JPS59214265A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59214265A
JPS59214265A JP8857483A JP8857483A JPS59214265A JP S59214265 A JPS59214265 A JP S59214265A JP 8857483 A JP8857483 A JP 8857483A JP 8857483 A JP8857483 A JP 8857483A JP S59214265 A JPS59214265 A JP S59214265A
Authority
JP
Japan
Prior art keywords
insulating film
film
electrode
dirt
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8857483A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8857483A priority Critical patent/JPS59214265A/en
Publication of JPS59214265A publication Critical patent/JPS59214265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a semiconductor device, holding characteristics thereof to charges are excellent, by improving the quality of insulating film formed near an end section on the drain side of a floating gate electrode. CONSTITUTION:A first insulating film 23, a first gate electrode material film 24, a second insulating film 25 and a second gate electrode material film 26 are laminated on an electrode region in a P type semiconductor substrate 21 in succession. The films 26, 25, 24 are patterned in succession to form a second gate electrode 27, a second gate insulating film 28 and a first gate electrode 29. An insulating film is deposited on the whole surface, and an insulating film 30 is left on the side surfaces of the electrode 27, the film 28 and the electrode 29 through anisotropic etching. The exposed film 23 is etched selectively to shape a first gate insulating film 31. The ions of an N type impurity are implanted while utilizing the electrode 27 and the residual film 30 as masks. An impurity implanted layer is activated through heat treatment in an oxidizing atmosphere to form N type source and drain regions 32, 33. Accordingly, the holding characteristics of charges stored in the electrode 29 can be improved largely.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にPROM(
Programable Read 0nly Mem
ory)のような記憶機能を有する半導体装置の製造方
法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device (PROM).
Programmable Read Only Mem
The present invention relates to a method of manufacturing a semiconductor device having a memory function such as (ory).

〔発明の技術的背景〕[Technical background of the invention]

従来、 FROMは第1図(a)及び(b)に示すよう
な方法により製造されている。
Conventionally, FROM has been manufactured by the method shown in FIGS. 1(a) and 1(b).

まず、例えばP型シリコン基板I表面に通常の選択酸化
法により素子分離膜2を形成し、第1の熱酸化膜、第1
の多結晶シリコン膜、第2の熱酸化膜及び第2の多結晶
シリコン膜を順次積層した後、これらを順次・母ターニ
ングしてコントロールゲート電極3.第1ダート酸化膜
4゜フローティングゲート電極5及び第2ダート酸化膜
6からなる積層構造を形成する。この際、第2ダート酸
化膜4及び第1ダート酸化膜6はオーバーエッチングサ
してコントロールゲート電極3及びフローティングダー
ト電極5よりも寸法が小さくなっている。
First, for example, an element isolation film 2 is formed on the surface of a P-type silicon substrate I by a normal selective oxidation method, and a first thermal oxide film, a first
After sequentially stacking the polycrystalline silicon film, the second thermal oxide film, and the second polycrystalline silicon film, these are sequentially turned to form the control gate electrode 3. A laminated structure consisting of a first dirt oxide film 4° floating gate electrode 5 and a second dirt oxide film 6 is formed. At this time, the second dirt oxide film 4 and the first dirt oxide film 6 are over-etched and have smaller dimensions than the control gate electrode 3 and the floating dirt electrode 5.

次に、前記コントロールゲ−ト電極3をマスクとして利
用し、例えば75A、+−qイオン注入した後、熱処理
してN型ソース領域7及びN+fj1ドレイン領域8を
形成する(第1図(a)図示)。次いで、気相成長法に
より層間絶縁膜9を堆積する(同図(b)図示)。以下
、通常の工程に従い、コンタクトホールを開孔し、更に
AA膜を蒸着した後、・母ターニングしてAt配線を形
成し、FROMを製造する。
Next, using the control gate electrode 3 as a mask, for example, 75A, +-q ions are implanted, followed by heat treatment to form an N-type source region 7 and an N+fj1 drain region 8 (see FIG. 1(a)). (Illustrated). Next, an interlayer insulating film 9 is deposited by a vapor phase growth method (as shown in FIG. 3(b)). Thereafter, according to the usual steps, a contact hole is opened, an AA film is further deposited, and then an At wiring is formed by main turning, thereby manufacturing a FROM.

なお、層間絶縁膜9を堆積する前に熱酸化を行ない、コ
ントロールゲート電極3.フローティングダート電極5
及び基板1表面に熱酸化膜を形成する場合もある。
Note that before depositing the interlayer insulating film 9, thermal oxidation is performed to form the control gate electrode 3. floating dart electrode 5
A thermal oxide film may also be formed on the surface of the substrate 1.

