JPH01244659A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01244659A
JPH01244659A JP63072276A JP7227688A JPH01244659A JP H01244659 A JPH01244659 A JP H01244659A JP 63072276 A JP63072276 A JP 63072276A JP 7227688 A JP7227688 A JP 7227688A JP H01244659 A JPH01244659 A JP H01244659A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
layer
silicon oxide
silicon layer
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63072276A
Other languages
Japanese (ja)
Inventor
Kiyouzou Sekiya
関家 恭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63072276A priority Critical patent/JPH01244659A/en
Publication of JPH01244659A publication Critical patent/JPH01244659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To inhibit the grain growth of a crystal, and to improve the reliability of a semiconductor device without changing the resistance value of a resistance element by forming multilayer structure, in which polycrystalline silicon layers and thin silicon oxide films are laminated alternately, as the resistance element. CONSTITUTION:A polycrystalline silicon layer 6 is deposited onto the surface including a contact hole through a CVD method, and an silicon oxide layer 7 is shaped onto the surface of the polycrystalline silicon layer 6 in a dry oxygen atmosphere at 600 deg.C. A polycrystalline silicon layer 8 is deposited onto the silicon oxide layer 7 through the CVD method. The polycrystalline silicon layer 8, the silicon oxide layer 7 and the polycrystalline silicon layer 6 are etched selectively in succession, and a resistance element connected to a gate electrode 4 in the contact hole is shaped. Since there is the silicon oxide layer 7 at that time, the growth of crystal grains as a post-process is inhibited, and the change of a resistance value is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に抵抗負荷型スタティッ
クRAMを有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a resistive load type static RAM.

〔従来の技術〕[Conventional technology]

抵抗負荷型のMOSスタティックRAMは高集積化、高
速化に適しており、負荷素子として多結晶シリコン層が
一般的に用いられている。多結晶シリコン層は、化学気
相成長法(以下CVD法と記す)により容易に形成され
、膜厚均一性及びその再現性、パターン上の被覆性等に
優れている他、加工性も良く、また、膜厚を薄くするこ
とで高抵抗が容易に得られるという利点がある。
A resistive load type MOS static RAM is suitable for high integration and high speed, and a polycrystalline silicon layer is generally used as a load element. Polycrystalline silicon layers are easily formed by chemical vapor deposition (hereinafter referred to as CVD), and have excellent film thickness uniformity, reproducibility, pattern coverage, etc., as well as good processability. Another advantage is that high resistance can be easily obtained by reducing the film thickness.

第3図(a)〜(c)は従来の半導体装置の製造方法を
説明するための工程順に示した半導体チップの断面図で
ある。
FIGS. 3(a) to 3(c) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a semiconductor device.

第3図(a)に示すように、シリコン基板1の上に1.
0μmの素子分離用のフィールド絶縁膜2を選択的に設
けて素子形成領域を区画し、熱酸化法により前記素子形
成領域の表面を酸化してゲート絶縁膜3を設ける0次に
、ゲート絶縁膜3を含む表面にCVD法により5 X 
10 ”C11−’程度のリンをドープした多結晶シリ
コン層を0.4μmの厚さに堆積し、ホトリソグラフィ
技術及びReactive Ion Etching 
(以下RIEと記す)により前記多結晶シリコン層を選
択的にエツチングしてゲート電極4を形成する0次に、
ゲート電極4を含む表面にCVD法によりPSGff5
を0.4μmの厚さに堆積させた後、これを選択的にエ
ツチングしてゲート電極4のコンタクト孔を設ける。
As shown in FIG. 3(a), 1.
A field insulating film 2 of 0 μm for element isolation is selectively provided to demarcate an element formation region, and the surface of the element formation region is oxidized by a thermal oxidation method to form a gate insulating film 3. Next, a gate insulating film 3 is formed. 5X by CVD method on the surface containing 3
10 A phosphorus-doped polycrystalline silicon layer of about 10"C11-' was deposited to a thickness of 0.4 μm, and photolithography technology and reactive ion etching were performed.
The polycrystalline silicon layer is selectively etched by RIE (hereinafter referred to as RIE) to form the gate electrode 4.
PSGff5 is deposited on the surface including the gate electrode 4 by CVD method.
is deposited to a thickness of 0.4 μm, and then selectively etched to form a contact hole for the gate electrode 4.

