JPS5922365A - Polycrystalline thin-film transistor - Google Patents

Polycrystalline thin-film transistor

Info

Publication number
JPS5922365A
JPS5922365A JP13032482A JP13032482A JPS5922365A JP S5922365 A JPS5922365 A JP S5922365A JP 13032482 A JP13032482 A JP 13032482A JP 13032482 A JP13032482 A JP 13032482A JP S5922365 A JPS5922365 A JP S5922365A
Authority
JP
Japan
Prior art keywords
film
substrate
grain size
length
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13032482A
Other languages
Japanese (ja)
Inventor
Makoto Matsui
誠 松井
Yasuhiro Shiraki
靖寛 白木
Eiichi Maruyama
丸山 「え」一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13032482A priority Critical patent/JPS5922365A/en
Priority to EP19820304352 priority patent/EP0073603B1/en
Priority to DE8282304352T priority patent/DE3277101D1/en
Publication of JPS5922365A publication Critical patent/JPS5922365A/en
Pending legal-status Critical Current

Links

Classifications

    • H01L29/78
    • H01L29/78618

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain the thin-film transistor of uniform characteristics by specifying the length of a region, in which carriers are made to travel, and mean crystalline grain size in a semiconductor thin-film. CONSTITUTION:The surface is coated with an SiO2 film 3 in the thickness of 5,000Angstrom through a vapor growth method, and windows for source and drain regions are bored to the film 3. N<+> layers 4 are formed in the source and drain regions through implantation in the quantity of dosage of 1X10<16>/mm.<2> of P<+> ions of 100keV energy and heat treatment for 30min at 600 deg.C in a N2 atmosphere. An oxide film 5 for a field is left and SiO2 is removed, and the surface is coated with a SiO2 film 6 for a gate oxide film in the thickness of 7,500Angstrom through the vapor growth method again. Holes for contacts with electrodes are bored through a photoetching process, Al is evaporated to the whole surface and Al is processed through the photoetching process, and the source electrode 7, the drain electrode 8 and the gate electrode 9 are formed. The thin-film MOS field-effect transistor in which a channel of 20mum length is formed to the surface layer of a polycrystalline silicon film is shaped through heat treatment for 30min at 400 deg.C in a H2 atmosphere.

Description

【発明の詳細な説明】 本発明は、絶縁性基体上に形成された多結晶半導体薄膜
を素材として成るトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transistor made of a polycrystalline semiconductor thin film formed on an insulating substrate.

本発明のトランジスタは、例えは液晶や工ンクトロルミ
ネツセンス等を用いた平面表示装置の表示用基板に一体
化し駆動用に用いる半導体装置として利用して有用なも
のである。
The transistor of the present invention is useful, for example, when it is integrated into a display substrate of a flat display device using a liquid crystal, an introluminescent device, or the like, and utilized as a semiconductor device used for driving.

従来、液晶を用いた平面表示装置としては、例えば、単
結晶Si基板上にMO8’)ランジスタの二次元スイッ
チング・マトリックスと周辺走査回路とを一体化した集
積回路として形成し、この単結晶Si集積回路素子と対
電極との間に封入された液晶を、前記単結晶81集積回
路素子によって駆動する方式が採用されている。この場
付、基板が単結晶でおるので、作製し得る基板の大きさ
に限度があるために、作製し得る液晶平面表示装置の画
面の大きさに限界がある。例えば、現在のところ作製し
うるSiウェーハーの直径は最大5インチであるから、
5型以上のブラウン看に相描する大きさの画面は作製で
きない。大面積化ができないことは、画像装置としては
大きな欠点である。
Conventionally, a flat display device using a liquid crystal is formed as an integrated circuit that integrates a two-dimensional switching matrix of MO8') transistors and a peripheral scanning circuit on a single-crystal Si substrate. A method is adopted in which a liquid crystal sealed between a circuit element and a counter electrode is driven by the single crystal 81 integrated circuit element. In this case, since the substrate is made of a single crystal, there is a limit to the size of the substrate that can be manufactured, and therefore there is a limit to the size of the screen of the liquid crystal flat display device that can be manufactured. For example, the maximum diameter of Si wafers that can be produced at present is 5 inches;
It is not possible to create a screen large enough to draw on a 5-inch or larger brown monitor. The inability to increase the area is a major drawback as an imaging device.