〔背景技術の問題点〕[Problems with background technology]

上述した従来の方法を用いた場合、第1図(b)中X部
分を拡大して示す第2図中の斜線部分、すなわちフロー
ティングゲート電極5のドレイン領域8側の端部近傍に
気相成長により形成される層間絶縁膜9は分子の密度が
粗く、電気的絶縁性が劣っている。このため、フローテ
ィングゲト電極5内に蓄えられた電荷がドレイン領域8
側へ流出し易くなり、記憶保持という観点から信頼性上
好ましくない。
When the conventional method described above is used, the vapor phase growth occurs in the shaded area in FIG. 2, which is an enlarged view of the X portion in FIG. The interlayer insulating film 9 formed by the above method has a coarse molecular density and poor electrical insulation. Therefore, the charges stored in the floating gate electrode 5 are transferred to the drain region 8.
This tends to leak to the side, which is unfavorable from the viewpoint of memory retention and reliability.

また、第3図に示すように層間絶縁膜9を堆積する前(
(熱酸化を行なってフローティングダート電極5の露出
面上及びドレイン領域8表面上に熱酸化膜rof形成し
たとしても、やはり同図中の斜線部分の層間絶縁膜9の
膜質は悪く、電荷保持特性は若−干しか改善されない。
Furthermore, as shown in FIG. 3, before depositing the interlayer insulating film 9 (
(Even if thermal oxidation is performed to form a thermal oxide film rof on the exposed surface of the floating dirt electrode 5 and the surface of the drain region 8, the film quality of the interlayer insulating film 9 in the shaded area in the figure is still poor, and the charge retention property is is only slightly improved.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであり、フロー
ティングゲート電極のドレイン側の端部近傍に形成され
る絶縁膜の膜質を改善することにより電荷の保持特性の
良好な半導体装置を製造し得る方法を提供しようとする
ものである。
The present invention has been made in view of the above circumstances, and it is possible to manufacture a semiconductor device with good charge retention characteristics by improving the quality of the insulating film formed near the end of the floating gate electrode on the drain side. It is intended to provide a method.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は、まず半導体基板の素
子領域上に第1の絶縁膜、第1のダート電極材料膜、第
2の絶縁膜及び第2のダート電極材料膜を積層し、・ぐ
ターニングして第2のゲート電極(コントロールゲート
電極)、第2のダート絶縁膜及び第1のダート電極(フ
ローティングゲート電極)を形成した後、第1の絶縁膜
はそのままの状態で第2のゲート電極。
The method for manufacturing a semiconductor device of the present invention includes first stacking a first insulating film, a first dirt electrode material film, a second insulating film, and a second dirt electrode material film on an element region of a semiconductor substrate; After forming a second gate electrode (control gate electrode), a second dirt insulating film, and a first dirt electrode (floating gate electrode) by turning the first insulating film as it is, a second gate electrode is formed. gate electrode.

第2のダート絶縁膜及び第1のダート電極の側面にのみ
絶縁性被膜(例えばCVD酸化膜)を残存させ、次に露
出した第1の絶縁膜をエツチングして第1のゲート絶縁
膜を形成した後、ソース、ドレイン領域形成のためのイ
オン注入を行ない、更に酸化または窒素雰囲気中で熱処
理してソース、ドレイン領域を形成することを特徴とす
るものである。
An insulating film (e.g., CVD oxide film) is left only on the side surfaces of the second dirt insulating film and the first dirt electrode, and then the exposed first insulating film is etched to form a first gate insulating film. After that, ion implantation is performed to form the source and drain regions, and further heat treatment is performed in an oxidation or nitrogen atmosphere to form the source and drain regions.

こうした方法によれば、第1のダート電極(フローティ
ング電極)のドレイン領域側の端部近傍に存在する絶縁
膜は第1のダート絶縁膜、及び側面に残存した絶縁性被
膜と第1のダート電極との間で成長した熱酸化膜である
ので膜質が良好であり、電荷の保持特性を改善すること
ができる。
According to this method, the insulating film existing near the end of the first dirt electrode (floating electrode) on the drain region side is the first dirt insulating film, and the insulating film remaining on the side surface and the first dirt electrode Since it is a thermally oxidized film grown between the two, the film quality is good and the charge retention characteristics can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第4図(a)〜(f) k参照
して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 4(a) to (f)k.

