JPS59205713A - Crystallization of semiconductor thin film - Google Patents

Crystallization of semiconductor thin film

Info

Publication number
JPS59205713A
JPS59205713A JP58081251A JP8125183A JPS59205713A JP S59205713 A JPS59205713 A JP S59205713A JP 58081251 A JP58081251 A JP 58081251A JP 8125183 A JP8125183 A JP 8125183A JP S59205713 A JPS59205713 A JP S59205713A
Authority
JP
Japan
Prior art keywords
thin film
layer
semiconductor thin
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58081251A
Other languages
Japanese (ja)
Other versions
JPH0614511B2 (en
Inventor
Takashi Tomita
尚 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58081251A priority Critical patent/JPH0614511B2/en
Publication of JPS59205713A publication Critical patent/JPS59205713A/en
Publication of JPH0614511B2 publication Critical patent/JPH0614511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams

Abstract

PURPOSE:To prevent a smelted semiconductor thin film from flowing out even if a little overheated condition exists by a method wherein a transition layer in which chemical quantities are varied is formed between the semiconductor thin film and two semiconductor oxide layers. CONSTITUTION:After an SiO2 layer 15 and a polycrystalline Si thin film 16 are deposited on a quartz plate, the thin film 16 is subjected to the thermal-oxidization to form a transition layer 17 in which chemical quantities are varied in the surface part of the film 16. Then an SiO2 layer 18 and an Si3N4 film 19 are deposited on the transition layer 17 to form a substrate 20. By using the substrate 20 of this composition, when the substrate 20 is heated to recrystallize the film 16, the smelted semiconductor thin film is prevented from flowing out even if a little overheated condition exists because the layer 17 is formed. With this constitution, a large area crystal thin film with excellent crystallinity can be obtained and the heating temperature at the time of recrystallization can easily be controlled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多結晶薄膜、非晶質薄膜を加熱溶融して再結
晶化させるいわゆるゾーンメルト法における半導体薄膜
の結晶化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for crystallizing a semiconductor thin film using the so-called zone melt method, in which a polycrystalline thin film or an amorphous thin film is melted and recrystallized by heating.

背景技術とその問題点 絶縁基板又は絶縁層上に被着形成した多結晶又は非晶質
の半導体薄膜(例えばシリコン薄膜)をゾーンメルト法
により結晶化(いわゆる単結晶化)して半導体結晶薄膜
を作シ、この結晶薄膜を用いて半導体集積回路等を製作
することが行われている。
Background technology and its problems A polycrystalline or amorphous semiconductor thin film (for example, a silicon thin film) deposited on an insulating substrate or an insulating layer is crystallized (so-called single crystallization) by a zone melt method to form a semiconductor crystal thin film. Currently, semiconductor integrated circuits and the like are being manufactured using this crystal thin film.

このようなゾーンメルト法の一つとして、例えばカーゼ
ン・ヒータを使用した結晶化方法がある。
One such zone melt method is, for example, a crystallization method using a Curzen heater.

