JPS59220927A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59220927A
JPS59220927A JP58096221A JP9622183A JPS59220927A JP S59220927 A JPS59220927 A JP S59220927A JP 58096221 A JP58096221 A JP 58096221A JP 9622183 A JP9622183 A JP 9622183A JP S59220927 A JPS59220927 A JP S59220927A
Authority
JP
Japan
Prior art keywords
etching
gas
depth
layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58096221A
Other languages
Japanese (ja)
Other versions
JPH0458177B2 (en
Inventor
Yasumi Hikosaka
康己 彦坂
Koichiro Kotani
小谷 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58096221A priority Critical patent/JPS59220927A/en
Publication of JPS59220927A publication Critical patent/JPS59220927A/en
Publication of JPH0458177B2 publication Critical patent/JPH0458177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors

Abstract

PURPOSE:To control the depth of etching to be extremely shallow by subjecting a semiconductor layer including Ga or As to reactive ion etching using hydrogen gas or a mixed gas of hydrogen gas and inert gas. CONSTITUTION:On a semi-insulating GaAs substrate 11, a non-doped GaAs layer 12, an N type AlGaAs layer 13, an N type GaAs layer 14 and an N type GaAs layer 15 are grown. Next, source electrodes 17 and 17' and drain electrodes 18 and 18' are formed and an element isolating region 20 is formed. Next, a mask 21 is arranged and etching is done to a depth of about 10nm in a gate region 22 of a depletion mode FET and to a depth of about 30nm in a gate region 23 of an enhancement mode by reactive ion etching method with using H2 gas as an etching gas. In this case, plasma formation and etching speed can be controlled by adding inert gas to H2 gas. Thus, it becomes possible to control the etching of a depth in the order of under 10nm or so.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置の製造方法1%にガリウム又は砒素
を含む化合物半導体層の極めて高精度なエツチング方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device and a method for etching a compound semiconductor layer containing 1% of gallium or arsenic with extremely high precision.

(b)技術の背景 情報処理装置などの能力及びコストパフォーマンスの一
層の向上ケ志向して、半導体装置の高速化及び低消費電
力化が推進されている現在、キャリアの移動度が7リコ
ン(Sl)よ!7逼に大きい砒化ガリウム(GaAs 
)などの化合物半導体を用いるトランジスタが多数提案
されている。これら化合物半導体トランジスタのうちに
、変調ドーピングを行ない不純物から空間的に分離され
た電子によってキャリア移動度の増大を実現しているヘ
テロ接合型電界効果トランジスタ(以下へテロ接合FE
T  と略称する)がある。
(b) Technical Background At present, with the aim of further improving the capabilities and cost performance of information processing devices, etc., semiconductor devices are becoming faster and with lower power consumption. )Yo! 7) Very large gallium arsenide (GaAs)
Many transistors using compound semiconductors such as ) have been proposed. Among these compound semiconductor transistors, heterojunction field effect transistors (hereinafter referred to as heterojunction FE transistors) achieve an increase in carrier mobility by using electrons spatially separated from impurities through modulation doping.
(abbreviated as T).

また光フアイバ通信など、光を情報信号媒体に用いる7
ステムにおいて、半導体レーザ及びフォトダイオード等
の光半導体装置は最も重要で基本的な構成要素である。
Also, optical fiber communication, etc., uses light as an information signal medium.
In the system, optical semiconductor devices such as semiconductor lasers and photodiodes are the most important and fundamental components.

これらの光半導体装置においても、ダブルへテロ構造の
活性層等を量子論的寸法とする超格子構造によりその特
性向上が推進されている。
The characteristics of these optical semiconductor devices are also being improved by using a superlattice structure in which the double heterostructure active layer and the like have quantum theoretical dimensions.

