JPH0498833A - Etching method for compound semiconductor - Google Patents

Etching method for compound semiconductor

Info

Publication number
JPH0498833A
JPH0498833A JP21591790A JP21591790A JPH0498833A JP H0498833 A JPH0498833 A JP H0498833A JP 21591790 A JP21591790 A JP 21591790A JP 21591790 A JP21591790 A JP 21591790A JP H0498833 A JPH0498833 A JP H0498833A
Authority
JP
Japan
Prior art keywords
etching
solution
layer
oxide layer
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21591790A
Other languages
Japanese (ja)
Inventor
Hiroaki Okuda
奥田 広明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21591790A priority Critical patent/JPH0498833A/en
Publication of JPH0498833A publication Critical patent/JPH0498833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To minimize the dispersion in the element characteristics for augmenting the yield by a method wherein a compound semiconductor substrate is alternately immersed in a solution for the surface oxidation and another solution for removing the surface oxide layer while the frequency is controlled to evenly etch away the oxide layer by the specific depth. CONSTITUTION:The solution oxidizing the n-GaAs layer 4 only exposed in a resist hole part 6 e.g. hydrogen peroxide is used to oxidize the surface 7 to be dried up after washing with water. Next, the solution melting down the oxidized part 7 only e.g. phospholic acid is used to remove the oxide film to be washed with water later. Through these procedures, the oxide layer can be formed always in the constant thickness thereby enabling the etching process in the constant depth to be performed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は化合物半導体を微少量エツチングする場合、例
えば電界効果トランジスタ(F E T)のリセスエッ
チの場合等に#用いられるエツチング法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is an etching method used when etching a compound semiconductor by a minute amount, for example, in recess etching of a field effect transistor (FET). Regarding the law.

(従来の技術) 化合物半導体のエツチングに関しては、溶液中で化学反
応を利用するウェットエツチング法、又はプラズマ、イ
オン等を用いて行うドライエツチング法がある。
(Prior Art) Regarding the etching of compound semiconductors, there are a wet etching method that utilizes a chemical reaction in a solution, and a dry etching method that uses plasma, ions, etc.

従来のエツチングの一例として、ここでは化合物半導体
基板上に形成されたゲートリセス構造を有する高電子移
動度トランジスタ(以下、HEMTと略称)について述
べる。
As an example of conventional etching, a high electron mobility transistor (hereinafter abbreviated as HEMT) having a gate recess structure formed on a compound semiconductor substrate will be described here.

第2図はHEMTのゲートリセス構造断面図である。H
EMTのチャンネル層は、一般に半絶縁性ガリウム・砒
素(GaAs)基板11上のアンドープGaAs層12
.Siドープのn形アルミニウム・ガリウム・砒素(n
−AIGaAs)層13及びn形ガリウム・砒素(n−
GaAs)層14から形成されている。これら各層の厚
さはそれぞれ10,0OOA、300A、5OOA程度
で、n形層のドーピング濃度は約I X 10 ”cm
−’と高電子濃度である。このためゲート電極9を形成
するにあたり、第2図のように、所望の電流値を得るこ
ととゲート耐圧の向上を目的とし、チャンネル層にリセ
ス構造18を形成する。このリセス構造を得るために、
前記のウェット法又はドライ法によってエツチングを施
す。このとき構造上、エツチング深さは数10A程度の
精度が要求される。
FIG. 2 is a cross-sectional view of the HEMT gate recess structure. H
The channel layer of an EMT is generally an undoped GaAs layer 12 on a semi-insulating gallium arsenide (GaAs) substrate 11.
.. Si-doped n-type aluminum, gallium, arsenic (n
-AIGaAs) layer 13 and n-type gallium arsenide (n-
(GaAs) layer 14. The thickness of each of these layers is about 10,000A, 300A, and 500A, respectively, and the doping concentration of the n-type layer is about I x 10” cm.
-' and high electron concentration. Therefore, when forming the gate electrode 9, a recess structure 18 is formed in the channel layer, as shown in FIG. 2, for the purpose of obtaining a desired current value and improving the gate breakdown voltage. To obtain this recessed structure,
Etching is performed by the wet method or dry method described above. At this time, due to the structure, the etching depth is required to have an accuracy of several tens of amps.

第3図に従来のエツチング方法について示す。FIG. 3 shows a conventional etching method.