仁の欠点をなくすために、非晶質基板上に非晶質半導体
膜もしくは多結晶半導体膜を形成し、これら、非晶質半
導体もしくは多結晶半導体を素材として上記のような集
積回路素子を形成し、平面表示装置の駆動に用いる方法
も提案されている。
In order to eliminate the disadvantages of nitride, an amorphous semiconductor film or a polycrystalline semiconductor film is formed on an amorphous substrate, and the above-mentioned integrated circuit elements are formed using these amorphous semiconductors or polycrystalline semiconductors as materials. However, a method for driving a flat display device has also been proposed.

この場合には、非晶質基板上に真空蒸着等の方法で形成
された半導体薄膜を用いるのであるから、直径5インチ
を越えるような大面積化は可能であり、平面光示装置の
大面積化が可能となる。
In this case, since a semiconductor thin film formed by a method such as vacuum evaporation on an amorphous substrate is used, it is possible to create a large area with a diameter of more than 5 inches, and it is possible to make a large area of a flat optical display device. It becomes possible to

しかし、非晶質半導体膜を用いた場合には、非晶質半導
体薄膜のキャリア移動度が著しく低いために、非晶質半
導体薄膜を素材として形成したトランジスタの特性が悪
いという欠点がある。一方、多結晶半導体薄膜を用いた
場合には、キャリア移動度は、表示素子として使える程
度には十分高いが、結晶粒径と素子の電流通路(チャン
ネル)長が略々同じ程度の場合には、結晶粒界がイf在
するために、作製しfc累子毎の特性にバラツキが生じ
るという欠点がおる。すなわち、ある素子の電流通路は
結晶粒界を横切るが、他の素子の電流通路は結晶粒界を
横切らないということが起こり、各素子によって、キャ
リアの伝導が結晶粒界の影響を受けたり、受けなかった
りする。したがって、各素子によって、トランジスタ特
性、例えば伝達コンダクタンスが異なる結果となる。
However, when an amorphous semiconductor film is used, the carrier mobility of the amorphous semiconductor thin film is extremely low, so there is a drawback that the characteristics of a transistor formed using the amorphous semiconductor thin film as a material are poor. On the other hand, when using a polycrystalline semiconductor thin film, the carrier mobility is high enough to be used as a display element, but when the crystal grain size and the current path (channel) length of the element are approximately the same, However, due to the presence of grain boundaries, there is a drawback that the characteristics of each fc crystal vary. In other words, a current path in one element may cross a grain boundary, but a current path in another element may not cross a grain boundary, and carrier conduction may be affected by the grain boundary depending on each element. I may not receive it. Therefore, transistor characteristics such as transfer conductance differ depending on each element.

本発明の目的は、上記じた従来技術の欠点をなくシ、ト
ランジスタ特性の優れた、しかも一様な特性の薄膜トラ
ンジスタを提供しようとするものである。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a thin film transistor with excellent transistor characteristics and uniform characteristics.

本願発明は所定基板上に多結晶シリコン薄膜が形成され
、該多結晶半導体薄膜にキャリアを走行せしめるだめの
一対の電極領域と、前記キヤIJアを制御するための手
段とを少なくとも有する多結晶薄膜トランジスタに心い
て、前記のキャリアを走行せしめる領域の長さが実質的
なキャリアの走行方向における平均の結晶粒径の10倍
以去を有し、旦夕なくと5キヤリアを走行せしめる領域
の平均結晶粒径が150nm以上なることを特徴とする
多結晶薄膜トランジスタである。そし七、基板の熱膨張
係継と当該多結晶半導体薄膜の熱膨張係数の比を0.3
〜3.0の範囲に設定するのが好ましい。
The present invention provides a polycrystalline thin film transistor in which a polycrystalline silicon thin film is formed on a predetermined substrate, and has at least a pair of electrode regions for causing carriers to travel through the polycrystalline semiconductor thin film, and means for controlling the carrier IJ. With this in mind, the length of the region in which the carriers are made to travel is at least 10 times the average crystal grain size in the substantial carrier travel direction, and the average crystal grain in the region in which the carriers are made to travel at least 5 times. This is a polycrystalline thin film transistor characterized by having a diameter of 150 nm or more. Seventh, the ratio of the thermal expansion coefficient of the substrate to the thermal expansion coefficient of the polycrystalline semiconductor thin film is 0.3.
It is preferable to set it in the range of ~3.0.

