JPS6274436A - Wet type waste gas desulfurization apparatus - Google Patents

Wet type waste gas desulfurization apparatus

Info

Publication number
JPS6274436A
JPS6274436A JP60214592A JP21459285A JPS6274436A JP S6274436 A JPS6274436 A JP S6274436A JP 60214592 A JP60214592 A JP 60214592A JP 21459285 A JP21459285 A JP 21459285A JP S6274436 A JPS6274436 A JP S6274436A
Authority
JP
Japan
Prior art keywords
tank
slurry
cooling
absorption
absorbing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60214592A
Other languages
Japanese (ja)
Inventor
Hajime Furubayashi
肇 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60214592A priority Critical patent/JPS6274436A/en
Publication of JPS6274436A publication Critical patent/JPS6274436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To obtain good oxidation capacity, by stabilizing the pH of a cooling part even if the start/stop operation of a boiler is repeated by providing absorbing solution slurry auxiliary supply piping for supplying an absorbing solution slurry from an absorbing solution slurry tank to the recirculation tank of the cooling part. CONSTITUTION:Exhaust gas from a flue 2 is guided to the cooling part 23 of the lower part of a desulfurization tower to perform dust removal, cooling and partial desulfurization while the treated exhaust gas is guided to an absorbing part 24 through a collector 25 and SOx in the exhaust gas is absorbed and removed by an absorbing solution slurry. The absorbing solution slurry is independently supplied to the recirculation tank 7 of the absorbing port 24 and the recirculation tank of a dust removing part from an absorbing solution slurry tank 10 through absorbing solution slurry supply piping 29 and absorbing solution slurry auxiliary supply piping 30. A part of the absorbing solution slurry in the recirculation tank 7 of the absorbing part 24 is withdrawn to the recirculation tank 5 of the cooling part 23 through a conduit 27 in the amount corresponding to the supply amount to the tank 7. Air is blown into the tank 5 from air supply piping 26 to oxidize sulfite to turn it into gypsum 20.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は湿式排煙脱硫装3″に係り、特に負荷変動に対
応して吸収液スラリを供給することができる湿式排煙脱
硫装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a wet flue gas desulfurization system 3'', and particularly relates to a wet flue gas desulfurization system that can supply absorbent slurry in response to load fluctuations. be.

〔発明の背景〕[Background of the invention]

近年、発[需要が増大するにつれて、化石燃料を主燃料
とするボイラも大型化し、発電用ボイラが大気汚染に与
える影響度も増加しつつある。
In recent years, as demand for power generation has increased, boilers that use fossil fuels as their main fuel have become larger, and the impact of power generation boilers on air pollution is also increasing.

この大気汚染を拡大する公害物質のうち、多大な北軍を
しめるSOx  の排出規制は年々きびしくなる傾向に
ある。この状勢下で第二次石油ショック以来、石油を主
燃料としてきた我が国の発電業界は、より安価で、かつ
十分な供給源をもつ5屍燃料へと燃料転換しつつある。
Among the pollutants that increase air pollution, the emission regulations for SOx, which has a large impact on the Northern Army, tend to become stricter year by year. Under these circumstances, since the second oil crisis, Japan's power generation industry, which has been using oil as its main fuel, is switching to 5-carbon fuels, which are cheaper and have ample supply sources.

ところが、ボイラが大型化する一方、発電コストを低下
する目的で発電需要に応じて頻繁な負荷変動を行なうた
めに一日単位でボイラの起動、停止運転(Daily 
5tart 5top、Weekly 5tart 5
top以下単にDSS、WSSという)が繰り返されて
いる。
However, as boilers have become larger, boilers have to be started and stopped on a daily basis in order to frequently change load according to power generation demand in order to reduce power generation costs.
5tart 5top, Weekly 5tart 5
(hereinafter simply referred to as DSS and WSS) are repeated.

それは最近の電力需要の特徴として、原子力発邦の伸び
と共に、電力負荷の最大、最小差も増大し、火力発電用
ボイラをベースロード用から負荷調整用へと移行する傾
向にあり、この火力発電用ボイラな負荷に応じて圧力を
変化させて変圧運転を行なう、いわゆる全負荷では超臨
界圧域、部分負荷では亜臨界圧域で運転する変圧運鼾ボ
イラとすることによって、部分負荷での発電効率を数%
向上させることができるからである。
As a feature of recent electricity demand, with the growth in nuclear power generation, the difference between the maximum and minimum power loads has also increased, and there is a tendency to shift boilers for thermal power generation from base load use to load adjustment use. By using a variable pressure boiler, which operates in a supercritical pressure region at full load and in a subcritical pressure region at partial load, it is possible to generate electricity under partial load. Increase efficiency by a few percent
This is because it can be improved.