この結晶化方法では、まず基板として、第1図に示すよ
うに厚さ0.5 asの石英板(2)上にCVD法(化
学気相成長法)で堆積した0、5μm厚のSio2層(
3)、減圧CVDで堆積した0、5μm厚の多結晶シリ
コン薄膜(4)、CVDで堆積した2μm厚のSio2
層(5)、減圧CVD (又はスパッタ、リング)で堆
積した50 nm厚のS i 、N4膜(6)を順次積
層して形成した基板(1)を用意する。そして、第2図
に示すように1この基板(1)をシート状の固定ヒータ
(7)上に載置し、また基板(1)上には約1mの間隔
を保ちながら平行に移動するストリップヒータ(8)を
配し、この固定ヒータ(7)で基板(1)を約1200
℃まで予備加熱すると共に、ストリップヒータ(8)を
約1600℃に加熱し、このストリップヒータ(8)を
移動させながら基板(1)の多結晶シリコン薄膜(4)
を溶融し、単結晶シリコンに順次再結晶化させるもので
ある。なお、とのCVDで堆積した510□層(5)と
CVD (又はスパッタリング)で堆積したSl、N4
膜(6)からなるキャップ層はシリコン薄膜(4)を平
滑化させるためであり、この構成は、Appl、 Ph
ys、 Lett、 Vol、 40、P、 158 
(1982)に示されている。
In this crystallization method, first, as a substrate, a 0.5 μm thick SiO2 layer is deposited by CVD (chemical vapor deposition) on a 0.5 as thick quartz plate (2) as shown in Figure 1. (
3), 0.5 μm thick polycrystalline silicon thin film deposited by low pressure CVD (4), 2 μm thick Sio2 deposited by CVD
A substrate (1) is prepared by sequentially laminating a layer (5) and a 50 nm thick Si and N4 film (6) deposited by low pressure CVD (or sputtering or ring). Then, as shown in Fig. 2, this substrate (1) is placed on a sheet-shaped fixed heater (7), and on the substrate (1) are strips that move in parallel while maintaining an interval of about 1 m. A heater (8) is arranged, and this fixed heater (7) heats the substrate (1) approximately 1200 m
At the same time, the strip heater (8) is heated to approximately 1600°C, and while the strip heater (8) is moved, the polycrystalline silicon thin film (4) on the substrate (1) is heated to approximately 1600°C.
is melted and sequentially recrystallized into single crystal silicon. In addition, the 510□ layer (5) deposited by CVD and the Sl, N4 layer deposited by CVD (or sputtering)
The cap layer consisting of the film (6) is for smoothing the silicon thin film (4), and this structure is similar to that of Appl, Ph.
ys, Lett, Vol, 40, P, 158
(1982).

このような従来の基板(1)を使用して多結晶シリコン
薄膜(4)への加熱を行った場合、加熱温度が所要温度
以上(過剰加熱)にガると溶融した多結晶シリコンの粘
性が低下して、表面張力により多結晶シリコン薄膜(4
)が破れ、多結晶シリコンが粒状になったり、或いは基
板(1)の両端へ流れ去ったシする。この多結晶シリコ
ンが流れ去る現象は、僅かな過剰加熱によっても発生し
、特に問題となるのは、条件を一定にして同一基板を加
熱°した場合であっても、再結晶化する領域と流れ去る
領域とが周期的に発生し、均一に再結晶化された大面積
の結晶薄膜を得ることが困難なことである。このような
現象が生ずるのは、多結晶シリコンが再結晶化するとき
の潜熱が余剰の熱となって多結晶シリコン薄膜(4)内
に蓄積し、過剰加熱となって多結晶シリコンを流れ出さ
せ、更にこの余剰の熱が多結晶シリコンと共に移動する
ために再び再結晶化が始まるためである。
When heating the polycrystalline silicon thin film (4) using such a conventional substrate (1), if the heating temperature exceeds the required temperature (excessive heating), the viscosity of the molten polycrystalline silicon decreases. The polycrystalline silicon thin film (4
) is torn, and the polycrystalline silicon becomes granular or flows to both ends of the substrate (1). This phenomenon of polycrystalline silicon flowing away occurs even with slight overheating, and what is particularly problematic is that even when the same substrate is heated under constant conditions, the recrystallized area and the flow These regions occur periodically, making it difficult to obtain a uniformly recrystallized crystal thin film over a large area. This phenomenon occurs because the latent heat when polycrystalline silicon recrystallizes becomes surplus heat that accumulates in the polycrystalline silicon thin film (4), causing excessive heating and causing the polycrystalline silicon to flow out. Furthermore, this excess heat moves together with the polycrystalline silicon, causing recrystallization to begin again.

発明の目的 本発明は、上述の点に鑑み、半導体薄膜を再結晶化させ
る際、多少の過剰加熱状態があっても安定した結晶性を
有する半導体薄膜を得ることができる結晶化方法を提供
するものである。
Purpose of the Invention In view of the above-mentioned points, the present invention provides a crystallization method capable of obtaining a semiconductor thin film having stable crystallinity even if there is some excessive heating when recrystallizing a semiconductor thin film. It is something.