本発明は前述したように所定の基板上に多結晶半導体膜
が形成され、この多結晶半導体膜を用いて半導体装置を
形成する場合、少なくともキャ)ノアが走行する領域の
長さが結晶粒径(結晶粒が扁平な形状の場合は長径)の
10倍以上となす点に特徴がある。なお、本明細誓にお
いて結晶粒径は”平均の結晶粒径″を意味するものとす
る。即ちキャリアの走行中に遭遇する粒界の数に素子特
性が依存するわけでめる。キャリアの走行する領域に十
分多数の結晶粒が存在するためキ^・リアは多数の結晶
粒界の影響を受けるので、多数の半導体装置を製造した
場合、その特性の一様性は良好なものとなる。この特性
はらつきの点からはキャリアの走行する領域の長さが結
晶粒径の50倍以上がよシ好ましく、特性のばらつきを
よシ良く抑市1」することができる。
As described above, in the present invention, a polycrystalline semiconductor film is formed on a predetermined substrate, and when a semiconductor device is formed using this polycrystalline semiconductor film, at least the length of the region where the capacitor travels is determined by the crystal grain size. (If the crystal grain has a flat shape, the major axis) is 10 times or more. Note that in this specification, the crystal grain size means "average crystal grain size." In other words, the device characteristics depend on the number of grain boundaries encountered during carrier travel. Since there are a sufficiently large number of crystal grains in the region where carriers travel, the Q and R are affected by a large number of crystal grain boundaries, so when a large number of semiconductor devices are manufactured, the uniformity of their characteristics is good. becomes. From the viewpoint of this characteristic fluctuation, it is preferable that the length of the region in which the carriers travel is 50 times or more the crystal grain size, and the characteristic fluctuation can be suppressed well.

しかし、一方、各結晶粒径が余シ小さい場合、半導体材
料のものの特性(たとえば、キャ1ノアの移動度)が劣
化するので、少なくとも150nm以上あることがより
好ましい。
However, on the other hand, if each crystal grain size is too small, the characteristics of the semiconductor material (for example, carrier mobility) will deteriorate, so it is more preferable that the crystal grain size is at least 150 nm or more.

勿論、これ以下の結晶粒径でおっても、素子特性のばら
つきを低減化踵素子の一様化をはカニるという点におい
て、上記のキャリアの走行領域の長さと結晶粒径の関係
が有用なことはいうまでもない。
Of course, even if the crystal grain size is smaller than this, the relationship between the length of the carrier running area and the crystal grain size described above is useful in reducing variations in device characteristics and making the heel element uniform. Needless to say.

又、平均粒径として300nm程度以下の半導体膜とす
ることは製造上の容易さから極めて有用である。即ち後
述するような超尚真空中での蒸看法のみによって十分に
実現出来且制御し倚る力)らである。
Further, it is extremely useful to form a semiconductor film having an average grain size of about 300 nm or less from the viewpoint of ease of manufacturing. That is, it can be sufficiently realized and controlled only by the steaming method in an ultra-high vacuum as described later.

半導体装置の回路設計上、キャリアの定行領域の長さく
たとえば電界効果トランジスタ、の場合、チャネル長に
該当する)が定まっている場合、多結晶粒径を調節する
。一方、多結晶薄膜形成条件上の制約から結晶粒径の大
きさが制限を受ける場合、これに合わせて素子設計およ
び回路設計を行なう必要がある。
In the circuit design of a semiconductor device, when the length of the carrier regular region (for example, in the case of a field effect transistor, this corresponds to the channel length) is determined, the polycrystalline grain size is adjusted. On the other hand, if the crystal grain size is limited due to constraints on the conditions for forming a polycrystalline thin film, it is necessary to design elements and circuits accordingly.

この様に多結晶半導体の平均粒径、即ち大部分の結晶粒
径が150nm以上なる多結晶を)+4いて、且キャリ
アを走行せしめる領域の長さが実質的なキャリアの走行
方向における平均の結晶粒径の10倍以上となる様に半
導体装Itを構成することが肝要である。
In this way, the average grain size of a polycrystalline semiconductor, i.e., a polycrystal in which most of the crystal grain sizes are 150 nm or more, is +4 +4, and the length of the region where carriers travel is substantially the average crystal grain size in the carrier travel direction. It is important to configure the semiconductor device It so that the particle size is 10 times or more larger than the grain size.

キャリアの走行領域の長さの上限は設H1上はないが実
用的には100μm以下であろう。また、粒径の下限も
特に設定し難いが実用的には100Å以上でキャリアの
移動度を確保し得る。従って、キャリアの走行領域の長
さと粒径との比は実用的に10000倍程度が上限とな
ろう。
Although there is no upper limit to the length of the carrier travel area in terms of design H1, it is probably 100 μm or less in practice. Further, although it is difficult to set a lower limit of the particle size, carrier mobility can be practically ensured at 100 Å or more. Therefore, the practical upper limit of the ratio between the length of the carrier traveling area and the particle size would be about 10,000 times.