ところが−、この様に一日謬位で頻繁にDSS運転、週
単位でWSS運転を行なうために、このり荷変動によっ
て排ガスlが変動し、石炭の炭程によっても可溶性酸性
ガスlやフライアッシュ量が異るためf、flえば/4
./2./4負荷などの部分力荷時には目標SOx  
値以下することができな℃・。
However, because DSS operation is frequently performed on a daily basis and WSS operation is performed on a weekly basis, exhaust gas l fluctuates due to fluctuations in fuel load, and soluble acid gas l and fly ash are produced depending on the coal content. Since the quantities are different, f, fl is /4
.. /2. Target SOx during partial force loading such as /4 load
The value cannot be below ℃.

例えば火力発電所等に設シ゛される湿式排煙脱硫装置は
、炭酸カルシウム(CaC0,)、水酸化カルシウム[
Ca(OH,) ]  または酸化カルシウム(CaO
)などを吸収液としたスラリからなる吸収液スラリな用
い、ボイラ等の排ガス中の硫黄酸化物(SOx)を吸収
し、得られた亜硫酸カルシウムを酸化して、硫酸カルシ
ウム、すなわち石こうとして回収する方法が最も一般的
である。
For example, wet flue gas desulfurization equipment installed in thermal power plants etc. uses calcium carbonate (CaC0,), calcium hydroxide [
Ca(OH,) ] or calcium oxide (CaO
) is used as an absorption liquid slurry to absorb sulfur oxides (SOx) in exhaust gas from boilers, etc., oxidize the obtained calcium sulfite, and recover it as calcium sulfate, that is, gypsum. method is the most common.

この石灰石または石灰を用いる従来の湿式排煙脱硫装置
の概略系統図を第5図、第6図に示す。
A schematic system diagram of a conventional wet flue gas desulfurization apparatus using this limestone or lime is shown in FIGS. 5 and 6.

現在、火力発電プラント用湿式排煙脱硫装置においては
第5図の如く、排ガスは脱硫ファン1により昇圧され煙
道2から冷却塔3に送られ、冷却塔循環ポンプ4により
冷却塔循環タンク5内の吸収液スラリと気液接触し、排
ガス湿度を飽和湿度まで冷却すると共に除塵及び一部の
脱硫が行なわれる。冷却後の排ガスは吸収塔6に入り、
ここで吸収塔循環タンク7から吸収塔循環ポンプ8によ
り吸収塔6内に循環された吸収液スラリとの気液接触に
より排ガス中のSOx  が吸収、除去され、デミスタ
28.出口9から排出される。
Currently, in a wet flue gas desulfurization system for a thermal power plant, as shown in Fig. 5, the exhaust gas is pressurized by a desulfurization fan 1 and sent from a flue 2 to a cooling tower 3, and is then fed into a cooling tower circulation tank 5 by a cooling tower circulation pump 4. The exhaust gas is brought into gas-liquid contact with the absorbent slurry to cool the exhaust gas humidity to saturated humidity, as well as to remove dust and partially desulfurize. The exhaust gas after cooling enters the absorption tower 6,
Here, SOx in the exhaust gas is absorbed and removed by gas-liquid contact with the absorption liquid slurry circulated from the absorption tower circulation tank 7 into the absorption tower 6 by the absorption tower circulation pump 8. It is discharged from outlet 9.