以上の例の如く、半導体装置の超微細化は半導体基体面
上のパターンの例えVまサグミクロン化のみならず、半
導体基体の厚さ方向についても例えば数10(nm)程
度の厚さの制御が必要とされる0 (C)  従来技術と問題点 半導体装置の製造工程において半導体基体面上にパター
ンを形成するためには、マスク等を用いて選択的にエツ
チングが行なわれるが、前記へテロ接合FET等におい
ては、一つの半導体層の厚さ方向の中間の位置までエツ
チングし、その精度を例えば10 [nm ]以下に制
御することが必要とされることがある。
As shown in the above examples, the ultra-fine design of semiconductor devices is not only about making the pattern on the surface of the semiconductor substrate into a V-sized micron, but also controlling the thickness of the semiconductor substrate to the order of tens of nanometers (nm) in the thickness direction. (C) Prior art and problems In order to form a pattern on the surface of a semiconductor substrate in the manufacturing process of a semiconductor device, selective etching is performed using a mask or the like. In FETs and the like, it is sometimes necessary to perform etching to a midpoint in the thickness direction of one semiconductor layer and control the etching accuracy to, for example, 10 [nm] or less.

半導体装置の製造工程におけるエツチング方法として従
来より9例えば、GaAS  基板に対しては燐酸(H
sPO4)又は弗酸(IF)系溶液等を用いるウェット
エツチング法が行なわれている。
As an etching method in the manufacturing process of semiconductor devices,9 for example, phosphoric acid (H
A wet etching method using a hydrofluoric acid (IF) solution or the like is used.

しかしながらウェットエツチング法では、エツチング方
向の選択性が通常は少なくサイドエツチングが大きく進
行してパターン精度が大幅に低下しまたエツチング深さ
を均一にかつ精密に制御することは極めて困難である。
However, in the wet etching method, selectivity in the etching direction is usually low and side etching progresses to a large extent, resulting in a significant drop in pattern accuracy and it is extremely difficult to uniformly and precisely control the etching depth.

半導体基体面上のパターン精度を向上し、かつ工程を合
理化する目的からウェットエツチング法に代るドライエ
ツチング法への転換が進められている。
For the purpose of improving pattern accuracy on the surface of a semiconductor substrate and streamlining the process, the wet etching method is being replaced by a dry etching method.

ドライエツチング法の技術には、そのエツチング機構が
化学的作用によるもの、物理的作用によるもの並びに化
学及び物理的作用によるものが含まれる。
Dry etching techniques include those in which the etching mechanism is based on chemical action, physical action, and chemical and physical action.

化学的ドライエツチング方法の例にはプラズマエツチン
グ方法があげられる。通常プラズマエツチングで用いら
れる低温ガスプラズマは1反応管中に適当な反応性ガス
を0.1乃至10 [Torr 3程度に導入し、これ
に高周波電力を印加することによって得られている。こ
のガスプラズマの電離度は通常小さいが、各種の衝突過
程によって励起状態となった原子や分子が多く含゛止れ
る。この励起状態にある原子や分子は化学的な活性が高
く。
An example of a chemical dry etching method is a plasma etching method. The low-temperature gas plasma normally used in plasma etching is obtained by introducing a suitable reactive gas into a reaction tube at a pressure of about 0.1 to 10 Torr and applying high frequency power thereto. Although the degree of ionization of this gas plasma is usually low, it contains many atoms and molecules that have become excited through various collision processes. Atoms and molecules in this excited state have high chemical activity.

ガスプラズマが接する試料表面では原子との間に化学反
応が起こり、この結果揮発性の反応物が生成されると、
試料表面から原子が取り去られてエツチングされる。
A chemical reaction occurs between atoms on the sample surface that comes in contact with the gas plasma, and as a result, volatile reactants are generated.
Atoms are removed from the sample surface and etched.

このプラズマエツチング方法は通常被処理材料に対する
選択性に富み、そのエツチング方向は等方向である、 一方1物理的ドライエツチング方法とは大きな運動エネ
ルギーをもった粒子1通常はイオンを固体異面に衝突さ
せたときに生ずるスパッタリング現象を利用するエツチ
ング法である・この方法は方向の揃った一様な入射イオ
ンビームを用いることによってマスク下のアンターカッ
トを抑制することかできるが、被処理材料についての選
択性に乏しく、まだイオンの衝撃による半導体基体への
ダメージに留意する8貿がある。
This plasma etching method usually has high selectivity to the material to be processed, and the etching direction is iso-directional.On the other hand, in the physical dry etching method, particles with large kinetic energy, usually ions, collide with different surfaces of the solid. This is an etching method that utilizes the sputtering phenomenon that occurs when There are 8 trades that have poor selectivity and still require attention to damage to the semiconductor substrate due to ion bombardment.