第3図(a)に示すように半絶縁性GaAs基板21上
にアンドープGaAs層22.n−AlGaAs層23
及びn−GaAs層24を順次形成したものに、そのn
−GaAs層24の上にレジスト膜25を形成し、第3
図(b)に示すように、マスク露光・現像処理によりレ
ジスト開孔部26つまりゲートパターンを形成する。そ
の後に第3図(C)に示すように、このレジスト膜25
をマスクとして、例えばリン酸と過酸化水素の混合液を
エッチャントとしたウェットエツチング、又はリアクテ
ィブイオンエツチング(RI E)などのドライエツチ
ングによりリセス構造28を形成する。
As shown in FIG. 3(a), an undoped GaAs layer 22. n-AlGaAs layer 23
and n-GaAs layer 24 are sequentially formed.
- A resist film 25 is formed on the GaAs layer 24, and a third
As shown in Figure (b), a resist opening 26, that is, a gate pattern, is formed by mask exposure and development. After that, as shown in FIG. 3(C), this resist film 25 is
Using this as a mask, the recess structure 28 is formed by wet etching using a mixed solution of phosphoric acid and hydrogen peroxide as an etchant, or dry etching such as reactive ion etching (RIE).

(発明が解決しようとする課題) しかしながら、これらのエツチング法では高電子濃度を
持つチャンネル層を所望の電流値となる深さでエツチン
グを停止することは非常に困難であり、電流調整が極め
て難しい。第4図につエツトでリセスエッチングを行っ
た場合のHEMTの電流値及びリセス深さとエツチング
時間の関係を示す。これによれば、わずかの工・ンチン
グ時間の変化に対しても電流値の変動はかなり大きく、
エツチング時間で電流値を決めるのは困難である。
(Problem to be solved by the invention) However, with these etching methods, it is extremely difficult to stop etching a channel layer with a high electron concentration at a depth at which a desired current value is obtained, and current adjustment is extremely difficult. . FIG. 4 shows the relationship between the HEMT current value, recess depth, and etching time when recess etching is performed. According to this, the current value fluctuates considerably even with a slight change in machining/nching time.
It is difficult to determine the current value based on the etching time.

また、ウェットのエツチング時間ではエツチング深さの
ウエーノ1面内均一性が悪く、数10A単位で均一にエ
ツチングすることは難しい。このため、素子を製造した
時にかなりの低歩留りであった。
In addition, with wet etching time, the uniformity of etching depth within one surface of the wafer is poor, and it is difficult to uniformly etch the etching depth in units of tens of amps. For this reason, when manufacturing the device, the yield was quite low.

ドライエツチングにおいても半導体基板に与えるダメー
ジ及び汚染により高性能特性が得られない等の問題があ
り、市内均一性についても、装置の依存性やレジストパ
ターン形状、処理基板枚数の影響が大きい等の欠点があ
る。
Even in dry etching, there are problems such as not being able to obtain high performance characteristics due to damage and contamination caused to semiconductor substrates, and in terms of uniformity within the same area, it is highly affected by equipment dependence, resist pattern shape, and number of substrates processed. There are drawbacks.

本発明は、上記の欠点を除去するものであり、エツチン
グ深さの再現性がよく、かつウエノ1−面内のエツチン
グ深さの均一性がよいエツチング方法を提供し、その結
果素子特性のバラツキを小さくし、歩留りを向上させる
ことを目的とする。
The present invention eliminates the above-mentioned drawbacks, and provides an etching method with good reproducibility of etching depth and good uniformity of etching depth within the plane of the wafer, thereby reducing variations in device characteristics. The purpose is to reduce the amount and improve the yield.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明では化合物半導体基板
を表面酸化させる溶液と、この表面酸化層を除去する溶
液に交互に浸し、その回数によりコントロールして所望
の深さまで均一に工・ノチングする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, in the present invention, a compound semiconductor substrate is alternately immersed in a solution that oxidizes the surface and a solution that removes this surface oxidation layer, and Control and uniformly machine and notch to the desired depth.

(作用) 化合物半導体基板を表面酸化させる溶液に浸漬すると、
酸化される深さは短時間で飽和し、はぼ一定厚さの酸化
層が形成される。次にこの酸化層を除去する溶液で酸化
層を除去すれば一定の厚さの層がエツチングされる。
(Function) When a compound semiconductor substrate is immersed in a solution that oxidizes the surface,
The oxidized depth is saturated in a short time, and an oxidized layer of approximately constant thickness is formed. The oxide layer is then removed using a solution that removes the oxide layer, thereby etching the layer to a certain thickness.

(実施例) 第1図に本発明の実施例を示す。第1図(a)はこの発
明のエツチングを行う前の状態を示す断面図である。
(Example) FIG. 1 shows an example of the present invention. FIG. 1(a) is a sectional view showing the state before etching according to the present invention.