一方、吸収塔6には規定tの吸収液スラリか吸収液スラ
リタンク10から吸収液スラリポンプ11゜吸収液スラ
リ供給配管29を経て併給され、排ガス中のSOx  
を吸収し、亜硫酸カルシウムを生成する。その生成した
亜硫酸カルシウムを含有するスラリは吸収塔抜出しポン
プ12により一部抜出され、酸化塔供給タンク13に供
給される。その後スラリは硫酸14との反応により未反
応の石灰石が一部石こうに転換されると同時に亜健酸カ
ルシウムの酸化に好適なP HK 調整された後、酸化
塔併給ポンプ15を経て酸化塔16に供給され酸化塔1
6で空気により石こうに酸化される。得られた石こうス
ラリは石こ5シツクナ179石こうスラリタンク18.
遠心分離機19で脱水され。
On the other hand, absorption liquid slurry of a specified amount is fed to the absorption tower 6 from the absorption liquid slurry tank 10 via the absorption liquid slurry pump 11° and the absorption liquid slurry supply pipe 29, and the SOx in the exhaust gas is
absorbs and produces calcium sulfite. A portion of the generated slurry containing calcium sulfite is extracted by an absorption tower extraction pump 12 and supplied to an oxidation tower supply tank 13. Thereafter, the slurry is reacted with sulfuric acid 14 to convert some of the unreacted limestone into gypsum, and at the same time adjust the pH to a level suitable for oxidizing calcium substite. Supplied oxidation tower 1
6, it is oxidized to gypsum by air. The obtained gypsum slurry was transferred to gypsum slurry tank 18.
It is dehydrated in a centrifuge 19.

石こう20として回収される。Collected as gypsum 20.

使方、石こうシラフナ17でのろ過水は、ろ過水タンク
2】、ろ過水ポンプ22より吸収液スラリタンク10へ
供給される。しかしながら近年湿式排煙脱硫装置の立地
スペースの低減、湿式排煙脱硫装置の簡素化等合理化を
目的として酸化塔供給タンク13.酸化塔16を省き、
第6図に示す一塔式のものが提案されている。
How to use: Filtered water in the Gypsum Shirafuna 17 is supplied to the absorption liquid slurry tank 10 from a filtered water tank 2 and a filtered water pump 22. However, in recent years, the oxidation tower supply tank 13. Omitting the oxidation tower 16,
A one-tower type shown in FIG. 6 has been proposed.

1、5 [aのものと異なる点は第5図のものにおいて
は冷却塔3と吸収塔6の二基式であったが、16図のも
のは冷却部23と吸収部24を一塔式にした点である。
1, 5 [The difference from the one in Fig. 5 is that the one in Fig. 5 is a two-unit type with a cooling tower 3 and an absorption tower 6, but the one in Fig. 16 is a single-tower type with a cooling section 23 and an absorption section 24. This is the point I made.

つまり、へ゛ンチュリ型で行なっていた除塵をスグレ方
式として吸収部24の下部に冷却部23を組入れ塔底部
を冷却部循環タンク5とし、冷却部23に供給されたス
ラリは直接冷却部循環タンク5内に落下させる。冷却、
除塵後の排ガスは塔上部の吸収部24で、スラリと気液
接触して、硫黄酸化物が除去される。気液接触後のスラ
リはコレクタ25によって捕集され、別途設けられた吸
収部循環タンク7に戻される。冷却部循環タンク5内に
空気供給配管26より酸化用空気を供給して、石こうを
生成させ第5図に示した専用の酸化塔16を省略するも
のである。吸収剤である石灰石スラリは吸収部循環タン
ク7に供給され、吸収部循環タンク7内スラリの一部を
導管27で抜出して冷却部循環タンク5へ供給するもの
である。この様に第5図で述べた従来技術の湿式排煙脱
硫装置では、除塵塔循環タンク5内で酸化を行なわない
ため、スラリ中に亜硫酸カルシウムが共存し、これが冷
却塔30PHを安定させるバッファとして働くが、第6
図で述べた湿式排煙脱硫装置では、冷却部循環タンク5
内で空気供給配管26からの酸化用空気によって強制的
に酸化を行うため、冷却部循環タンク5内のスラリ中に
亜硫酸カルシウムはほとんど共存せず、PHは不安定と
なる。又石灰石粒子の表面を覆うブラインディング現象
が無いため石灰石の反応性は向上し、スラリ中のC,r
CO−は4よとんど亜硫酸ガスに吸収される。その結果
冷却部循環タンク5内のスラリ中にはCact、はほと
んど無くなりPHは低下することになる。
In other words, the dust removal that was performed in the Henchury type is changed to the Sugere method, and the cooling part 23 is incorporated in the lower part of the absorption part 24, and the bottom of the tower is used as the cooling part circulation tank 5, and the slurry supplied to the cooling part 23 is directly transferred to the cooling part circulation tank 5. drop it inside. cooling,
The exhaust gas after dust removal comes into gas-liquid contact with the slurry in the absorption section 24 at the top of the tower, and sulfur oxides are removed. The slurry after the gas-liquid contact is collected by the collector 25 and returned to the absorption section circulation tank 7 provided separately. Oxidizing air is supplied into the cooling section circulation tank 5 from the air supply pipe 26 to generate gypsum, and the dedicated oxidizing tower 16 shown in FIG. 5 is omitted. Limestone slurry as an absorbent is supplied to the absorption section circulation tank 7, and a part of the slurry in the absorption section circulation tank 7 is extracted through a conduit 27 and supplied to the cooling section circulation tank 5. As described above, in the conventional wet flue gas desulfurization equipment described in FIG. 5, since oxidation is not performed in the dust removal tower circulation tank 5, calcium sulfite coexists in the slurry, and this acts as a buffer to stabilize the cooling tower 30PH. Work but the 6th
In the wet flue gas desulfurization equipment described in the figure, the cooling section circulation tank 5
Since oxidation is forcibly carried out within the cooling section circulation tank 5 by oxidizing air from the air supply pipe 26, almost no calcium sulfite coexists in the slurry within the cooling section circulation tank 5, and the pH becomes unstable. In addition, since there is no blinding phenomenon covering the surface of limestone particles, the reactivity of limestone is improved, and C, r
CO- is absorbed by sulfur dioxide gas. As a result, there is almost no Cact in the slurry in the cooling section circulation tank 5, and the pH decreases.