発明の概要 本発明は、第1及び第2の半導体酸化物層の間に半導体
薄膜を挾み、この半導体薄膜と上記第1及び/又は第2
の半導体酸化物層との間に化学量論的に変化する遷移層
を形成し、この半導体薄膜を加熱溶融して結晶化させる
ことを特徴とする半導体薄膜の結晶化方法である。
Summary of the Invention The present invention includes a semiconductor thin film sandwiched between first and second semiconductor oxide layers, and a semiconductor thin film and the first and/or second semiconductor oxide layer.
This method of crystallizing a semiconductor thin film is characterized by forming a stoichiometrically changing transition layer between the semiconductor oxide layer and the semiconductor thin film, and heating and melting this semiconductor thin film to crystallize it.

上記発明によシ、大面積の半導体薄膜を均一に再結晶化
させることが可能になる。
According to the above invention, it becomes possible to uniformly recrystallize a large area semiconductor thin film.

実施例 本発明においては、多結晶又は非晶質の半導体   ′
薄膜例えば多結晶シリコン薄膜とこの多結晶シリコン薄
膜を挾んでいる第1及び第2の半導体酸化物層例えば5
IO2層との間の両方又は一方に化学量論的に変化する
遷移層を形成した基板を使用することを特徴とするもの
である。ここで、化学量論的に変化する遷移層とは、第
6図Aに示すように多結晶シリコン薄膜α■と5IO2
層(2)とJに挾まれた層<IIが、多結晶シリコン薄
膜C1や側から810□層(2)側に向って酸素の含有
率が斯増してい<5toolを意味する。第6図Bにお
いて、酸素の増加率を直線状に示しているが、曲線状で
あることもありうるし、また層(イ)の横方向において
組成が不均一になっていることもアシうる。なお、この
遷移層α1の厚さは、適宜選定することができる。遷移
層へ1の形成方法としては、酸素雰囲気での熱酸化、プ
ラズマ陽極酸化、各膜を積層した後の界面への酸素のイ
オン注入及び熱酸化、CVD5fラズマCVD 、ス1
4’ツタリング等がある。
Embodiments In the present invention, polycrystalline or amorphous semiconductors'
A thin film such as a polycrystalline silicon thin film and first and second semiconductor oxide layers sandwiching the polycrystalline silicon thin film, e.g.
This method is characterized by the use of a substrate in which a stoichiometrically changing transition layer is formed between both or one of the IO2 layer and the IO2 layer. Here, the stoichiometrically changing transition layer refers to the polycrystalline silicon thin film α■ and 5IO2 as shown in FIG. 6A.
In the layer <II sandwiched between the layer (2) and J, the oxygen content increases from the polycrystalline silicon thin film C1 side toward the 810□ layer (2) side, meaning <5tool. In FIG. 6B, the rate of increase in oxygen is shown as a straight line, but it may be curved or the composition may be non-uniform in the lateral direction of the layer (A). Note that the thickness of this transition layer α1 can be selected as appropriate. Methods for forming 1 in the transition layer include thermal oxidation in an oxygen atmosphere, plasma anodic oxidation, oxygen ion implantation and thermal oxidation at the interface after laminating each film, CVD5f plasma CVD, s1
There is 4' vine ring etc.

本発明の実施例に使用する基板としては、第3図に示す
ように石英板へ→上にCVDによる8102層α0と減
圧CVDによる多結晶シリコン薄膜Of)を堆積した後
、この多結晶シリコン薄膜α時を酸素雰囲気中で熱酸化
して遷移層αηを適当な厚さに形成し、更にこのように
CVDによる5102層α枠と減圧CVD(又はスパッ
タリング)による813N4膜a傷を堆積した基板(ホ
)を使用する。なお、この多結晶シリコン薄膜αQの表
面側のみの遷移層α→の形成は、上記酸素雰囲気中の熱
酸化の他に、例えばプラズマ陽極酸化、により行うこと
もできる。
As shown in FIG. 3, the substrate used in the embodiment of the present invention is a quartz plate, on which an 8102 layer α0 by CVD and a polycrystalline silicon thin film Of) are deposited by low pressure CVD. A transition layer αη is formed to an appropriate thickness by thermal oxidation in an oxygen atmosphere at α time, and then a 5102 layer α frame by CVD and an 813N4 film a scratch by low pressure CVD (or sputtering) are deposited on the substrate ( e). Note that the formation of the transition layer α→ only on the surface side of the polycrystalline silicon thin film αQ can be performed by, for example, plasma anodic oxidation in addition to the above-mentioned thermal oxidation in an oxygen atmosphere.