この第1図(a)のレジスト開孔部6に露出しているn
−GaAs層4のみを酸化させる溶液、例えば過酸化水
素水溶液を用いて第1図(b)のように表面の酸化7を
行い、水洗後乾燥する。次にこの酸化された部分のみを
溶解する溶液、例えばリン酸を用いて第1図(C)のよ
うに酸化された部分を溶解除去する。酸化膜除去後水洗
を行う。
The n exposed in the resist opening 6 in FIG. 1(a)
- Using a solution that oxidizes only the GaAs layer 4, for example, an aqueous hydrogen peroxide solution, the surface is oxidized 7 as shown in FIG. 1(b), washed with water, and then dried. Next, the oxidized portion is dissolved and removed using a solution that dissolves only the oxidized portion, such as phosphoric acid, as shown in FIG. 1(C). After removing the oxide film, wash with water.

この方式によると、酸化される深さは短時間で飽和し、
例えば30〜60秒溶液に浸しても酸化層は常に一定厚
さに形成される。次に、この酸化層を溶解除去すること
により、一定量のエツチングが可能である。さらに、酸
化層の形成及びその後の酸化層の溶解除去は、多少の温
度変化及び撹拌の方法によっても殆ど影響されない。こ
れらを繰り返すことにより、所望の深さまで極めて均一
に、かつ容易にコントロールされたエツチングを行うこ
とが可能となる。すなわち、本発明の方法は従来のリセ
スエッチングで用いたウェットエツチング法やドライエ
ツチング法とは異なり、n−GaAs層の表層を酸化し
、その酸化層を除去する工程を繰り返し段階的に行った
ものであり、極微量なエツチングには最適である。
According to this method, the oxidation depth is saturated in a short time,
For example, even if it is immersed in a solution for 30 to 60 seconds, the oxide layer is always formed with a constant thickness. A certain amount of etching is then possible by dissolving and removing this oxide layer. Moreover, the formation of the oxide layer and the subsequent dissolution of the oxide layer are hardly affected by slight temperature changes and stirring methods. By repeating these steps, it becomes possible to perform extremely uniform and easily controlled etching to a desired depth. That is, unlike the wet etching method or dry etching method used in conventional recess etching, the method of the present invention involves repeating and stepwise steps of oxidizing the surface layer of the n-GaAs layer and removing the oxidized layer. This makes it ideal for extremely small amounts of etching.

第5図に本発明の方法で行ったGaAsのエツチング速
度を示す。これによると1回の酸化、酸化層の除去でお
よそ17〜18Aのエツチングか可能である。
FIG. 5 shows the etching rate of GaAs performed by the method of the present invention. According to this, it is possible to etch approximately 17 to 18 A with one oxidation and removal of the oxide layer.

なお、本発明はHEMTのn−GaASに限らず、n−
AlGaAsにおいてもGaAsとほぼ同程度の酸化、
酸化層の除去が可能であり、インジウム・ガリウム・砒
素・リン(I nGaAsP) インジウム・リン(I
nP)等種々の化合物に適用できることは勿論である。
Note that the present invention is not limited to n-GaAS for HEMT;
In AlGaAs, the oxidation rate is almost the same as that in GaAs.
It is possible to remove the oxide layer, including indium-gallium-arsenic-phosphorus (InGaAsP)
Of course, it can be applied to various compounds such as nP).

[発明の効果] 以上の説明のようにこの発明によれば、化合物半導体基
板のリセス構造を形成する際のエツチングにおいて、極
めて均一かつ容易に微少なエツチング深さをコントロー
ルすることが可能となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to extremely uniformly and easily control minute etching depth in etching when forming a recess structure in a compound semiconductor substrate.

第6図に、従来のリセスエッチングで得られたHEMT
の電流C1ds)分布(第6図(a))と、本発明の方
法によるリセスエッチングで得られたHEMTの電流(
I d s)分布(第6図(b))とをそれぞれ示す。
Figure 6 shows the HEMT obtained by conventional recess etching.
(Fig. 6(a)) and the HEMT current (C1ds) distribution obtained by recess etching according to the method of the present invention.
I d s) distribution (FIG. 6(b)).