従って、冷却部23を高い脱硫率、酸化率で運転するた
めには、冷却部230PHを5.0〜5.5の間で安定
させる必要があるが、吸収部循環タンク7のみに吸収液
スラリタンク10からフレッシュな石灰石スラリを供給
するため、吸収部循環タンク7が非常に容景の大きなタ
ンクであり、冷却部循環タンク5にフレッシュなスラリ
か流入して冷却部循環タンク5のPHに作用する迄長時
間かかりすき゛る。
Therefore, in order to operate the cooling section 23 at a high desulfurization rate and oxidation rate, it is necessary to stabilize the cooling section 230PH between 5.0 and 5.5. In order to supply fresh limestone slurry from the tank 10, the absorption section circulation tank 7 is a very large tank, and the fresh slurry flows into the cooling section circulation tank 5 and affects the pH of the cooling section circulation tank 5. I like that it takes a long time to do it.

又吸収部循環タンク7に供給された石灰石スラリは吸収
部23でSOx  と反応し既にPHが下がっているた
め、このスラリか冷却部循環タンク5に供給されても反
応性に乏しく、DSS運転やWSS運転を行なって常に
9荷変動するものには好ましくない。
In addition, the limestone slurry supplied to the absorption section circulation tank 7 reacts with SOx in the absorption section 23 and the pH has already decreased, so even if this slurry is supplied to the cooling section circulation tank 5, it has poor reactivity and is not suitable for DSS operation. This is not preferable for those that perform WSS operation and constantly fluctuate by 9 loads.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従沫の欠点を解消しようとするもので、
その目的とするところは、DSS運転ヤWSS運転を行
なっても冷却部のPHを安定させ、良好な酸化性能を得
ることができる湿式排煙脱硫装置を得ようとするもので
ある。
The present invention aims to eliminate such drawbacks,
The purpose is to obtain a wet flue gas desulfurization device that can stabilize the pH of the cooling section and obtain good oxidation performance even when DSS operation or WSS operation is performed.

〔発明の概袋〕[Summary of inventions]

本発明は前述の目的を達成するために、吸収液スラリタ
ンクから冷却部循環タンクへ吸収液スラリを供給する吸
収液スラリ副供給配管を設けたものである。
In order to achieve the above-mentioned object, the present invention is provided with an absorption liquid slurry sub-supply pipe for supplying absorption liquid slurry from an absorption liquid slurry tank to a cooling section circulation tank.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詐明する。 Hereinafter, embodiments of the present invention will be explained using the drawings.