半導体層の厚みとしては、チャンネルが形成されればよ
いので、最小100 nm以上あればよい。
As long as a channel is formed, the thickness of the semiconductor layer may be at least 100 nm or more.

更に500nm以上がよシ好ましい。Furthermore, a thickness of 500 nm or more is more preferable.

基板としては、ガラス基板をはじめセラミックス基板等
非晶質もしくは多結晶基板が有用である。
As the substrate, amorphous or polycrystalline substrates such as glass substrates and ceramic substrates are useful.

ひとつには価格の点からであシ、特にガラス基板は安価
である。更に基板として透光性のものを用いることが出
来る。
One reason is the cost, especially glass substrates. Furthermore, a translucent substrate can be used as the substrate.

更に基板の熱膨張係数(Csub)と形成する半導体材
料の熱膨張係数(Csemi )の比(Csub/Cs
emi)が0.3〜3.0の範囲に設定することがばら
つきのない半導体装置を実現するために肝要である。物
理的な理由についての詳細は不明であるが、基板と半導
体層の熱膨張係数の差に基づく、半導体層へのひずみの
かかり方に基因しているものと推定している。
Furthermore, the ratio of the thermal expansion coefficient (Csub) of the substrate to the thermal expansion coefficient (Csemi) of the semiconductor material to be formed (Csub/Cs
It is important to set the emi) in the range of 0.3 to 3.0 in order to realize a semiconductor device with no variations. Although the details of the physical reason are unknown, it is presumed that this is due to the way strain is applied to the semiconductor layer based on the difference in thermal expansion coefficient between the substrate and the semiconductor layer.

なお、好ましい多結晶半導体膜の蒸涜方法は次の通りで
ある。
Note that a preferred method for sterilizing a polycrystalline semiconductor film is as follows.

超高真空を達成5J能な真空蒸着装置は通常の超高真空
装置を持つ蒸着装置で良い。
The vacuum evaporation apparatus capable of achieving 5 J of ultra-high vacuum may be a evaporation apparatus having a normal ultra-high vacuum apparatus.

蒸着中の真空度はI X 10”l’orr未滴の高真
空となす。、更に特に蒸着中の残留気体中の02は特性
に悪影響を及はすので、酸素分圧はlXl0−’Tor
r未満となす。
The degree of vacuum during evaporation is set to a high vacuum of 1 x 10"l'orr. Furthermore, since 02 in the residual gas during evaporation has a negative effect on the characteristics, the oxygen partial pressure is set to 1 x 10"l'torr.
less than r.

蒸着速度はi、ooo人/hourないし10,000
人/hourを用いる。
Deposition rate is i,ooo people/hour to 10,000 people/hour
Use 人/hour.

粒径の制御は蒸着膜の膜厚、基板温度、蒸着速度、およ
び真空度を制御することで一応の目的を達し得る。第1
図は基板源一度は60011:’、蒸着速度は5000
人/hour、蒸着中の真空度5x1o−’’l’or
rの条件下でのシリコン蒸層膜の膜厚と平均の結晶粒径
の関係を示す図である。膜厚は水晶振動子を用いて測定
した。
The purpose of controlling the particle size can be achieved to some extent by controlling the thickness of the deposited film, the substrate temperature, the deposition rate, and the degree of vacuum. 1st
The figure shows that the substrate source is 60011:' and the deposition rate is 5000.
person/hour, degree of vacuum during deposition 5x1o-''l'or
FIG. 3 is a diagram showing the relationship between the film thickness of a silicon vapor layer film and the average crystal grain size under conditions of r. The film thickness was measured using a crystal oscillator.

又、場合によってはレーザ・アンニール等の手段によっ
て粒径を制御しても良い。
Further, depending on the case, the particle size may be controlled by means such as laser annealing.

多結晶シリコン膜を加工して半導体装置を作製するため
には、数段階の工程を経なければならないが、これらの
工程における熱処理温度を、超硬質ガラスの軟化点であ
る820Cよシ低く押さえることによって本発明の利点
を十分に生かすことができる。軟化点の低いガラス基板
を用いる場合には、更に低く、例えば550C以下に押
さえることも可能である。以下では、トランジスタの例
として、低軟化点のガラス基板上にMO8型電界効果ト
ランジスタを形成する場合を例にとって説明する。
In order to fabricate a semiconductor device by processing a polycrystalline silicon film, it is necessary to go through several steps, but the heat treatment temperature in these steps must be kept below 820C, which is the softening point of ultra-hard glass. Accordingly, the advantages of the present invention can be fully utilized. When using a glass substrate with a low softening point, it is possible to keep the softening point even lower, for example, 550C or less. Below, as an example of a transistor, a case will be described in which an MO8 field effect transistor is formed on a glass substrate with a low softening point.