これにより本発明の方法によれば素子特性の均一化と歩
留の向上が達成できることかわかる。また、半導体基板
面積に依存することなく均一に酸化、酸化膜の除去を行
うことができるため、大面積、大口径の半導体基板を均
一にエツチングすることにも適している。
This shows that the method of the present invention can achieve uniformity of device characteristics and improvement of yield. Furthermore, since oxidation and oxide film removal can be carried out uniformly regardless of the area of the semiconductor substrate, it is also suitable for uniformly etching a semiconductor substrate with a large area and large diameter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の化合物半導体基板のリ
セス工程で酸化、酸化層溶解除去の工程を示す断面図、
182図はHEMTのゲートリセス構造を示す断面図、
第3図は従来のエツチング工程を示す断面図、第4図は
従来のウェットエツチングでエツチング時間とHEMT
電流値及びリセス深さとの関係を示す線図、第5図は本
発明の方法によるGaAsのエツチング速度を示す線図
。 ′!86図は本発明の方法によるHEMTの電流(■d
s)分布を従来の方法によるものと比較した分布図であ
る。 11 、21−半絶縁性GaAs基板 12.22−・アンドープGaAs層 13.23−n−A lGaAs 14.24−n−GaAs 15.25・・・・−レジスト膜 16    ・ レジスト開孔部 ・・・・・・半導体基板を酸化した状態・・・・7の酸
化部分を除去した状態 18.28・・・・・リセスエッチされた部分・・・・
・・ゲート電極 、6ムL′ヌr−tH7,”F /7 II“bthお
1(a) to (C) are cross-sectional views showing the steps of oxidation and oxide layer dissolution removal in the recessing step of the compound semiconductor substrate of the present invention,
Figure 182 is a cross-sectional view showing the gate recess structure of HEMT,
Fig. 3 is a cross-sectional view showing the conventional etching process, and Fig. 4 shows the etching time and HEMT in conventional wet etching.
FIG. 5 is a diagram showing the relationship between current value and recess depth, and FIG. 5 is a diagram showing the etching rate of GaAs according to the method of the present invention. ′! Figure 86 shows the HEMT current (■d
s) Distribution map comparing the distribution with that according to the conventional method. 11, 21-Semi-insulating GaAs substrate 12.22-Undoped GaAs layer 13.23-n-AlGaAs 14.24-n-GaAs 15.25...-Resist film 16-Resist opening... ...Semiconductor substrate oxidized state...7 oxidized portion removed 18.28...Recess-etched portion...
...Gate electrode, 6mm L'nu r-tH7,"F/7 II"bth

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体の表面層を酸化する工程と、この酸化層を
除去する工程とより成る化合物半導体のエッチング方法
A method for etching a compound semiconductor comprising the steps of oxidizing a surface layer of the compound semiconductor and removing the oxidized layer.
JP21591790A 1990-08-17 1990-08-17 Etching method for compound semiconductor Pending JPH0498833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21591790A JPH0498833A (en) 1990-08-17 1990-08-17 Etching method for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21591790A JPH0498833A (en) 1990-08-17 1990-08-17 Etching method for compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0498833A true JPH0498833A (en) 1992-03-31

Family

ID=16680399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21591790A Pending JPH0498833A (en) 1990-08-17 1990-08-17 Etching method for compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0498833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004881A (en) * 1997-04-24 1999-12-21 The United States Of America As Represented By The Secretary Of The Air Force Digital wet etching of semiconductor materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004881A (en) * 1997-04-24 1999-12-21 The United States Of America As Represented By The Secretary Of The Air Force Digital wet etching of semiconductor materials

Similar Documents

Publication Publication Date Title
US6004881A (en) Digital wet etching of semiconductor materials
JP4874461B2 (en) Pseudomorphic high electron mobility transistor
JP3416113B2 (en) Precision wide band gap semiconductor etching
KR100288173B1 (en) Semiconductor device manufacturing method
US5185278A (en) Method of making self-aligned gate providing improved breakdown voltage
JPH0498833A (en) Etching method for compound semiconductor
JP3450155B2 (en) Field effect transistor and method of manufacturing the same
Higuchi et al. Selective wet-etching of InGaAs on InAlAs using adipic acid and its application to InAlAs/InGaAs HEMTs
JPH0936104A (en) Preparation of iii/v family semiconductor device containing in
JP2773700B2 (en) Compound semiconductor device and method of manufacturing the same
JPH11135522A (en) Manufacture of compound semiconductor device
JP2002110702A (en) Manufacturing method of compound semiconductor device
JP3858888B2 (en) Etching method and semiconductor device manufacturing method
US4759821A (en) Process for preparing a vertically differentiated transistor device
JPH08102471A (en) Recess forming method of compound semiconductor
JP2739852B2 (en) Method for manufacturing semiconductor device
JPH01107577A (en) Manufacture of field effect transistor
JP2001035840A (en) Etching method and manufacture of semiconductor device
JPS61114536A (en) Manufacture of semiconductor device
JPH02161735A (en) Semiconductor device and manufacture thereof
JPH08340105A (en) Semiconductor device and manufacture thereof
JPH1154474A (en) Method for etching compound semiconductor
JPS5895827A (en) Manufacture of semiconductor element
JPH0319695B2 (en)
JPH104101A (en) Semiconductor device and manufacture thereof