第1図は本発明の実施例に係る湿式排煙脱硫装置の概略
系統図、#+2図は第1図の制御系統図、第3図および
第4図は冷却部における脱硫率とPHの関係、酸化率と
PHの関係を示す特性図である。
Figure 1 is a schematic system diagram of a wet flue gas desulfurization device according to an embodiment of the present invention, Figure #+2 is a control system diagram of Figure 1, and Figures 3 and 4 are the relationship between desulfurization rate and PH in the cooling section. , is a characteristic diagram showing the relationship between oxidation rate and PH.

F1図、第2図において、符号1から29は従来のもの
と同一のものを示す。
In FIG. F1 and FIG. 2, numerals 1 to 29 indicate the same parts as the conventional ones.

30は吸収液スラリタンク10から冷却部循環タンク5
ヘフレッシュな吸収液スラリを供給する吸収液スラリ副
供給配管、31はSO1濃度検出器、32は排ガス流量
検出器、33は冷却部PH検出器、34は冷却部吸収液
スラリ流量調節弁、35は冷却部吸収液スラリ流量検出
器、36は排ガス流量検出信号、37はSOx  Il
k度検出信号、38は乗算器、39は総SOx  34
検出信号、40は関数発生器、41は冷却部数収液スラ
リ流I調節計、42は冷却部PHの設定信号、43は吸
収液スラリ流ダ検出信月、44は電空変換器、45は冷
却部P H調節側、46はPH補正信号、47は加算器
で、t−る。
30 is a connection from the absorption liquid slurry tank 10 to the cooling section circulation tank 5
31 is an SO1 concentration detector, 32 is an exhaust gas flow rate detector, 33 is a cooling unit PH detector, 34 is a cooling unit absorption liquid slurry flow rate control valve, 35 36 is the exhaust gas flow rate detection signal, 37 is the SOx Il
k degree detection signal, 38 is a multiplier, 39 is total SOx 34
Detection signal, 40 is a function generator, 41 is a cooling unit number liquid collection slurry flow I controller, 42 is a cooling unit PH setting signal, 43 is an absorption liquid slurry flow detection signal, 44 is an electro-pneumatic converter, 45 is a On the cooling unit PH adjustment side, 46 is a PH correction signal, and 47 is an adder.

u)1図において、排ガスは脱硫ファン1.煙道2から
脱硫塔下部の冷却部23へ導びかれ、除塵、冷却、一部
脱硫された後、コレクタ250間を通り吸収部24へ導
かれる。ここで排ガス中の亜硫酸ガスは吸収液スラリと
気液接触し、SOx  が吸収除去されさらにデミスタ
28により同伴ミストが除去された後、脱硫塔の出口9
から排出される。
u) In Figure 1, the exhaust gas is passed through the desulfurization fan 1. The gas is guided from the flue 2 to the cooling section 23 at the bottom of the desulfurization tower, where it is dust removed, cooled, and partially desulfurized, and then passed between the collectors 250 and guided to the absorption section 24 . Here, the sulfur dioxide gas in the exhaust gas comes into gas-liquid contact with the absorption liquid slurry, and after the SOx is absorbed and removed and the entrained mist is removed by the demister 28, the exit 9 of the desulfurization tower
is discharged from.

一方吸収剤である吸収液スラリは吸収液スラリタンク1
0から吸収液スラリ供給配管29.吸収数スラリ副供給
配管30により、吸収部循環タンク7及び防塵部循環タ
ンク5に独自に供給される。
On the other hand, the absorbent slurry, which is an absorbent, is in the absorbent slurry tank 1.
0 to absorption liquid slurry supply pipe 29. The absorption number slurry sub-supply pipe 30 independently supplies the absorption part circulation tank 7 and the dust prevention part circulation tank 5.