ゲート酸化膜を得るためには、一般には、シリコン基板
の熱酸化法によっているが、熱酸化の場合1oooc以
上の高温を必要とするので、今の目的には使えない。こ
の例では、300tl;以上500C以下の温度でSi
H4と02を反応させ、もしくは400C以上800C
以下の温度で5ihitとNO2を反応させて、5iQ
z膜を気相成長させ、この気相成長した3iQ2膜をゲ
ート酸化膜として用いる。
In general, a gate oxide film is obtained by thermal oxidation of a silicon substrate, but thermal oxidation requires a high temperature of 100°C or more, so it cannot be used for the present purpose. In this example, Si
React H4 and 02, or 400C or higher and 800C
By reacting 5ihit and NO2 at the following temperature, 5iQ
A z film is grown in a vapor phase, and the 3iQ2 film grown in a vapor phase is used as a gate oxide film.

また、従来は、ンース領域、ならびにドレイン領域を形
成するためには、熱拡散によってp+層やn 4’層を
形成する方法が一般的に行なわれている。しかし、この
方法は、1150C程度の熱処理を必要とするので、低
軟化点を有するガラス基板上にトランジスタを形成する
という今の目的には使えない。本発明では、熱拡散に代
って、イオン打ち込み法によって94層、もしくは、n
+層を形成する方法を用いる。イオン打ち込み後、電気
的に活性化するために熱処理するが、この際、熱処理温
度は、使用する基板の軟化点よp低く押さえる必要がお
る。そこで、例えばBF2+のような55(I’程度の
低温の熱処理で高い活性化のできるイオンを打ち込むと
か、或いは、例えばB1イオン等を打ち込んだらと、リ
バース・アニーリング効果(逆焼鈍効果)が起こる直前
の500C〜600C程度の温度で熱処理を行なう等の
方法を採用する。p+イオン、As+イオン等の場合、
リバース・アニーリング効果はB“イオンの場合はど顕
著ではないが、500c〜600c程度の熱処理で十分
活性化できる。従って、50oc〜600C程度の低温
工程で91層、n゛層のいずれをも形成することができ
る。超硬質ガラスのように軟化点温度が800cよシも
高い基板を用いる場合には、800cの温度で熱処理し
てもよいことは勿論である。
Furthermore, conventionally, in order to form a source region and a drain region, a method of forming a p+ layer or an n4' layer by thermal diffusion has been generally used. However, since this method requires heat treatment at about 1150C, it cannot be used for the current purpose of forming a transistor on a glass substrate having a low softening point. In the present invention, instead of thermal diffusion, 94 layers or n
+ Use a method to form a layer. After ion implantation, heat treatment is performed to electrically activate the material, but at this time, the heat treatment temperature must be kept below the softening point of the substrate used. Therefore, for example, if we implant an ion such as BF2+ that can be highly activated by heat treatment at a low temperature of about 55 (I'), or if we implant B1 ion, etc., immediately before the reverse annealing effect occurs. A method such as heat treatment at a temperature of about 500C to 600C is adopted.In the case of p+ ions, As+ ions, etc.
Although the reverse annealing effect is not as pronounced in the case of B'' ions, it can be sufficiently activated by heat treatment at about 500°C to 600°C. Therefore, both 91 layers and n layers can be formed in a low temperature process of about 50°C to 600°C. When using a substrate having a softening point higher than 800C, such as ultra-hard glass, it is of course possible to perform heat treatment at a temperature of 800C.

以上の如き製造方法を用いることによって、大面積もし
くは長尺化が可能で、かつキャリアの易動度が1錆2/
v−m以上の半導体材料を得ることが出来る。
By using the above manufacturing method, it is possible to make a large area or a long length, and the mobility of the carrier is 1 rust 2 /
It is possible to obtain a semiconductor material having a value of v-m or more.