前記スパッタエツチング方法においては不活性ガスが用
いられるが、これを反応性ガスとすることによっで化学
反応及びスパッタリング効果が共存して、被処理材料及
Uエツチング方向に関する選択性が得られる。このエツ
チング方法はりアクティブイオンエツチング又はリアク
ティブスバッタエソチングなどと呼ばれる。
Although an inert gas is used in the sputter etching method, by using this as a reactive gas, a chemical reaction and a sputtering effect coexist, and selectivity regarding the material to be processed and the U-etching direction can be obtained. This etching method is called active ion etching or reactive spatter etching.

以上説明した各種のドライエツチング法のうちGa八へ
 化合物半導体に適用された例としては。
Among the various dry etching methods explained above, an example of application to Ga8 compound semiconductors is as follows.

塩素系又は弗素系ガスを用いたりアクティブイオンエツ
チング法及び水素(H諺)  ガスを用いたプラズマエ
ツチング法などが知られている。
Active ion etching methods using chlorine-based or fluorine-based gases, and plasma etching methods using hydrogen gas are known.

塩素系又は弗素系ガスを用い7. IJアクティブイオ
ンエツチング法はそのエツチング速度が通常太きいため
(一般的に数100 (n m/−7s〕乃至数〔am
/−1=3)、エツチング深さを層の中間で10[nm
〕程度以下に制御することは一般的に不可能である。
7. Using chlorine or fluorine gas. In the IJ active ion etching method, the etching speed is usually high (generally several hundred (nm/-7s) to several [am
/-1=3), and the etching depth was set to 10 [nm] in the middle of the layer.
] It is generally impossible to control the temperature below this level.

又、この様在ガス系では、塩化物又は弗化物による半導
体基体表面の汚染が問題になる場合が多い。
Further, in such a gas system, contamination of the semiconductor substrate surface by chloride or fluoride often becomes a problem.

一方、HWガスによン・プラズマエツチング法は表面汚
染の影響が少ないと考えられるが、前記程度((エツチ
ング深さを制御することは極めて困難である。かつこの
方法は先に述べた如く等方向であって、パターン形状の
制御性も良好ではない。
On the other hand, the HW gas plasma etching method is thought to have less influence of surface contamination, but it is extremely difficult to control the etching depth. In addition, the controllability of the pattern shape is not good either.

(cll  発明の目的 本発明は前記問題点に対処すべく、ガリウム(Ga )
  又は砒素(AS )  を含む化合物半導体につい
て、エツチング深さ及び精度を10 Cnm )程度以
下に制御することか可能なエツチング方法を提供するこ
とを目的とする、 (e)発明の構成 本発明の前記目的は、少なくともガリウム又は砒素を含
む化合物半導体層を、水素ガス又は水素ガスと不活性ガ
スとの混合ガスを・エツチングガスとするりアクティブ
イオンエツチング法によってエツチングすることによI
)構成される。
(cll Purpose of the Invention The present invention aims to solve the above-mentioned problems by using gallium (Ga).
It is an object of the present invention to provide an etching method capable of controlling the etching depth and accuracy to about 10 Cnm or less for compound semiconductors containing arsenic (AS). The purpose is to etch a compound semiconductor layer containing at least gallium or arsenic by an active ion etching method using hydrogen gas or a mixed gas of hydrogen gas and an inert gas as an etching gas.
) consists of.

すなわち先に述べたH2カスを用いるプラズマエ・ノチ
ング法においては、エツチング深でおイ〉プラズマ中の
励起状態の中性水素原子が菌濃度であるだめ1本発明の
目的に対してはエツチング速度が過大であるのに対して
1本発明のりアクティブイオンエツチング法においては
、プラズマ中の中性水素原子より非常に低濃度であるイ
オン化した水素原子を電極上に直かれた被処理半導体基
体に入射せしめて、この入射方向のスパンタリング効果
と水素イオンによる化学反応とを利用してエツチングが
行なわれるために、エツチング速度は緩徐であってエツ
チング深さの精密な制御が可能となりかつパターン形状
の精度も極めて良好となる。
In other words, in the above-mentioned plasma etching method using H2 scum, the etching rate is too low for the purpose of the present invention because the concentration of excited neutral hydrogen atoms in the plasma is high. In contrast, in the adhesive active ion etching method of the present invention, ionized hydrogen atoms, which have a much lower concentration than neutral hydrogen atoms in the plasma, are made to enter the semiconductor substrate to be processed that is placed on the electrode. Since etching is performed using the sputtering effect in the incident direction and the chemical reaction caused by hydrogen ions, the etching speed is slow, making it possible to precisely control the etching depth and improving the accuracy of the pattern shape. It becomes extremely good.