吸収部循環夕/り7中の吸収液スラリは、吸収部循環ポ
ンプ8により吸収部24に供給され、排ガスと気液接触
しながら塔内を落下し、コレクタ25で捕集され、下降
管を通って吸収部循環タンク7に戻され循環して使用す
る。又吸収液スラリの一部は吸収部循環タンク7への吸
収液スラリ供給量に見合って導管27により、防塵部循
環タンク5に抜出される。冷却部循環タンク5には吸収
液スラリ副供給配管30によりフレッシュな吸収剤スラ
リか供給され、冷却部循環ポンプ4により冷却部23で
スプレされ排ガスと気液接触して、排ガスの冷却、除非
及び一部脱硫が行なわれる。又冷却部循環タンク5に設
けられた空気供給配管26を設愼°シ、空気を吹込むこ
とにより、亜硫酸塩を酸化し石こう20とする。
The absorption liquid slurry in the absorption section circulation tank 7 is supplied to the absorption section 24 by the absorption section circulation pump 8, falls through the tower while coming into gas-liquid contact with the exhaust gas, is collected by the collector 25, and is sent down the downcomer pipe. It is returned to the absorption section circulation tank 7 for circulation and use. Further, a portion of the absorbent slurry is drawn out to the dustproof section circulation tank 5 through the conduit 27 in proportion to the amount of absorbent slurry supplied to the absorption section circulation tank 7. Fresh absorbent slurry is supplied to the cooling section circulation tank 5 by the absorption liquid slurry sub-supply pipe 30, and is sprayed in the cooling section 23 by the cooling section circulation pump 4 and comes into gas-liquid contact with the exhaust gas, thereby cooling, removing and removing the exhaust gas. Partial desulfurization is performed. In addition, the air supply pipe 26 provided in the cooling section circulation tank 5 is installed and air is blown into the tank 5 to oxidize the sulfite and turn it into gypsum 20.

この轡に本発明においては冷却部循環夕/り5へ吸収液
スラリ副供給配管30によってフレッシュな吸収液スラ
リを供給するので、DSS運転やWSS運転、を行なっ
ても冷却部230PHが安定し、浪好な脱硫、酸化性能
を得ることができる。
In this case, in the present invention, fresh absorbent slurry is supplied to the cooling section circulation tank 5 through the absorbent slurry sub-supply pipe 30, so that even if DSS operation or WSS operation is performed, the cooling section 230PH remains stable. Good desulfurization and oxidation performance can be obtained.

なお、冷却部23における脱蓼率とPH,酸化率とPH
の関係を第3図およびff4図を用いて説明する。
In addition, the unloading rate and PH in the cooling section 23, the oxidation rate and PH
The relationship will be explained using FIG. 3 and ff4.

第3図および第4賭に示す様に冷却部23の冷却部循環
タンク5内のPHと脱硫率、酸化率とPHの関係は相反
する関係があるために、高い脱硫亀酸化率で運転するた
めには冷却部のPHを5.0〜55付近で運転すること
が必!になってくる。
As shown in FIGS. 3 and 4, the relationship between the PH in the cooling section circulation tank 5 of the cooling section 23 and the desulfurization rate, and the oxidation rate and PH are contradictory, so the operation is performed at a high desulfurization rate and oxidation rate. In order to do this, it is necessary to operate the cooling part at a pH of around 5.0 to 55! It becomes.

しかしながら、W、6図の従来のものにおいては吸収液
スラリの供給は、吸収部循環タンク7、導管27.冷却
部循環タンク5へと供給されるために、時間遅れがあり
、吸収部24ですでにSOxと反応しているためにPH
が下り、反応性に乏しいのでPHを5.0〜5.5では
安定した運転ができな−〜。
However, in the conventional system shown in Figures W and 6, the absorption liquid slurry is supplied to the absorption section circulation tank 7, conduit 27. There is a time delay because it is supplied to the cooling section circulation tank 5, and the PH has already reacted with SOx in the absorption section 24.
It is not possible to operate stably at a pH of 5.0 to 5.5 because the pH is low and the reactivity is poor.

そこで、本発明においては吸収部24とは別に冷却部2
3ヘフレッシュな吸収液スラリを吸収液スラリ副供給配
管30から供給し、PHを5.0〜5.5に安定させ、
高い脱硫率と酸化率を得るようにしたのである。
Therefore, in the present invention, a cooling section 2 is provided separately from the absorption section 24.
3. Fresh absorbent slurry is supplied from the absorbent slurry sub-supply pipe 30, and the pH is stabilized at 5.0 to 5.5.
This resulted in high desulfurization and oxidation rates.