次に、第3図(b)に示すように、前記コンタクト孔を
含む表面にCVD法により多結晶シリコン層16を0.
1μmの厚さに堆積し、これを選択的にエツチングして
ゲート電極4と電気的に接続し、且つ、PSG膜5の上
に延在する抵抗層を形成する。
Next, as shown in FIG. 3(b), a polycrystalline silicon layer 16 is formed on the surface including the contact hole by a CVD method.
It is deposited to a thickness of 1 μm and selectively etched to form a resistive layer electrically connected to the gate electrode 4 and extending over the PSG film 5.

次に、第3図(c)に示すように、多結晶シリコン層1
6を含む表面にCVD法により窒化シリコン膜9を0.
1μmの厚さに堆積させた後、配線形成領域上の窒化シ
リコン膜9を選択的に除去する0次に、窒化シリコン膜
9をマスクとしてリンイオンを加速エネルギー60ke
V、ドーズ量2 X 1016cm−2でイオン注入し
、前記抵抗層と接続する配線層11を形成する0次に、
CVD法でPSG膜10を0.5μmの厚さに堆積し、
これを選択的にエツチングして配線層11のコンタクト
孔を設け、前記コンタクト孔の配線層11と電気的に接
続するアルミニウム配線12を選択的に形成する。
Next, as shown in FIG. 3(c), a polycrystalline silicon layer 1
A silicon nitride film 9 is deposited on the surface including 6 by CVD method.
After depositing to a thickness of 1 μm, the silicon nitride film 9 on the wiring formation area is selectively removed.Next, phosphorus ions are accelerated using the silicon nitride film 9 as a mask at an energy of 60ke.
ion implantation at a dose of 2 x 1016 cm-2 to form a wiring layer 11 connected to the resistance layer.
A PSG film 10 was deposited to a thickness of 0.5 μm using the CVD method,
This is selectively etched to form a contact hole in the wiring layer 11, and an aluminum wiring 12 electrically connected to the wiring layer 11 in the contact hole is selectively formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置は、多結晶シリコン層で構成
される抵抗層が600℃程度の温度で堆積された後、拡
散層形成時の熱処理、眉間絶縁膜のりフロー時の熱処理
等の900℃を超える高温の熱処理を受けることによっ
て、多結晶シリコン層の結晶ダレインが成長して抵抗値
が低下するため、所望の抵抗値を維持できないという問
題点がある。この為、IMビット以上の大容量SRAM
で必要とされる高抵抗(数TΩ)の負荷素子を、従来の
多結晶シリコン層では実現できなかった。
In the conventional semiconductor device described above, after a resistive layer made of a polycrystalline silicon layer is deposited at a temperature of about 600°C, heat treatment at 900°C is performed, such as heat treatment during formation of a diffusion layer and heat treatment during flow of an insulating film between the eyebrows. There is a problem in that a desired resistance value cannot be maintained because the crystal dalein of the polycrystalline silicon layer grows and the resistance value decreases due to heat treatment at an exceedingly high temperature. For this reason, large capacity SRAM with more than IM bit
A load element with high resistance (several TΩ) required for this could not be realized using conventional polycrystalline silicon layers.

本発明の目的は、高温処理を行っても抵抗値が変化しな
い負荷素子を有する高信頼性の半導体装置を提供するこ
とにある。
An object of the present invention is to provide a highly reliable semiconductor device having a load element whose resistance value does not change even when subjected to high temperature processing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、半導体基板に設けた半導体素子
に接続して設けた抵抗素子を有する半導体装置において
、前記抵抗素子が多結晶シリコン層と少くとも一層の酸
化シリコン層とを交互に積層して設けた多層構造を有し
ている。
A semiconductor device of the present invention includes a resistor element connected to a semiconductor element provided on a semiconductor substrate, wherein the resistor element is formed by alternately laminating polycrystalline silicon layers and at least one silicon oxide layer. It has a multi-layered structure.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図である。
FIG. 1 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a manufacturing method according to a first embodiment of the present invention.