本発明は第1図に例示する如き通常の゛リアクティブイ
オンエツチング装置を使用して実施することができる。
The present invention can be practiced using a conventional reactive ion etching apparatus such as that illustrated in FIG.

エツチング処理室1内には電極2及び3が上下に対向し
て設けられ、ガスが送気管4及び排気管5によって導入
、排出される。下方の電&2が絶縁物6によって支持さ
れ、上方の対向電極3との間に高周波電力が印加される
ことによって両電極間に、電極2の近傍を除いて、プラ
ズマ7が形成される。被処理半導体基体8を電極2上に
置くことによって先に述べたりアクティブイオンエツチ
ング法 第2図は本発明のエツチング方法によってGaAs半導
体層及び砒化アルミニウム・ガリウム−綴り(A4xG
al−xAs)半導体層にエツチング処理を行なった場
合の、エツチング速度の水素ガス圧力に対する相関の例
を示す図である。ただし本例のプラズマは周波数13.
56[M)12 ] 、電力密度5×10− ”(W/
cyn−’ )の電磁界によって生成している。図にお
いて曲線AはGaAs半導体半導体層1ヒ線BxGal
−xAs (x−0,3)半導体層の場合を示す。
Electrodes 2 and 3 are provided vertically and oppositely in the etching chamber 1, and gas is introduced and discharged through an air supply pipe 4 and an exhaust pipe 5. The lower electrode &2 is supported by the insulator 6, and high frequency power is applied between it and the upper counter electrode 3, so that plasma 7 is formed between both electrodes except in the vicinity of the electrode 2. By placing the semiconductor substrate 8 to be processed on the electrode 2, the active ion etching method described above and FIG.
FIG. 4 is a diagram showing an example of the correlation between etching rate and hydrogen gas pressure when etching is performed on a (al-xAs) semiconductor layer. However, the plasma in this example has a frequency of 13.
56 [M)12], power density 5×10-” (W/
cyn-') is generated by the electromagnetic field. In the figure, curve A is GaAs semiconductor layer 1 line BxGal
-xAs (x-0,3) The case of a semiconductor layer is shown.

第2図において曲線A及びBはともに水素ガス圧力5[
Pa)近傍において極大値を示し、そのときのエツチン
グ速度は4 [nm/m)  及び3Cnm/−=#)
程度である。この極大値を示す水素ガス圧力においてプ
ラズマ中のイオン化した水素原子の比率が極太となり、
エツチング処理系は最も安定する。なお水素ガス圧力が
l[Pa〕程度以下もしくは50[Pa〕程度以上であ
るときにはプラズマ状態が生成されなくなる。
In FIG. 2, curves A and B both indicate a hydrogen gas pressure of 5[
It shows a maximum value near Pa), and the etching rate at that time is 4 [nm/m) and 3Cnm/-=#)
That's about it. At this maximum hydrogen gas pressure, the ratio of ionized hydrogen atoms in the plasma becomes extremely large.
Etching treatment systems are the most stable. Note that when the hydrogen gas pressure is about 1 [Pa] or less or about 50 [Pa] or more, no plasma state is generated.

この様に例えば4[nm/−m]  程度のエツチング
速度が高い安定性をもって実現されることにより、 1
0 (nm1fl )  以下の精度をもつエツチング
深さの制御を容易に行なうことが可能となる。
In this way, for example, by achieving an etching rate of about 4 [nm/-m] with high stability, 1
It becomes possible to easily control the etching depth with an accuracy of 0 (nm1fl) or less.

(f+  発明の実施例 以下本発明の実施例を図面を参照して具体的に説明する
(f+ Embodiments of the Invention Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

第3図(a)乃至(C)はへテロ接合FET の製造工
程に本発明を実施した例を示す断面図である。
FIGS. 3(a) to 3(C) are cross-sectional views showing an example in which the present invention is implemented in the manufacturing process of a heterojunction FET.