第4図に示す他の実施例は、石英板α→上に8102層
(イ)、多結晶シリコン薄膜α!、 StO□層α時、
8 i gN4膜(至)を順次堆積した後、多結晶シリ
コン薄膜←Qと上下のSio2層(ト)、a砂との界面
に酸素をイオン注入し、その後熱酸化して遷移層H及び
に)を形成し、この両者の遷移層@→及び(ロ)によっ
て多結晶シリコン薄膜αQが挾まれるように構成した基
板翰である。
Another embodiment shown in FIG. 4 has 8102 layers (a) on the quartz plate α→, and a polycrystalline silicon thin film α! , when StO□ layer α,
8 After sequentially depositing the i gN4 film (to), oxygen ions are implanted into the interface between the polycrystalline silicon thin film←Q, the upper and lower Sio2 layers (g), and the a sand, and then thermal oxidation is performed to form the transition layer H and ), and a polycrystalline silicon thin film αQ is sandwiched between the two transition layers @→ and (b).

また、第5図に示す他の実施例は、石英板α→上にCV
D (又はプラズマCVD 、スパッタリング)によ、
BStO□層0θを堆積させる工程に連続して5102
の酸素の含有率を漸減させていって一方の遷移層0■を
形成し、次に酸素を全く含まない状態である多結晶シリ
コン薄膜αりを所要の厚さ分形成した後、連続的に今度
は酸素の含有基を漸増させていって他方の遷移層(イ)
を形成し、その後SiO□層α樽とSI3N4謄0つを
順次堆積した基板(ハ)である。
In addition, in another embodiment shown in FIG. 5, the quartz plate α→CV
D (or plasma CVD, sputtering),
5102 following the step of depositing the BStO□ layer 0θ
One transition layer is formed by gradually decreasing the oxygen content of Next, the number of oxygen-containing groups is gradually increased to form the other transition layer (a).
This is a substrate (c) on which a SiO□ layer α barrel and four SI3N layers were sequentially deposited.

本発明においては、上記実施例の基板(イ)又は(至)
、(ハ)をカーボン・ヒータ(他に例えばレーザ、電子
ビーム、赤外線)で加熱することによシ多結晶シリコン
薄膜α0を溶融し、単結晶シリコンに再結晶化さぜるも
のである。
In the present invention, the substrate (a) or (to) of the above embodiment
, (c) are heated with a carbon heater (other examples include laser, electron beam, and infrared rays) to melt the polycrystalline silicon thin film α0 and recrystallize it into single-crystal silicon.

上述の本発明によれば、上記構成の基板(ホ)又は(至
)、(ハ)を使用することによシ、基板(イ)又は(イ
)、(ハ)の加熱時、多少の過剰加熱の状態があっても
遷移層af)、Ql)、(ハ)が多結晶シリコンと5i
n2との接着性を高めているので、溶融した多結晶シリ
コンの流れ出しを抑制することができる。
According to the above-mentioned present invention, by using the substrate (e) or (to) or (c) having the above structure, it is possible to avoid a slight excess when heating the substrate (a) or (a) or (c). Even if there is a heating state, the transition layers af), Ql), and (c) are polycrystalline silicon and 5i.
Since the adhesion with n2 is enhanced, it is possible to suppress the outflow of molten polycrystalline silicon.