まず、第1図(a)に示すように、シリコン基板1の上
に素子分離用のフィールド絶縁膜2を選択的に形成して
素子形成領域を区画する0次に、熱酸化法により前記素
子形成領域の表面にゲート絶縁膜3を設ける6次に、ゲ
ート絶縁膜3を含む表面にCVD法により5 X 10
 ”C11−’程度のリンをドープした多結晶シリコン
層を0.4μmの厚さに堆積し、これをホトリソグラフ
ィー技術及びRIEによって選択的にエツチングしてゲ
ート電極4を形成する0次に、ゲート電極4を含む表面
にCVD法によりPSG膜5を0.4μmの厚さに堆積
した後、ゲート電極4Qコンタクト孔を設ける0次に、
前記コンタクト孔を含む表面にCVD法により多結晶シ
リコン層6を70nmの厚さに堆積し、600℃の乾燥
酸素雰囲気中で多結晶シリコン層6の表面に2〜10n
mの厚さの酸化シリコン層7を形成する。更に酸化シリ
コン層7の上にCVD法により多結晶シリコン層8を7
0nmの厚さに堆積する。
First, as shown in FIG. 1(a), a field insulating film 2 for element isolation is selectively formed on a silicon substrate 1 to demarcate an element formation region. A gate insulating film 3 is provided on the surface of the formation region.Next, the surface including the gate insulating film 3 is coated with a 5×10
A polycrystalline silicon layer doped with phosphorus of approximately "C11-" is deposited to a thickness of 0.4 μm, and this is selectively etched by photolithography and RIE to form the gate electrode 4. After depositing a PSG film 5 to a thickness of 0.4 μm on the surface including the electrode 4 by the CVD method, a contact hole for the gate electrode 4Q is formed.
A polycrystalline silicon layer 6 is deposited to a thickness of 70 nm on the surface including the contact hole by the CVD method, and 2 to 10 nm thick is deposited on the surface of the polycrystalline silicon layer 6 in a dry oxygen atmosphere at 600°C.
A silicon oxide layer 7 having a thickness of m is formed. Further, a polycrystalline silicon layer 8 is formed on the silicon oxide layer 7 by the CVD method.
Deposit to a thickness of 0 nm.

次に、第1図(b)に示すように、多結晶シリコン層8
と酸化シリコン層7及び多結晶シリコン層6を順次選択
的にエツチングして前記コンタクト孔のゲート電極4と
接続する抵抗素子を形成する。ここで、酸化シリコン層
7が存在するために後工程の熱処理によって多結晶シリ
コン層6.8の結晶ダレインが成長するのを抑制して抵
抗値の変化を押えることができる。また、乾燥酸素雰囲
気中で多結晶シリコン層6の表面に設けた薄い酸化シリ
コン層7はウィークスポット(weak 5pot)が
多く、電界強度との関係もあり、絶縁膜としての働きは
無視できる状態にあることが、昭和59年応用物理学会
秋季大会予稿集14a−B−8及び14a−B−9にも
紹介されているように、知られている。
Next, as shown in FIG. 1(b), a polycrystalline silicon layer 8
Then, the silicon oxide layer 7 and the polycrystalline silicon layer 6 are selectively etched in order to form a resistance element connected to the gate electrode 4 of the contact hole. Here, due to the presence of the silicon oxide layer 7, it is possible to suppress the growth of the crystalline drain of the polycrystalline silicon layer 6.8 by heat treatment in a subsequent step, thereby suppressing the change in resistance value. In addition, the thin silicon oxide layer 7 provided on the surface of the polycrystalline silicon layer 6 in a dry oxygen atmosphere has many weak spots (weak spots), which is also related to the electric field strength, and its function as an insulating film can be ignored. One thing is known, as introduced in the 1981 Japan Society of Applied Physics Autumn Conference Proceedings 14a-B-8 and 14a-B-9.

次に、第1図(c)に示すように、前記抵抗素子を含む
表面にCVD法により窒化シリコン膜9を0.1μmの
厚さに堆積し、選択的にエツチングして前記抵抗素子の
配線形成領域を含む部分を露出させる。次に、窒化シリ
コン膜9をマスクとして前記配線形成領域にリンイオン
を加速エネルギー60keV、ドーズ量I X 101
6C11−”の条件でイオン注入して配線層11を形成
する0次に、CVD法によりPSG膜10を0.5μm
の厚さに堆積し、選択的にエツチングして配線層11の
コンタクト孔を形成する0次に前記コンタクト孔を含む
表面にアルミニウム層を堆積し、これを選択的にエツチ
ングして配線層11とコンタクトするアルミニウム配線
12を形成する。
Next, as shown in FIG. 1(c), a silicon nitride film 9 is deposited to a thickness of 0.1 μm on the surface including the resistor element by CVD, and selectively etched to form the wiring of the resistor element. Expose the portion including the formation area. Next, using the silicon nitride film 9 as a mask, phosphorus ions are accelerated into the wiring formation region at an energy of 60 keV and a dose of I x 101.
The wiring layer 11 is formed by ion implantation under the conditions of 6C11-'', and then the PSG film 10 is deposited to a thickness of 0.5 μm using the CVD method.
Then, an aluminum layer is deposited on the surface including the contact hole and selectively etched to form a contact hole in the wiring layer 11. An aluminum wiring 12 for contact is formed.