以下、本発明を実施例を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 ガラス基板上に多結晶シリコン膜を形成し、この多結晶
シリコン膜の表面層にチャンネルを設けた構造のn−チ
ャンネルMO8i界効果トランジスタを作製する場合の
実施例を、工程説明断面図を用いて説明する。
Example A cross-sectional view for explaining the process is shown below for an example of fabricating an n-channel MO8i field effect transistor with a structure in which a polycrystalline silicon film is formed on a glass substrate and a channel is provided in the surface layer of this polycrystalline silicon film. I will explain using

まず、基板を超高真空達成可能な真空蒸層装置内に装着
する。装置は一般のものでよい。
First, the substrate is mounted in a vacuum deposition apparatus capable of achieving an ultra-high vacuum. The equipment may be of general type.

ガラス基板(ボロシリケート・ガ5.xboro−8i
licated glass H熱膨張率=32XlO
−/C)1上に、基板温度600 Q、蒸着中の真空度
8 X 10−”forr 、蒸着速度5000人/h
 o u rの条件で真空蒸着することにょシ、シリコ
ン膜2を1.5μmの厚みに被着する(第2図(a))
。形成されたシリコン膜2は、わずかに硼素がドープさ
れたp型の多結晶シリコンであシ、結晶粒径は約200
0人、キャリア移動度は約2副2/V−mである。この
シリコン膜の熱膨張係数は約25×10−7/C(30
0’K )である。
Glass substrate (borosilicate glass 5.xboro-8i
licated glass H thermal expansion coefficient = 32XlO
-/C) 1, substrate temperature 600 Q, vacuum degree during evaporation 8 x 10-"forr, evaporation rate 5000 people/h
A silicon film 2 is deposited to a thickness of 1.5 μm by vacuum deposition under the conditions of o u r (Fig. 2 (a)).
. The formed silicon film 2 is made of p-type polycrystalline silicon slightly doped with boron, and the crystal grain size is approximately 200 mm.
0 person, carrier mobility is approximately 2 vice 2/V-m. The thermal expansion coefficient of this silicon film is approximately 25×10-7/C (30
0'K).

次に、基板温度400cで気相成長法にょシf3i0z
膜3を500OAの厚みに被着する(第2図(b))。
Next, the vapor phase growth method was performed at a substrate temperature of 400c.
A film 3 is deposited to a thickness of 500 OA (FIG. 2(b)).

次に第2図(C)のように、このsi□z膜にソース、
オよびドレイン領域の窓あけを行なう。ソース領域とド
レイン領域の間隔は20μmとなす。
Next, as shown in Figure 2 (C), a source,
Open windows in the air and drain areas. The distance between the source region and the drain region is 20 μm.

従ってチャネル長は20μmとなる。次に100ke■
のエネルギーのP1イオンをI X 1016/lyn
”のドーズ量で打ち込み、N、雰囲気中で600cで3
0分間熱処理することによって、ソースおよびドレイン
領域にn+層4を形成する(第2図(d))。次に、第
2図(e)のようにフィールド用酸化膜5を残して5i
Qzを除去する。再び気相成長法によシゲート酸化膜用
に5iQz膜6を7500人の厚みに被着する(第2図
(f))。更に、ホトエツチング工程によシミ極接触用
孔を、第2図(g)のようにあけ、全面にAtを蒸着し
たあと、ホトエツチング工程によ、!7A7を加工して
、ソース電極7、ドレイン電極8、ゲート電極9を形成
する(第2図(h))。このあとH2雰囲気中で400
030分間の熱処理を行なう。以上の工程によシ、多結
晶シリコン膜の表面層に長さ20μmのチャンネルが設
けられた構造の、薄膜MO8電界効果トランジスタが作
製された。この半導体装置は、トランジスタとして良好
で安定な特性を示す。
Therefore, the channel length is 20 μm. Next 100ke■
The P1 ion with energy is I x 1016/lyn
3 at 600c in N atmosphere.
By performing heat treatment for 0 minutes, an n+ layer 4 is formed in the source and drain regions (FIG. 2(d)). Next, as shown in FIG. 2(e), the field oxide film 5 is left and 5i
Remove Qz. A 5iQz film 6 for a siggate oxide film is deposited again to a thickness of 7500 mm by vapor phase growth (FIG. 2(f)). Furthermore, a hole for contacting the stain electrode is made by a photo-etching process as shown in FIG. 2(g), and after At is deposited on the entire surface, a photo-etching process is carried out! 7A7 is processed to form a source electrode 7, a drain electrode 8, and a gate electrode 9 (FIG. 2(h)). After this, 400 in H2 atmosphere
Heat treatment is performed for 0.30 minutes. Through the above steps, a thin film MO8 field effect transistor having a structure in which a channel with a length of 20 μm was provided in the surface layer of a polycrystalline silicon film was manufactured. This semiconductor device exhibits good and stable characteristics as a transistor.