第3図(a)参照 半絶縁性GaAs基板11上に、ノンドープのGaAJ
@1’2を厚さ例えば300[:nm〕程度に。
Referring to FIG. 3(a), non-doped GaAJ is placed on a semi-insulating GaAs substrate 11.
@1'2 to a thickness of about 300 [:nm], for example.

シリコン(Sl)を例えば1×10目〔百−l〕程度に
ドープしたn型At0.3GaO87A13  層13
を例えば厚ざ20(:nm)  程度に、 Atの組成
比Xが0.3からotで次第に減少するn型A4xGa
l−xAEI層14全14ば厚さ20[nm)  程度
に、n型GaAe層15を例えは厚さ40[nm〕 程
度に順次分子線エピタキシャル成長法等によって成長さ
せる。16はノンドープのGaAs層2のn型AtO,
3GaO,7As  層13とのへテロ接合界面近傍に
形成される2次元電子ガスである。
An n-type At0.3GaO87A13 layer 13 doped with silicon (Sl) to, for example, about 1×10 [100-1]
For example, when the thickness is about 20 (nm), the At composition ratio X gradually decreases from 0.3 to n-type A4xGa.
The l-xAEI layer 14 is sequentially grown to a thickness of about 20 [nm] and the n-type GaAe layer 15 to a thickness of about 40 [nm] by molecular beam epitaxial growth or the like. 16 is the n-type AtO of the non-doped GaAs layer 2;
This is a two-dimensional electron gas formed near the heterojunction interface with the 3GaO, 7As layer 13.

次いでソース電極17及び17′、並びにドレイン電極
18及び18′ を例えば金・ゲルマニウム/金(Au
Gθ/ AU )  を用いて形成し、加熱処理を行な
ってn型GaAs層15などと合金化することによって
、低抵抗のオーミック接続領域19が形成される。まだ
素子間分離領域20を例えば酸素(四)のイオン注入に
よって形成する。
Next, the source electrodes 17 and 17' and the drain electrodes 18 and 18' are made of, for example, gold/germanium/gold (Au).
A low-resistance ohmic connection region 19 is formed by forming it using Gθ/AU) and performing a heat treatment to alloy it with the n-type GaAs layer 15 or the like. The inter-element isolation region 20 is still formed by, for example, ion implantation of oxygen (4).

第3図(b)参照 ゲート閾値電圧の制御を目的として、n型GaAs層1
5のゲート領域にマスクを用いて選択的なエツチングを
行なう。本実施例においては1例えば二酸化シリコン(
sins)膜によってマスク21を設けて、ディプリー
ションモードFIT のゲート領域22については深さ
約10 Cnm 〕、エンハンスメントモードFET 
のゲート領域23については深さ約30[nm〕のエツ
チングを本発明により+Ht ガス圧力約5 [’Pa
 ) 、高周波電力密度約4 ×10”” CW’/C
+4 )の条件で実施している。
FIG. 3(b) For the purpose of controlling the reference gate threshold voltage, the n-type GaAs layer 1
Selective etching is performed on the gate region No. 5 using a mask. In this example, 1, for example, silicon dioxide (
A mask 21 is provided by a film (sins) to a depth of approximately 10 Cnm for the gate region 22 of the depletion mode FET, and the enhancement mode FET is
According to the present invention, the gate region 23 is etched to a depth of about 30 [nm] using +Ht gas pressure of about 5 ['Pa].
), high frequency power density approximately 4 × 10” CW'/C
+4).

高周波電力を例えは2倍にすれはエツチング速度が大略
15倍程度となるなどエツチング速度は高周波電力にも
支配されるが、電力が過少となればプラズマが安定して
形成されずまた過大となれば被処理半導体基体に強いダ
メージを与えるために、高周波′配力密度がI X 1
0−”乃至4 X 10−’(w/m−”3  程度の
範囲内で上記の要因などを考慮して最適値を選択する。
Etching speed is also controlled by high-frequency power; for example, if the high-frequency power is doubled, the etching speed will be approximately 15 times higher. However, if the power is too low, the plasma will not be formed stably, and the etching speed will be too high. In order to cause strong damage to the semiconductor substrate to be processed, the high frequency power density is I x 1.
The optimum value is selected within a range of approximately 0-'' to 4 x 10-'(w/m-''3), taking into account the above factors.