第2図(a)〜(C)は本発明の第2の実施例の製造方
法を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 2(a) to 2(C) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the second embodiment of the present invention.

第2図<a)に示すように、第1図(a)の多結晶シリ
コン層8を形成するまでの工程を第1の実施例と全く同
じ工程で形成した後、600℃の乾燥雰囲気中で多結晶
シリコン層8の表面に2〜10nmの厚さの酸化シリコ
ンM13を形成し、酸化シリコン膜13の上にCVD法
により多結晶シリコン層14を0.12μmの厚さに堆
積する0次に、ホトリソグラフィ技術及びRIE法によ
り多結晶シリコン層14、酸化シリコン層13、多結晶
シリコン層8、酸化シリコンII7、多結晶シリコン層
6を選択的に順次エツチングして多結晶シリコン層及び
酸化シリコン層を交互に積層した多層構造の抵抗素子を
形成する。
As shown in FIG. 2<a), after forming the polycrystalline silicon layer 8 in FIG. 1(a) in exactly the same steps as in the first embodiment, A silicon oxide M13 having a thickness of 2 to 10 nm is formed on the surface of the polycrystalline silicon layer 8, and a polycrystalline silicon layer 14 is deposited to a thickness of 0.12 μm on the silicon oxide film 13 by the CVD method. Then, the polycrystalline silicon layer 14, the silicon oxide layer 13, the polycrystalline silicon layer 8, the silicon oxide II 7, and the polycrystalline silicon layer 6 are selectively and sequentially etched using photolithography technology and RIE method to form the polycrystalline silicon layer and the silicon oxide layer. A resistor element having a multilayer structure in which layers are alternately laminated is formed.

次に、第2図(b)に示すように、全面にホトレジスト
膜15を形成してバターニングし、前記抵抗素子の配線
形成領域を覆うパターンを形成する。
Next, as shown in FIG. 2(b), a photoresist film 15 is formed on the entire surface and patterned to form a pattern covering the wiring formation area of the resistor element.