第3図に試作したMO8F’ETの室温にお\ける特性
例を示す。ゲート電圧VGをパラメータとするドレイン
電流より対ドレイン電圧Vns特性である。
Figure 3 shows an example of the characteristics of the prototype MO8F'ET at room temperature. This is a characteristic with respect to drain voltage Vns compared to drain current with gate voltage VG as a parameter.

この例においてチャネル長20μmに対して、結晶粒径
は略2000人である。従って、キャリアの走行方向に
十分多数の結晶粒が存在し、キャリアは多数の結晶粒界
の影響を受け、その影響による効果は多くの素子を製造
した場合、特性は一様化される。
In this example, for a channel length of 20 μm, the crystal grain size is approximately 2000 μm. Therefore, a sufficiently large number of crystal grains exist in the traveling direction of the carrier, the carrier is influenced by a large number of crystal grain boundaries, and the effects of this influence make the characteristics uniform when many devices are manufactured.

第4図に種々の平均粒径のシリコン膜を形成し、上述と
同様の半導体装置を娘遺し、そのトランスコンダクタン
ス(trHnsconduct2nce)を比較した結
果を示す。値は粒径150nmの代表値を1として相対
値として示した。
FIG. 4 shows the results of comparing the transconductance (trHnsconduct2nce) of semiconductor devices similar to those described above formed by forming silicon films with various average grain sizes. The values are shown as relative values, with the representative value of a particle size of 150 nm taken as 1.

平均粒径が150層m以下になるとトランスコンダクタ
ンスが大巾に低下することが理解される。
It is understood that when the average grain size becomes 150 layers or less, the transconductance decreases significantly.

平均粒径が150層m、200層m、300層mの半導
体層を用いて各種ゲート長を有するMO8型電界効果ト
ランジスタを製造し、そのトランスコンダクタンスのば
らつきをテストした。キャリアの走行距離の平均粒径と
の比が1′o倍未満ではトランスコンダクタンス(相対
値)=1に対し(ハ)程度のばらつきを示(7た。トラ
ンスコンダクタンス−〇の粂件は実質的に動作不能を意
味している。
MO8 type field effect transistors having various gate lengths were manufactured using semiconductor layers with average grain sizes of 150 m, 200 m, and 300 m, and variations in transconductance were tested. When the ratio of the carrier travel distance to the average particle diameter is less than 1'o times, the transconductance (relative value) shows a variation of about (C) (7) with respect to 1. means that it is inoperable.

一方、その比が10倍〜50倍になると±0.7〜±0
.8程度のばらつき、その比が50倍を越えると±0.
3〜±0.4程贋、又その比が200〜1000倍程度
でも±0上限〜0.4程度のばらつきであった。
On the other hand, when the ratio is 10 to 50 times, ±0.7 to ±0
.. The variation is about 8, and if the ratio exceeds 50 times, it is ±0.
Even if the ratio was about 200 to 1000 times, the variation was about ±0 upper limit to about 0.4.

従って、キャリアの走行距離と平均粒径の比を少なくと
も10倍以上、よシ好ましくは50倍以上とすべきこと
が理解される。
Therefore, it is understood that the ratio of carrier travel distance to average particle size should be at least 10 times or more, preferably 50 times or more.

第1表は種々の基板例を用いて同様のMO8型電界効果
トランジスタを製造し、そのトランスコンダクタンス(
G m )を測定した結果を示している。石英ガラスや
ソーダ・ライム・ガラスでは良好な特性のトランジスタ
は得られない。基板とと9載される半導体層の熱)影脹
係数の比を所定の値に設定することが好ましい。
Table 1 shows the transconductance (
The results of measuring G m ) are shown. Transistors with good characteristics cannot be obtained using quartz glass or soda lime glass. It is preferable to set the ratio of thermal expansion coefficients of the substrate and the semiconductor layer mounted thereon to a predetermined value.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蒸着膜の膜厚と結晶粒径の関係を示す図、第2
図(a)〜(h)は多結晶半導体膜を用いてMOSFE
T を製造する工程を示すlFr面図、第3図は実施例
のMOSFETの特性図、第4図は平均粒径とトランス
コンダクタンスの関係を示す図である。 工・・・基板、2・・・多結晶シリコン膜、6・・・絶
縁膜、第 12 シソフン月廷0厚さ    鋏岬 第 3 図 ρ  /ρ  2ρ  3/ 4ρ  5ρV、sρ(
l/) 第 4− 圀 262
Figure 1 is a diagram showing the relationship between the thickness of the deposited film and the crystal grain size.
Figures (a) to (h) show MOSFE using a polycrystalline semiconductor film.
FIG. 3 is a characteristic diagram of the MOSFET of the example, and FIG. 4 is a diagram showing the relationship between average grain size and transconductance. Process: Substrate, 2: Polycrystalline silicon film, 6: Insulating film, 12th layer: 0 thickness Scissor cape: 3rd figure ρ /ρ 2ρ 3/4ρ 5ρV, sρ(
l/) No. 4-Ku 262