次に本発明の制御系統を第2図について説明する排ガス
流量検出器32と入口SO,a度検出器31からの排ガ
ス流量検出信号36とSOx  m度検出信号37を乗
算器38により乗算して、総SOx量検出信号39を求
め、この総SOx  f#、検出信号39を関数発生器
40により総SOx  i検出信号39に対する冷却部
吸収液スラリ流量調節計41のP Hの設定信号42と
し、冷却部吸収液スラリ流量検出器35からの吸収液ス
ラリ流量検出信号43と比較し、比例積分動作させた後
、電空変換器44により空気信号に変換し吸収液スラリ
副供給配管30の冷却部吸収液スラリ流′JK調節弁3
4を操作する。
Next, the control system of the present invention will be explained with reference to FIG. , the total SOx amount detection signal 39 is determined, and this total SOx f#, the detection signal 39 is set as the P H setting signal 42 of the cooling section absorption liquid slurry flow rate controller 41 with respect to the total SOx i detection signal 39 by the function generator 40, It is compared with the absorption liquid slurry flow rate detection signal 43 from the cooling part absorption liquid slurry flow rate detector 35, and after a proportional integral operation is performed, it is converted into an air signal by the electro-pneumatic converter 44, and the signal is sent to the cooling part of the absorption liquid slurry sub-supply piping 30. Absorbent slurry flow 'JK control valve 3
Operate 4.

尚以上の回路により各負荷で安定したPHが得られる轡
吸収液スラリ流量が供給されるが、負荷変動等の外乱が
入った場合、一時的VCP)Tが変動する事が考えらね
るため、冷却部循環タンクPH検出器33からの実測信
号を冷却部循環PH調節計45での設定信号と比較し、
比例積分動作させた後、この信号を補正信号46として
加算器47で加算し、冷却部吸収液スラリ供給流量の設
定信号42を修正する。つまり負荷−宇時等はPHの変
動はほとんど無く安定しているため、加算器47への補
正信号46はゼロとなり関数発生器40からの出力信号
がそのまま設定信号42となる。一方、9荷上昇時又は
下降時等には冷却部循環タンク5のPHが外乱により変
動する恐れがある。その場合には加算器47ヘプラス又
はマイナスの補正信徊46が入力され、設定信号42が
修正される。
Although the above circuit supplies a flow rate of the absorption liquid slurry that provides a stable pH at each load, if a disturbance such as a load change occurs, it is unlikely that VCP)T will fluctuate temporarily. The actual measurement signal from the cooling section circulation tank PH detector 33 is compared with the setting signal of the cooling section circulation PH controller 45,
After carrying out the proportional integral operation, this signal is added as a correction signal 46 by an adder 47 to correct the setting signal 42 for the supply flow rate of the cooling section absorption liquid slurry. In other words, since the load-to-time etc. are stable with almost no PH fluctuation, the correction signal 46 to the adder 47 becomes zero, and the output signal from the function generator 40 becomes the setting signal 42 as it is. On the other hand, when the load is being lifted or lowered, there is a possibility that the pH of the cooling section circulation tank 5 may fluctuate due to disturbances. In that case, a positive or negative correction signal 46 is input to the adder 47, and the setting signal 42 is corrected.

〔発明の効果〕〔Effect of the invention〕

本発明は吸収液スラリタンクから冷却部循環タンクへ吸
収液スラリを供給する吸収液スラリ副供給配管を設けた
ので、DSS運転やWSS運転を行なっても冷却部のP
Hを安定させることができ、高い脱硫率と酸化率で脱硫
することができる。
Since the present invention is provided with an absorption liquid slurry sub-supply pipe that supplies the absorption liquid slurry from the absorption liquid slurry tank to the cooling section circulation tank, even when DSS operation or WSS operation is performed, the cooling section P
H can be stabilized and desulfurization can be performed at high desulfurization and oxidation rates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る湿式排煙脱硫装置の概略
系統図、第2図は第1図の制御系統図、13図および第
4図は冷却部における脱硫率とPH。 酸化率とP)Tの関係を示す特性図、第5図および第′
6図は従来の湿式排煙脱硫装置の概略系統図である。 5・・・・・・冷却部循環タンク、7・・・・・・吸収
部循環タンク、lO・・・・・・吸収液スラリタンク、
23・・・・・・冷却部、24・・・・・・吸収部、3
0吸収液スラリ副供給配管。 第1図 第2図 第3図 第4図 −PH(−) 第5図 −【二仁
FIG. 1 is a schematic system diagram of a wet flue gas desulfurization apparatus according to an embodiment of the present invention, FIG. 2 is a control system diagram of FIG. 1, and FIGS. 13 and 4 are desulfurization rates and PH in the cooling section. Characteristic diagrams showing the relationship between oxidation rate and P)T, Figure 5 and '
FIG. 6 is a schematic system diagram of a conventional wet flue gas desulfurization device. 5... Cooling section circulation tank, 7... Absorption section circulation tank, lO... Absorption liquid slurry tank,
23... Cooling section, 24... Absorption section, 3
0 absorption liquid slurry sub-supply piping. Figure 1 Figure 2 Figure 3 Figure 4 - PH(-) Figure 5 - [Two people