次に、第2図(C)に示すように、ホトレジスト膜15
をマスクとして多結晶シリコンN14をRIE法により
エツチングし、配線形成領域のみに多結晶シリコン層1
4を残す、このとき酸化シリコン層13がエツチングス
トッパとなり制御よく多結晶シリコン層14のみを除去
でき、高抵抗領域として残すべき部分は薄く、低抵抗の
配線領域となるべき部分は厚い多結晶シリコン層14が
形成される。次に、リンイオンを加速エネルギー160
keV、ドーズ量2 X 1016C11−”の条件で
イオン注入する。このとき、高加速エネルギーにより前
記抵抗素子の薄い領域はイオンが突抜けるためドープさ
れず、厚い領域のみドープされて配線層11が形成され
る。以後、眉間絶縁膜としてのPSGJliを形成し、
コンタクト孔を設け、アルミニウム配線を形成する工程
を第1の実施例と同様に行い半導体装置を得る。
Next, as shown in FIG. 2(C), the photoresist film 15
Using this as a mask, polycrystalline silicon N14 is etched by the RIE method to form a polycrystalline silicon layer 1 only in the wiring formation region.
At this time, the silicon oxide layer 13 acts as an etching stopper and only the polycrystalline silicon layer 14 can be removed with good control.The part that should be left as a high-resistance region is thin, and the part that should be a low-resistance wiring region is made of thick polycrystalline silicon. Layer 14 is formed. Next, accelerate the phosphorus ions with an energy of 160
keV and a dose of 2 x 1016C11-''. At this time, the thin region of the resistor element is not doped because the ions penetrate through the high acceleration energy, and only the thick region is doped to form the wiring layer 11. After that, PSGJli is formed as an insulating film between the eyebrows,
A semiconductor device is obtained by forming contact holes and forming aluminum wiring in the same manner as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、抵抗素子として多結晶シ
リコン層と薄い酸化シリコン膜を交互に積層した多層構
造にしたことにより、抵抗素子形成後の高温熱処理工程
(900℃程度)を経た後も、多結晶シリコン層のシリ
コン原子の移動がシリコン酸化膜によって阻止されるた
め、結晶のグレイン成長を抑制し、抵抗素子の抵抗値を
変化させることが無く半導体装置の信頼性を向上させる
という効果を有する。
As explained above, the present invention has a multilayer structure in which polycrystalline silicon layers and thin silicon oxide films are alternately laminated as a resistance element, so that even after a high temperature heat treatment process (approximately 900°C) after the formation of the resistance element, Since the movement of silicon atoms in the polycrystalline silicon layer is blocked by the silicon oxide film, crystal grain growth is suppressed, and the reliability of semiconductor devices is improved without changing the resistance value of the resistor element. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)及び第2図(a)〜(C)は本発
明の第1及び第2の実施例の製造方法を説明するための
工程順に示した半導体チップの断面図、第3図(a)〜
(C)は従来の半導体装置の製造方法を説明するための
工程順に示した半導体チップの断面図である。 1・・・シリコン基板、2・・・フィールド絶縁膜、3
・・・ゲート絶縁膜、4・・・ゲート電極、5・・・P
SG膜、6・・・多結晶シリコン層、7・・・酸化シリ
コン層、8・・・多結晶シリコン層、9・・・窒化シリ
コン膜、10・・・PSG膜、11・・・配線層、12
・・・アルミニウム配線、13・・・酸化シリコン層、
14・・・多結晶シリコン層、15・・・ホトレジスト
膜、16・・・多結晶シリコン層。
1(a)-(c) and FIG. 2(a)-(C) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the first and second embodiments of the present invention. , Figure 3(a)~
(C) is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a semiconductor device. 1... Silicon substrate, 2... Field insulating film, 3
...Gate insulating film, 4...Gate electrode, 5...P
SG film, 6... Polycrystalline silicon layer, 7... Silicon oxide layer, 8... Polycrystalline silicon layer, 9... Silicon nitride film, 10... PSG film, 11... Wiring layer , 12
...Aluminum wiring, 13...Silicon oxide layer,
14... Polycrystalline silicon layer, 15... Photoresist film, 16... Polycrystalline silicon layer.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に設けた半導体素子に接続して設けた抵抗素
子を有する半導体装置において、前記抵抗素子が多結晶
シリコン層と少くとも一層の酸化シリコン層とを交互に
積層して設けた多層構造を有することを特徴とする半導
体装置。
In a semiconductor device having a resistive element connected to a semiconductor element provided on a semiconductor substrate, the resistive element has a multilayer structure in which polycrystalline silicon layers and at least one silicon oxide layer are alternately laminated. A semiconductor device characterized by:
JP63072276A 1988-03-25 1988-03-25 Semiconductor device Pending JPH01244659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072276A JPH01244659A (en) 1988-03-25 1988-03-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072276A JPH01244659A (en) 1988-03-25 1988-03-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01244659A true JPH01244659A (en) 1989-09-29

Family

ID=13484601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072276A Pending JPH01244659A (en) 1988-03-25 1988-03-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01244659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125022A (en) * 1994-10-28 1996-05-17 Nec Corp Manufacture of semiconductor device
US6287915B1 (en) 1997-11-19 2001-09-11 Nec Corporation Semiconductor device and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125022A (en) * 1994-10-28 1996-05-17 Nec Corp Manufacture of semiconductor device
US6287915B1 (en) 1997-11-19 2001-09-11 Nec Corporation Semiconductor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3665426B2 (en) Manufacturing method of semiconductor device
JPH0465548B2 (en)
US5053349A (en) Method for interconnecting semiconductor devices
US4755482A (en) Making semiconductor device on insulating substrate by forming conductive layers on both major surfaces
JP3344786B2 (en) Method for manufacturing capacitor electrode of semiconductor memory cell
JPH01244659A (en) Semiconductor device
JPH0324727A (en) Manufacture of semiconductor device
JP2538830B2 (en) A method for partial oxidation of silicon using a ceramic barrier layer.
JPH0567744A (en) Semiconductor device
JPH06112149A (en) Manufacture of semiconductor device
JP3371196B2 (en) Pattern formation method
JP2000353796A (en) Semiconductor device and manufacture thereof
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPH039572A (en) Manufacture of semiconductor device
JPH1098187A (en) Manufacture of semiconductor device
KR0166856B1 (en) Method of fabricating semiconductor device
JPH06252411A (en) Manufacture for semiconductor memory device
JPS61239671A (en) Manufacture of semiconductor memory device
JPS59214265A (en) Manufacture of semiconductor device
JPS58132962A (en) Semiconductor device
JPS5817662A (en) Manufacture of semiconductor device
JPS6116575A (en) Manufacture of semiconductor device
JPH05183156A (en) Semiconductor device and fabrication thereof
JPH0573348B2 (en)
JPH0613605A (en) Semiconductor device and manufacture thereof