まず、P型シリコン基板21表面に通常の選択酸化法に
より素子分離膜22を形成した後、素子分離膜22によ
り囲まれた素子領域表面に第1の熱酸化膜23を形成す
る。次に、この第1の熱酸化膜23上に第1の多結晶シ
lJコン膜24、第2の熱酸化膜25及び第2の多結晶
シリコン膜26を順次積層する(第4図(−)図示)。
First, an element isolation film 22 is formed on the surface of a P-type silicon substrate 21 by a normal selective oxidation method, and then a first thermal oxide film 23 is formed on the surface of an element region surrounded by the element isolation film 22. Next, on this first thermal oxide film 23, a first polycrystalline silicon film 24, a second thermal oxide film 25, and a second polycrystalline silicon film 26 are sequentially laminated (see FIG. ).

つづいて、第2の多結晶シリコン膜26上に図示しない
ホトレジストパターンを形成した後、異方性エツチング
により第2の多結晶シリコン膜26.第2の熱酸化膜2
5及び第1の多結晶シリコン膜24を順次i4ターニン
グしてコントロールダート電極27.第2のダート酸化
膜28及びフローティングゲート電極29を形成する(
同図(b)図示)。
Subsequently, a photoresist pattern (not shown) is formed on the second polycrystalline silicon film 26, and then the second polycrystalline silicon film 26. Second thermal oxide film 2
5 and the first polycrystalline silicon film 24 are sequentially i4 turned to form a control dirt electrode 27. Forming a second dirt oxide film 28 and floating gate electrode 29 (
Figure (b) shown).

次いで、第1の熱酸化膜23はそのままの状態で全面に
例えば2000XのCVD酸化膜を堆積した後、異方性
エツチングによりこのCVD酸化膜をその膜厚分エツチ
ングすることによりコントロールダート電極27.第2
のダート酸化膜2B及びフローティングゲート電極29
の側面にのみ残存CVD酸化膜30.30f形成する(
同図(c)図示)。つづいて、再び異方性エツチングに
より露出した第1の熱酸化膜23をエツチングして第1
のグー1−酸化膜3Iを形成する。
Next, a CVD oxide film of, for example, 2000X is deposited on the entire surface of the first thermal oxide film 23 as it is, and then this CVD oxide film is etched to the same thickness by anisotropic etching to form the control dirt electrode 27. Second
dirt oxide film 2B and floating gate electrode 29
A remaining CVD oxide film 30.30f is formed only on the side surfaces of (
Figure (c) shown). Subsequently, the first thermal oxide film 23 exposed by anisotropic etching is etched again.
A goo 1-oxide film 3I is formed.

この際、前記残存CVD酸化膜30+goもその上端か
ら第1の熱酸化膜23の膜厚分程度エツチングされる。
At this time, the remaining CVD oxide film 30+go is also etched from its upper end by about the thickness of the first thermal oxide film 23.

つづいて、コントロールゲート電極27及び残存CVD
酸化膜30.30をマスクとして利用し、例えば75A
s+全イオン注入する(同図(d)図示)。
Next, control gate electrode 27 and remaining CVD
Using the oxide film 30.30 as a mask, for example, 75A
All s+ ions are implanted (as shown in the same figure (d)).

次いで、1000℃の酸化雰囲気中で熱処理を行ない、
前記砒素イオン注入層を活性化してN+型ソース領域3
2及びN+型ドレイン領域33を形成する。この際、露
出した基板21表面及びコントロールダート電極27の
露出面には熱酸化膜34が形成され、またコントロール
ダート電極27及びフローティングゲート電極29の残
存CVD酸化膜3θ、3θによって覆われた部分でもそ
の表面に熱酸化膜が成長する(同図(e)図示)。つづ
いて、全面に層間絶縁膜としてPSG膜35を堆積した
後、コンタクトボール36 、、? 6全開孔する。更
に、全面K At膜を蒸着した後、パターニングしてA
t配線:t y 、 、97を形成し、FROM半導体
装置を製造する(同図(f)図示)。
Next, heat treatment is performed in an oxidizing atmosphere at 1000°C,
The arsenic ion implantation layer is activated to form an N+ type source region 3.
2 and an N+ type drain region 33 are formed. At this time, a thermal oxide film 34 is formed on the exposed surface of the substrate 21 and the exposed surface of the control dirt electrode 27, and also on the portions covered by the remaining CVD oxide films 3θ, 3θ of the control dirt electrode 27 and floating gate electrode 29. A thermal oxide film grows on the surface (as shown in FIG. 2(e)). Subsequently, after depositing a PSG film 35 as an interlayer insulating film on the entire surface, contact balls 36,...? 6. Open the entire hole. Furthermore, after depositing a K At film on the entire surface, it is patterned to form an A
A t-wiring: ty, , 97 is formed to manufacture a FROM semiconductor device (as shown in FIG. 2(f)).