発明の効果 本発明によれば、半導体薄膜を再結晶化させるための加
熱時、多少の過剰加熱の状態があっても、遷移層が形成
されていることによυ、溶融した半導体薄膜が流れ出す
のを阻止することができ、従って結晶性の優れた大面積
の結晶薄膜を得ることができる。また、遷移層があるの
で、均一な半導体薄膜を得ることができる過剰加熱の温
度範囲が広がり、この結果再結晶化の際の加熱温度の制
御が容易になる。
Effects of the Invention According to the present invention, even when a semiconductor thin film is heated to recrystallize it, even if there is some overheating, the molten semiconductor thin film will flow out due to the formation of the transition layer. Therefore, a large-area crystal thin film with excellent crystallinity can be obtained. Furthermore, since there is a transition layer, the temperature range of excessive heating that can obtain a uniform semiconductor thin film is widened, and as a result, the heating temperature during recrystallization can be easily controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の結晶化方法において使用されている基板
の断面図、第2図はカーボン・ヒータを使用した結晶化
方法を示す斜視図、第3図、第4図及び第5図は本発明
に使用する基板の断面図、第6図は本発明に係る基板の
遷移層を説明するための図である。 αO1α呻はS tO2層、αQFi多結晶シリコン薄
膜、α乃。 Qカ、(イ)は遷移層である。 第1図  1 第2図 第3図 翌 q 第4図 フ1 第5図 医 第6図 八           B 手続補正書 (特許庁審判長           殿)1、事件の
表示 昭和58年特許願第 81251  号2、発明の名称
 半導体薄膜の結晶化方法3、補正をする者 事件との関係   特許出願人 住所 東京部品用凶兆品用6丁目7番35号名称(21
8)  ソニー株式会社 代表取締役 大 賀 典雄 5、補正命令の日付   昭和  年  月  日6、
補正により増加する発明の数 8、補正の内容 (1)特許請求の範囲を別紙の通り補正する。 (2)明細書中、第3頁2行「平滑化させるためであり
、」を「平滑化させるとともに、その消失を阻止するた
めのものであり、」と補正する。 (3)  同、第3貞8行「表面張力により」を「表面
張力により溶融した」と補正する。 (4)同、第4頁9行及び11行、第4頁20行〜第5
頁1行「半導体酸化物層」を「支持層」と補正する。 (5)同、第4頁11〜12行、第5負1〜2行及び3
〜4行「化学量論的に変化する」を「化学組成が連続的
に変化する」と補正する。 (6)  同、第7貢14行[抑制することができる。 ]の後に下記を追加する。 「また、上記実施例においては支持層としてSiO2ヲ
用イテレイティSi 3N4 、 SiC等モ支n層と
して用いることができる。」 以   上 特許請求の範囲 第1及び第2の支持層の間に半導体薄膜を挾み、該半導
体薄膜と上記第1及び/又は第2の支持層との間に化学
組成が連続的に変化する遷移層を形成し、該半導体薄膜
を加熱溶融して結晶化させることを特徴とする半導体薄
膜の結晶化方法。
Figure 1 is a cross-sectional view of a substrate used in a conventional crystallization method, Figure 2 is a perspective view showing a crystallization method using a carbon heater, and Figures 3, 4, and 5 are from this book. FIG. 6, a cross-sectional view of the substrate used in the invention, is a diagram for explaining the transition layer of the substrate according to the invention. αO1α is StO2 layer, αQFi polycrystalline silicon thin film, αNo. Q and (a) are transition layers. Figure 1 1 Figure 2 Figure 3 Next q Figure 4 F 1 Figure 5 Doctor 6 Figure 8 B Procedural amendment (Mr. Chief Examiner of the Japan Patent Office) 1, Indication of the case Patent Application No. 81251 of 1981 2 , Title of the invention: Method for crystallizing semiconductor thin films 3, Relationship with the person making the amendment Patent applicant's address: Tokyo 6-7-35, Tokyo Parts and Omens Product Name (21
8) Norio Ohga, representative director of Sony Corporation, 5, date of amendment order: 6, 1939,
The number of inventions increased by the amendment to 8. Details of the amendment (1) The scope of claims will be amended as shown in the attached sheet. (2) In the specification, on page 3, line 2, "It is for smoothing," is amended to "It is for smoothing and preventing its disappearance." (3) In the same text, in line 3, line 8, ``due to surface tension'' is corrected to ``melted due to surface tension.'' (4) Same, page 4, lines 9 and 11, page 4, lines 20 to 5
In the first line of the page, "semiconductor oxide layer" is corrected to "support layer". (5) Same, page 4, lines 11-12, negative 5th lines 1-2 and 3
- In line 4, "changes stoichiometrically" is corrected to "chemical composition changes continuously." (6) Ibid., 7th Tribute, line 14 [Can be suppressed. ] Add the following after. "Also, in the above embodiments, SiO2, Si3N4, SiC, etc. can be used as a supporting layer as a support layer." sandwiching the semiconductor thin film and the first and/or second support layer, forming a transition layer in which the chemical composition changes continuously, and heating and melting the semiconductor thin film to crystallize it. Characteristic method for crystallizing semiconductor thin films.