Claims (1)

【特許請求の範囲】 1、所定基板上に多結晶シリコン薄膜が形成され。 該多結晶シリコン薄膜にキャリアを走行せしめるための
一対の電極領域と、前記キャリアを制御するための手段
とを少なくとも有する多結晶薄膜トランジスタにおいて
、前記のキャリアを走行せしめる領域の長さが実質的な
キャリアの走行方向における結晶粒径の10倍以上を有
し、且少なくともキャリアを走行せしめる領域の各結晶
粒径が150nm以上で必シ、且前記基板の熱膨張係数
と当該多結晶シリコン薄膜の熱膨張係数の比が0.3〜
3.0の範囲なるように選択されて成ることを特徴とす
る多結晶薄膜トランジスタ。
[Claims] 1. A polycrystalline silicon thin film is formed on a predetermined substrate. In a polycrystalline thin film transistor having at least a pair of electrode regions for causing carriers to travel through the polycrystalline silicon thin film and means for controlling the carriers, the length of the region for causing carriers to travel is substantially equal to 10 times or more the crystal grain size in the running direction of the carrier, and each crystal grain size in at least the region where the carriers run is necessarily 150 nm or more, and the thermal expansion coefficient of the substrate and the thermal expansion of the polycrystalline silicon thin film The coefficient ratio is 0.3~
3.0.
JP13032482A 1981-08-19 1982-07-28 Polycrystalline thin-film transistor Pending JPS5922365A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13032482A JPS5922365A (en) 1982-07-28 1982-07-28 Polycrystalline thin-film transistor
EP19820304352 EP0073603B1 (en) 1981-08-19 1982-08-18 Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit
DE8282304352T DE3277101D1 (en) 1981-08-19 1982-08-18 Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13032482A JPS5922365A (en) 1982-07-28 1982-07-28 Polycrystalline thin-film transistor

Publications (1)

Publication Number Publication Date
JPS5922365A true JPS5922365A (en) 1984-02-04

Family

ID=15031614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13032482A Pending JPS5922365A (en) 1981-08-19 1982-07-28 Polycrystalline thin-film transistor

Country Status (1)

Country Link
JP (1) JPS5922365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121468A (en) * 1984-07-09 1986-01-30 Aisin Warner Ltd Transfer for four-wheel drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515967A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk HANDOTA ISOCHI
JPS5617083A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515967A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk HANDOTA ISOCHI
JPS5617083A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Semiconductor device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121468A (en) * 1984-07-09 1986-01-30 Aisin Warner Ltd Transfer for four-wheel drive

Similar Documents

Publication Publication Date Title
EP0935292A2 (en) Method of manufacturing a MOSFET
JPH04234134A (en) Thin-film transistor and its manufacture
JPH0250630B2 (en)
JPS633463A (en) Manufacture of thin film transistor
JP3103385B2 (en) Polysilicon thin film semiconductor device
JPH0422120A (en) Thin film semiconductor device
EP0073603B1 (en) Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit
JP2618199B2 (en) Thin film transistor and method of manufacturing the same
JPS5922365A (en) Polycrystalline thin-film transistor
JP3500157B2 (en) Method of manufacturing MIS type field effect transistor
JPS6315468A (en) Manufacture of thin film transistor
JPS63119576A (en) Thin film transistor
EP0043691B1 (en) Semiconductor device having a polycrystalline semiconductor film
JPH0888172A (en) Manufacture of polycrystalline silicon film
JPS62219574A (en) Semiconductor device
JPH10223913A (en) Manufacture of thin film semiconductor device
JP3730185B2 (en) Thin film transistor manufacturing method
KR900008942B1 (en) Poly-crystal thin-film transistor
JP3016486B2 (en) Thin film transistor
JPH01171275A (en) Manufacture of thin film transistor
KR910001910B1 (en) Surface display device
JPH10223911A (en) Thin film semiconductor device
JP2837473B2 (en) Silicon thin film transistor
JPS6276514A (en) Manufacture of semiconductor device
JPS63307776A (en) Thin-film semiconductor device and manufacture thereof