またH+ ガスに不活性ガスを添加することによってプ
ラズマ形成及びエツチング速度などの制御の自由度が拡
大されるが。
Furthermore, by adding an inert gas to the H+ gas, the degree of freedom in controlling plasma formation, etching rate, etc. can be expanded.

本実施例のへテロ接合型FET の如く極めて薄い半導
体層によって構成される半導体基体を主たる対象とする
本発明においては、スパッタリング効果によって被処理
半導体基体にダメージを与えないことが特に重要である
In the present invention, which is mainly intended for semiconductor substrates constituted by extremely thin semiconductor layers, such as the heterojunction FET of this embodiment, it is particularly important that the sputtering effect does not damage the semiconductor substrate to be processed.

第3図(C)参照 ゲート電極24及び24′ヲゲート領域の前記エツチン
グ面上に例えばアルミニウム(At)  によって形成
する。
In FIG. 3(C), reference gate electrodes 24 and 24' are formed of, for example, aluminum (At) on the etched surfaces of the gate regions.

本実施例のゲート閾値電圧は、ディグリ−7ヨンモー)
”FET にツイテ約−〇−5[V ] * x yハ
ンスメントモードF)IiT についてはIγ0〔V〕
であって、素子相互間及び面内の分布は従来に比較して
大幅に改善されている。
The gate threshold voltage of this example is degree-7 Yonmo)
"Approximately -0-5 [V] for FET * x y enhancement mode F) Iγ0 [V] for IiT
The inter-element and in-plane distributions are significantly improved compared to the prior art.

以上の説明並びに実施例は半導体材料としてGaAB及
びAzGaAs を引例しているが1本発明によって1
例えばガリウム・アンチモン(Garb)ガリウム・燐
(Gap)、インジウム・砒素(工nAs )或いはガ
リウム・インジウム・砒素(GaInAs)等のガリウ
ムもしくは砒素を含む化合物半導体についても同様の効
果が得られる。
Although the above description and examples refer to GaAB and AzGaAs as semiconductor materials, one
Similar effects can be obtained with compound semiconductors containing gallium or arsenic, such as gallium-antimony (Garb), gallium-phosphorus (Gap), indium-arsenic (GaAs), or gallium-indium-arsenic (GaInAs).

(gl  発明の詳細 な説明した如く本発明によれば、ガリウム又は砒素を含
む化合物半導体層のエツチングに際して、その深さを1
0Cnmli度以下の精度に容易に制御することができ
、かつその均一性は良好であり、更にパターン精度も優
れていて1例えはへテロ接合FET等について要求され
る量子論的寸法の工業的実施に犬さく寄与する。
(gl) As described in detail, according to the present invention, when etching a compound semiconductor layer containing gallium or arsenic, the depth is reduced to 1
It can be easily controlled to an accuracy of 0 Cnmli degree or less, has good uniformity, and has excellent pattern accuracy, making it suitable for industrial implementation of quantum-theoretical dimensions required for, for example, heterojunction FETs. Contribute to dogs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いるエツチング装置の例を示
す断面図、第2図はエツチング速度と水素ガス圧力との
相関の例を示す図、第3図(a)乃至(C)は本発明の
実施例を示す断面図である。 図において、11はGaAe基板、12はノンドープの
GaAG層、13はn型AtGaAs層、14はn型グ
レーデッドAtGaAs a、15はn型GaAs層、
16は2次元電子ガス、17及び17′はソース電極、
1.8及0・18I はドレイン電極。 19はオーミック接続領域、20は素子間分離領域、2
1はマスク、22及び23はゲート領域。 24及び24′ はゲート電極を示す。 V−1聞 水素が1圧η      r /’(IJを 3 閃
FIG. 1 is a cross-sectional view showing an example of an etching apparatus used in carrying out the present invention, FIG. 2 is a diagram showing an example of the correlation between etching rate and hydrogen gas pressure, and FIGS. FIG. 1 is a sectional view showing an embodiment of the invention. In the figure, 11 is a GaAe substrate, 12 is a non-doped GaAG layer, 13 is an n-type AtGaAs layer, 14 is an n-type graded AtGaAs a, 15 is an n-type GaAs layer,
16 is a two-dimensional electron gas, 17 and 17' are source electrodes,
1.8 and 0.18I are drain electrodes. 19 is an ohmic connection region, 20 is an inter-element isolation region, 2
1 is a mask, 22 and 23 are gate regions. 24 and 24' indicate gate electrodes. V-1 hydrogen at 1 pressure η r /' (3 flashes of IJ)