しかして、本発明方法によれば第4図(c)図示の工程
で第1の熱酸化膜23はそのままの状態でフローティン
グゲ−ト電極29の側面に残存CVD酸化膜3oを形成
し、同図(d)図示の工程で化雰囲気中で熱処理全行な
うので、第5図に示す如くフローティングダート電極2
9の端部とドレイン領域33との間には電気的絶縁性の
最も優れた単結晶シリコンの酸化膜である第1のゲート
酸化膜3Iが、フローティングゲート電極29の側面に
は多結晶シリコンの熱酸化膜38と緻密化さ−れたCV
D酸化膜30′がそれぞれ存在する。この後、層間絶縁
膜であるPSG膜35を堆積すると、膜質の劣る部分(
第5図中の斜線部)はフローティングゲート電極29の
端部からはかなり離れた位置に形成される。すなわぢ、
フローティングゲ−ト電極29のドレイン領域33側の
端部近傍には膜質の良好な絶縁膜だけが存在する。この
結果、第4図(f)図示(7) PROM 半導体装置
ではフローティングク゛−ト29内に蓄積された電荷の
保持特性は従来の方法により得られたものと比較して2
倍以上向上することができた。
According to the method of the present invention, in the step shown in FIG. 4(c), a residual CVD oxide film 3o is formed on the side surface of the floating gate electrode 29 while the first thermal oxide film 23 remains as it is. (d) In the illustrated step, the entire heat treatment is performed in a chemical atmosphere, so the floating dirt electrode 2 is formed as shown in FIG.
A first gate oxide film 3I, which is a monocrystalline silicon oxide film with the best electrical insulation, is formed between the end of the floating gate electrode 29 and the drain region 33, and a polycrystalline silicon oxide film 3I is formed on the side surfaces of the floating gate electrode 29. Thermal oxide film 38 and densified CV
A D oxide film 30' is present in each case. After that, when the PSG film 35, which is an interlayer insulating film, is deposited, the parts with poor film quality (
The shaded area in FIG. 5) is formed at a position quite far from the end of the floating gate electrode 29. Sunawaji,
Only an insulating film of good quality exists near the end of the floating gate electrode 29 on the drain region 33 side. As a result, in the PROM semiconductor device shown in (7) in FIG.
I was able to improve by more than double.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の半導体装置の製造方法によ
れば、フローティングダート電極内に蓄積された電荷の
保持特性を大幅に向上できるという顕著な効果を奏する
ものである。
As described in detail above, the method for manufacturing a semiconductor device of the present invention has the remarkable effect of greatly improving the retention characteristics of the charges accumulated in the floating dart electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)及び(b)は従来のFROM半導体装置の
製造方法を示す断面図、第2図及び第3図は第1図(b
)のX部分の状態全拡大して示す説明図、第4図(a)
〜(f)は本発明の実施例におけるFROM半導体装置
の製造方法を示す断面図、第5図は同半導体装置の一部
の状態を拡大L7て示す説明図である。 21・・・P型シリコン基板、22・・・素子分離膜。 23・・・第1の熱酸化膜、24・・・第1の多結晶シ
リコン膜、25・・・第2の熱酸化膜、26・・・第2
の多結晶シリコン膜、27・・・コントロールゲート電
極、28・・・第2のゲート酸化膜、29・・・フロー
ティングダート電極、3o・・・残存CVD酸化膜、3
0′・・・緻密化されたCVD酸化膜、31・・・第1
のダート酸化膜、32・・・N+型ソース領域、33・
・・N+型ドレイン領域、34.38・・・熱酸化膜、
35・・・PSG膜、36・・・コンタクトホール、3
7・・・At配線。 第1図 第2図      第3図 第4図
FIGS. 1(a) and (b) are cross-sectional views showing a conventional FROM semiconductor device manufacturing method, and FIGS.
) Explanatory diagram showing the state of the X part in full enlargement, Figure 4 (a)
-(f) are cross-sectional views showing a method of manufacturing a FROM semiconductor device according to an embodiment of the present invention, and FIG. 5 is an explanatory view showing a state of a part of the same semiconductor device at an enlarged scale L7. 21... P-type silicon substrate, 22... element isolation film. 23... First thermal oxide film, 24... First polycrystalline silicon film, 25... Second thermal oxide film, 26... Second
27... Control gate electrode, 28... Second gate oxide film, 29... Floating dart electrode, 3o... Residual CVD oxide film, 3
0'... Dense CVD oxide film, 31... First
dirt oxide film, 32...N+ type source region, 33.
...N+ type drain region, 34.38...thermal oxide film,
35... PSG film, 36... Contact hole, 3
7...At wiring. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の素子領域上に第1の絶縁膜、第
1のダート電極材料膜、第2の絶縁膜及び第2のゲート
電極材料膜を順次積層する工程と、前記第2のダート電
極材料膜、第2の絶縁膜及び第1のダート電極材料膜を
順次パターニングして第2のゲート電極、第2のゲート
絶縁膜及び第1のダート電極を形成する工程と、全面に
絶縁性被膜を堆積した後、異方性エツチングにより第2
のダート電極、第2のダート絶縁膜及び第1のダート電
極側面に前記絶縁性被膜を残存させる工程と、露出した
前記第1の絶縁膜を選択的にエツチングして第1のダー
ト絶縁膜を形成する工程と、前記第2のダート電極及び
残存した絶縁性被膜にマスクとして利用し、基板と逆導
電型の不純物をイオン注入する工程と、酸化雰囲気中で
熱処理を行ない、前記不純物イオン注入層を活性化して
基板と逆導電型のソース、ドレイン領域を形成する工程
とを具備したことを特徴とする半導体装置の製造方法。
a step of sequentially laminating a first insulating film, a first dart electrode material film, a second insulating film, and a second gate electrode material film on an element region of a semiconductor substrate of one conductivity type; A step of sequentially patterning an electrode material film, a second insulating film, and a first dirt electrode material film to form a second gate electrode, a second gate insulating film, and a first dirt electrode, and insulating the entire surface. After depositing the coating, a second
a step of leaving the insulating film on the side surfaces of the dirt electrode, the second dirt insulating film, and the first dirt electrode, and selectively etching the exposed first insulating film to form the first dirt insulating film. forming the second dirt electrode and the remaining insulating film as a mask, and ion-implanting an impurity having a conductivity type opposite to that of the substrate; and performing heat treatment in an oxidizing atmosphere to form the impurity ion-implanted layer. 1. A method of manufacturing a semiconductor device, comprising the step of activating a substrate to form source and drain regions of a conductivity type opposite to that of a substrate.
JP8857483A 1983-05-20 1983-05-20 Manufacture of semiconductor device Pending JPS59214265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8857483A JPS59214265A (en) 1983-05-20 1983-05-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8857483A JPS59214265A (en) 1983-05-20 1983-05-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59214265A true JPS59214265A (en) 1984-12-04