Claims (1)

【特許請求の範囲】[Claims] 排ガスを吸収液スラリで冷却する冷却部と、この吸収液
スラリを貯蔵する冷却部循環タンクと、排ガス中の硫黄
酸化物を吸収液スラリで吸収する吸収部と、この吸収液
スラリを貯蔵する吸収部循環タンクとを備え、吸収液ス
ラリタンクから吸収部循環タンクへ吸収液スラリを供給
する湿式排煙脱硫装置において、前記吸収液スラリタン
クから冷却部循環タンクへ吸収液スラリを供給する吸収
液スラリ副供給配管を設けたことを特徴とする湿式排煙
脱硫装置。
A cooling section that cools exhaust gas with an absorption liquid slurry, a cooling section circulation tank that stores this absorption liquid slurry, an absorption section that absorbs sulfur oxides in the exhaust gas with an absorption liquid slurry, and an absorption section that stores this absorption liquid slurry. In the wet flue gas desulfurization equipment which supplies absorbent slurry from the absorbent slurry tank to the absorption part circulation tank, the absorbent slurry supplies the absorbent slurry from the absorbent slurry tank to the cooling part circulation tank. A wet flue gas desulfurization device characterized by having a sub-supply piping.
JP60214592A 1985-09-30 1985-09-30 Wet type waste gas desulfurization apparatus Pending JPS6274436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214592A JPS6274436A (en) 1985-09-30 1985-09-30 Wet type waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214592A JPS6274436A (en) 1985-09-30 1985-09-30 Wet type waste gas desulfurization apparatus

Publications (1)

Publication Number Publication Date
JPS6274436A true JPS6274436A (en) 1987-04-06

Family

ID=16658267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214592A Pending JPS6274436A (en) 1985-09-30 1985-09-30 Wet type waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS6274436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095699A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Method for treating unreacted slurry in flue gas desulfurizer
JP2009095696A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Bypass operation method of oxidation tower in flue gas desulfurizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095699A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Method for treating unreacted slurry in flue gas desulfurizer
JP2009095696A (en) * 2007-10-15 2009-05-07 Chugoku Electric Power Co Inc:The Bypass operation method of oxidation tower in flue gas desulfurizer

Similar Documents

Publication Publication Date Title
EP0487102B1 (en) Recycling system for the recovery and utilization of CO2 gas
JPS60172335A (en) Wet type stack gas desulfurization apparatus
US4853194A (en) Method for treating exhaust gas
AU2010325774A1 (en) Method and system for condensing water vapour from a carbon dioxide rich flue gas
JPWO2004023040A1 (en) Smoke treatment system
JPH0352097Y2 (en)
JP3675986B2 (en) Wet exhaust gas desulfurization apparatus and method
JPS6274436A (en) Wet type waste gas desulfurization apparatus
JP2933664B2 (en) Absorbent PH control unit for wet flue gas desulfurization unit
JP2883365B2 (en) Control device for wet flue gas desulfurization unit
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPH08281056A (en) Wet type flue gas desulfurizer
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JPH06210126A (en) Method and device for treating waste gas
JPH0521006B2 (en)
JPH0427530Y2 (en)
JPH01180219A (en) Absorbing liquid slurry control device for wet type flue gas desulfurization apparatus
JPS62102820A (en) Wet type stack gas desulfurizing apparatus
JP3370165B2 (en) Exhaust gas treatment method
JPS63294928A (en) Device for controlling wet exhaust gas desulfurizer
JPS59160519A (en) Wet type waste gas desulfurizer
JP2547803B2 (en) Wet flue gas desulfurization equipment
JPH0227871Y2 (en)
JPH0536086B2 (en)
JP2000176242A (en) Wet flue gas desulfurization process and equipment therefor