Claims (2)

【特許請求の範囲】[Claims] (1)少なくともガリウム又は砒素を含む化合物半導体
層を、水素ガス又は水素ガスと不活性ガスとの混合ガス
をエツチングガスとするりアクティブイオンエツチング
法によってエツチングする工程を含んでなることを特徴
とする半導体装置の製造方法。
(1) It is characterized by comprising a step of etching a compound semiconductor layer containing at least gallium or arsenic by using hydrogen gas or a mixed gas of hydrogen gas and an inert gas as an etching gas or by an active ion etching method. A method for manufacturing a semiconductor device.
(2)前記化合物半導体が砒化ガリウム及び砒化アルミ
ニウム・ガリウムの少なくとも−であることを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the compound semiconductor is at least - of gallium arsenide and aluminum/gallium arsenide.
JP58096221A 1983-05-31 1983-05-31 Manufacture of semiconductor device Granted JPS59220927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58096221A JPS59220927A (en) 1983-05-31 1983-05-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58096221A JPS59220927A (en) 1983-05-31 1983-05-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59220927A true JPS59220927A (en) 1984-12-12
JPH0458177B2 JPH0458177B2 (en) 1992-09-16

Family

ID=14159176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58096221A Granted JPS59220927A (en) 1983-05-31 1983-05-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59220927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690506A1 (en) * 1994-06-29 1996-01-03 Laboratoires D'electronique Philips Method of fabrication of a semiconductor device comprising at least two field-effect transistors having a different pinch-off voltage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117241A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> Method of forming insulating film on third to fifth group compound semiconductor
JPS57162338A (en) * 1981-03-13 1982-10-06 Western Electric Co Method of etching semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117241A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> Method of forming insulating film on third to fifth group compound semiconductor
JPS57162338A (en) * 1981-03-13 1982-10-06 Western Electric Co Method of etching semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690506A1 (en) * 1994-06-29 1996-01-03 Laboratoires D'electronique Philips Method of fabrication of a semiconductor device comprising at least two field-effect transistors having a different pinch-off voltage
US5654214A (en) * 1994-06-29 1997-08-05 U.S. Philips Corporation Method of manufacturing a semiconductor device having at least two field effect transistors with different pinch-off voltages

Also Published As

Publication number Publication date
JPH0458177B2 (en) 1992-09-16

Similar Documents

Publication Publication Date Title
CA1214575A (en) Method of manufacturing gaas semiconductor device
US6144048A (en) Heterojunction field effect transistor and method of fabricating the same
EP0855748B1 (en) Heterojunction field-effect transistor and method of fabricating the same
US5527425A (en) Method of making in-containing III/V semiconductor devices
EP0374036B1 (en) Method of fabricating a semiconductor device using U.V. assisted selective multilayer etching
EP0221103B1 (en) Process for making semiconductor devices which involve gaseous etching
JPS59220927A (en) Manufacture of semiconductor device
JP4537549B2 (en) Method for manufacturing compound semiconductor device
JP2773700B2 (en) Compound semiconductor device and method of manufacturing the same
US5399230A (en) Method and apparatus for etching compound semiconductor
JPH04221825A (en) Selective dry etching
JPS6357949B2 (en)
KR100311197B1 (en) method for preparing self-aligned gate transistor using a low temperature Pd/Ge ohmic electrode
JPH10335638A (en) High electron mobility transistor and its manufacture
JP2776825B2 (en) Semiconductor device
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPH06244409A (en) Preprocessing method for compound semiconductor substrate
JPH07263383A (en) Method and manufacture for etching semiconductor device
JPH05291306A (en) Element isolation of heterojunction field-effect transistor
JPH04286130A (en) Algaas/gaas heterojunction transistor
JPH0239542A (en) Semiconductor device
JPH0422139A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH07283201A (en) Dry etching method
JPH042124A (en) Dry etching
JPH0498833A (en) Etching method for compound semiconductor