じん塔等のブローダウン量制御
装置において、循環液中の塩素濃度を検出する塩
素濃度の検出器と、循環液中の塩素濃度の設定値
を設定する塩素濃度の設定器と、前記塩素濃度の
検出器と設定器とから、それぞれ塩素濃度の検出
値と設定値とを入力して差を求め、その差に応じ
た弁開度指令を出力する弁制御手段と、この弁開
度指令を入力してブローダウン量を調節する流量
調節弁とを設けたことを特徴とする除じん塔等の
ブローダウン量制御装置。 Blowing of dust removal towers, etc. that controls the amount of blowdown that extracts a part of the circulating fluid that is circulated in dust removal towers, etc., which capture soot and dust in combustion exhaust gas through gas-liquid contact, and sends it to wastewater treatment equipment, etc. The down amount control device includes a chlorine concentration detector that detects the chlorine concentration in the circulating fluid, a chlorine concentration setter that sets a set value for the chlorine concentration in the circulating fluid, and the chlorine concentration detector and setter. A valve control means inputs the detected value and the set value of the chlorine concentration, calculates the difference, outputs a valve opening command according to the difference, and inputs this valve opening command to determine the blowdown amount. A blowdown amount control device for a dust removal tower, etc., characterized in that it is provided with a flow rate control valve that adjusts the amount of blowdown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6738684U JPS60179323U (en) | 1984-05-09 | 1984-05-09 | Blowdown amount control device for dust removal towers, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6738684U JPS60179323U (en) | 1984-05-09 | 1984-05-09 | Blowdown amount control device for dust removal towers, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60179323U JPS60179323U (en) | 1985-11-28 |
JPH0427530Y2 true JPH0427530Y2 (en) | 1992-07-02 |
Family
ID=30601161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6738684U Granted JPS60179323U (en) | 1984-05-09 | 1984-05-09 | Blowdown amount control device for dust removal towers, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60179323U (en) |
-
1984
- 1984-05-09 JP JP6738684U patent/JPS60179323U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60179323U (en) | 1985-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016163318A1 (en) | Method and device for wet flue-gas desulfurization | |
JPWO2004023040A1 (en) | Smoke treatment system | |
JP3268127B2 (en) | Method for controlling oxidation of sulfite | |
JPH0427530Y2 (en) | ||
US5034204A (en) | Flue gas desulfurization process | |
JPH10128053A (en) | Stack gas treating device and treatment of stack gas | |
JPH02198613A (en) | Method for wet-desulfurizing exhaust gas | |
JP3519498B2 (en) | Wet flue gas desulfurization equipment | |
JP2933664B2 (en) | Absorbent PH control unit for wet flue gas desulfurization unit | |
JPS6244735Y2 (en) | ||
JPH06210126A (en) | Method and device for treating waste gas | |
JP2883365B2 (en) | Control device for wet flue gas desulfurization unit | |
JPH0521006B2 (en) | ||
JPH0417691B2 (en) | ||
JP3241197B2 (en) | Method for controlling the oxidation of calcium sulfite in absorption solution | |
JP2583902B2 (en) | Control device for wet flue gas desulfurization unit | |
JP2608067B2 (en) | COD treatment control equipment for wet flue gas desulfurization equipment wastewater | |
JP2607871B2 (en) | Wet flue gas desulfurization equipment | |
JPS6274436A (en) | Wet type waste gas desulfurization apparatus | |
JPH0227871Y2 (en) | ||
JPS61120620A (en) | Method for controlling withdrawal flow amount of washing solution of cooling tower | |
JPH0125627Y2 (en) | ||
JPH01180219A (en) | Absorbing liquid slurry control device for wet type flue gas desulfurization apparatus | |
JPH0815531B2 (en) | Control device for wet flue gas desulfurization unit | |
JP2547803B2 (en) | Wet flue gas desulfurization equipment |