Family

ID=13946622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8857483A Pending JPS59214265A (en) 1983-05-20 1983-05-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59214265A (en)

Similar Documents

Publication Publication Date Title
JPS6010773A (en) Method of forming 1-element fet-memory capacitor circuit
GB2080024A (en) Semiconductor Device and Method for Fabricating the Same
JPS58116775A (en) Method and device for producing mesfet device
JPH0669099B2 (en) MIS type semiconductor device
JP3222234B2 (en) Method for manufacturing semiconductor device
JPS6156445A (en) Semiconductor device
JPS6273774A (en) Manufacture of semiconductor memory
JP2616706B2 (en) Semiconductor device and manufacturing method thereof
JPS59214265A (en) Manufacture of semiconductor device
JPS6272171A (en) Semiconductor memory
JPH0715954B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JPH0513770A (en) Manufacture of nonvolatile semiconductor memory device
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JP2707536B2 (en) Method for manufacturing semiconductor device
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JP2604021B2 (en) Method for manufacturing semiconductor device
JP2654175B2 (en) Method for manufacturing semiconductor device
JPS60113461A (en) Manufacture of semiconductor device
JPS61239671A (en) Manufacture of semiconductor memory device
JP2603088B2 (en) Semiconductor device
JP2720592B2 (en) Method for manufacturing semiconductor device
JPH01244659A (en) Semiconductor device
JP2913681B2 (en) Semiconductor integrated circuit device
JPS6154661A (en) Manufacture of semiconductor device
JPS59217371A (en) Manufacture of semiconductor device