Claims (1)

【特許請求の範囲】[Claims] 第1及び第2の半導体酸化物層の間に半導体薄膜を挾み
、該半導体薄膜と上記第1及び/又は第2の半導体酸化
物層との間に化学量論的に変化する遷移層を形成し、該
半導体薄膜を加熱溶融して結晶化させることを特徴とす
る半導体薄膜の結晶化方法。
A semiconductor thin film is sandwiched between first and second semiconductor oxide layers, and a stoichiometrically varying transition layer is provided between the semiconductor thin film and the first and/or second semiconductor oxide layer. 1. A method for crystallizing a semiconductor thin film, the method comprising forming a semiconductor thin film, heating and melting the semiconductor thin film, and crystallizing the semiconductor thin film.
JP58081251A 1983-05-10 1983-05-10 Crystallization method of semiconductor thin film Expired - Lifetime JPH0614511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58081251A JPH0614511B2 (en) 1983-05-10 1983-05-10 Crystallization method of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58081251A JPH0614511B2 (en) 1983-05-10 1983-05-10 Crystallization method of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS59205713A true JPS59205713A (en) 1984-11-21
JPH0614511B2 JPH0614511B2 (en) 1994-02-23

Family

ID=13741168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58081251A Expired - Lifetime JPH0614511B2 (en) 1983-05-10 1983-05-10 Crystallization method of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0614511B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248446A (en) * 1985-04-25 1986-11-05 Fujitsu Ltd Semiconductor device
EP0202718A2 (en) * 1985-05-22 1986-11-26 Koninklijke Philips Electronics N.V. A method of producing a semiconductor device comprising a monocrystalline silicon layer on a substrate
JPS62211936A (en) * 1986-03-12 1987-09-17 Fujitsu Ltd Formation of interconnection layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814529A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814529A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248446A (en) * 1985-04-25 1986-11-05 Fujitsu Ltd Semiconductor device
EP0202718A2 (en) * 1985-05-22 1986-11-26 Koninklijke Philips Electronics N.V. A method of producing a semiconductor device comprising a monocrystalline silicon layer on a substrate
JPS62211936A (en) * 1986-03-12 1987-09-17 Fujitsu Ltd Formation of interconnection layer

Also Published As

Publication number Publication date
JPH0614511B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
CN101005017B (en) Method of forming a semiconductor thin film
CN100385619C (en) Mask, method of making the same, and method of making thin film transistor using the same
JPS59205713A (en) Crystallization of semiconductor thin film
JPH0433327A (en) Forming method of semiconductor ctystallized film
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JPH0411722A (en) Forming method of semiconductor crystallized film
JPS62160712A (en) Manufacture of semiconductor device
JPS6144785A (en) Manufacture of thin film of semiconductor single crystal
JPS6119116A (en) Manufacture of semiconductor device
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPS5825220A (en) Manufacture of semiconductor substrate
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JPS59138329A (en) Fabrication of single crystal thin film on insulative substrate
JPS6216509A (en) Manufacture of substrate for semiconductor device
JPS58184720A (en) Manufacture of semiconductor film
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPH03293719A (en) Manufacture of crystalline semiconductor thin film
JPS6076117A (en) Method for crystallization of semiconductor thin film
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPH02150017A (en) Thin-film semiconductor
JP2532252B2 (en) Method for manufacturing SOI substrate
JPS6058611A (en) Crystallization of semiconductor thin film
JPS61193424A (en) Semiconductor single crystal growth wafer structure
JPS61288413A (en) Manufacture of single crystal thin film
JPH03284831A (en) Forming method for semiconductor thin-film