JPS59195867A - Thyristor - Google Patents

Thyristor

Info

Publication number
JPS59195867A
JPS59195867A JP6946783A JP6946783A JPS59195867A JP S59195867 A JPS59195867 A JP S59195867A JP 6946783 A JP6946783 A JP 6946783A JP 6946783 A JP6946783 A JP 6946783A JP S59195867 A JPS59195867 A JP S59195867A
Authority
JP
Japan
Prior art keywords
layer
region
concentration
low
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6946783A
Other languages
Japanese (ja)
Other versions
JPH0586671B2 (en
Inventor
Toshihiko Aimi
相見 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6946783A priority Critical patent/JPS59195867A/en
Publication of JPS59195867A publication Critical patent/JPS59195867A/en
Publication of JPH0586671B2 publication Critical patent/JPH0586671B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To increase gate trigger currents IGT by forming a gate region surface layer in structure in which a low-concentration P2 layer is held by upper and lower concentration P2 layers. CONSTITUTION:Ga is used and diffused to both surfaces of an N type silicon substrate 1 to form P1, P2 layers 2, 3, a cathode region N2 layer 6 is diffused by using phosphorus, phosphorus is implanted to the whole surface by employing ion implantation and a P<-> layer 4 is formed to a section in the vicinity of the surface layer of the P2 layer 2 through thermal diffusion, boron is used selectively and diffused to shape a P<+> layer 5, and an anode electrode 9, a gate electrode 7 and a cathode electrode 8 are formed. The threshold voltage of a P2-N2 diode formed by the low-concentration P2 layer shaped near the surface and the N2 layer is low, currents flow through a small current region first and arr changed into reactive currents in the small current region, and IGT can be controlled with high accuracy in approximately several muA-1mA.

Description

【発明の詳細な説明】 この発明はPl−N、−P2−N、  4 #構造を持
つサイリスタのゲート特性の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of gate characteristics of a thyristor having a Pl-N, -P2-N, 4# structure.

従来P1−N、−P2−N、構造を持つサイリスタにお
いては、Pl、22層の形成の為kN1 型基板の両面
よシ、ボロン、ガリウム等の不純物を高温で拡散し、N
2層を形成する。
In conventional thyristors with P1-N and -P2-N structures, impurities such as boron and gallium are diffused at high temperature on both sides of a kN1 type substrate to form 22 Pl layers.
Form two layers.

P型半導体とN型半導体とを接触した場合のフェルミ準
位について考えると、高不純物濃度を持つ半導体はフェ
ルミ準位の位置がN型半導体ではよシ伝導帯へ、P型半
導体ではよシ価電子帯へ近ずくのでこの高濃度不純物を
持ったP−N接合は低砲度不純物を持ったP−N接合に
比し接触電位差■。はより大きくなる。従ってダイオー
ド順方向特性を考えた場合前者の組合せの方が順方向立
ち上り電圧が筒くなる。
Considering the Fermi level when a P-type semiconductor and an N-type semiconductor are in contact, in a semiconductor with a high impurity concentration, the position of the Fermi level is closer to the conduction band in an N-type semiconductor, and closer to the conduction band in a P-type semiconductor. Since it approaches the electron band, a P-N junction with high concentration impurities has a contact potential difference of ■ compared to a P-N junction with low-intensity impurities. becomes larger. Therefore, when considering diode forward characteristics, the former combination has a higher forward rising voltage.

この場合シリコン基板の両方の主面より内側に向ってP
型となる不純物を拡散するので、表面より内側に進むに
つれて不純物濃度は低下する。従ってカソード領域が縦
方向で一番深い位置でP2領域層と交叉して生ずる接合
近傍におけるP、領域層の不純物濃度は、ゲートP2領
域表面近傍の不純物濃度よシも低い。従ってゲートに正
、カンードに負の電圧を印加した場合、表面層よシ遠い
内部のPN接合に電流が流れ始め、内部に向ってエレク
トロンが放出される。この為N2P2N、 )ランリス
クのエミ、りN2から放出された少数キャリアーはエミ
ッタ電流として有効に働き、極くわずかなベース電流で
あるゲート電流にてP、−N、−P2−N2サイリスク
は導通状態に導かれる、従ってサイリスタを導通状態に
導く為に必要な最低のゲート電流であるゲートトリガー
電流IGTは非常に小さく、lOμ八以への値となる。
In this case, P is inward from both main surfaces of the silicon substrate.
Since the impurity serving as the mold is diffused, the impurity concentration decreases as it goes inward from the surface. Therefore, the impurity concentration of the P region layer near the junction where the cathode region crosses the P2 region layer at the deepest position in the vertical direction is lower than the impurity concentration near the surface of the gate P2 region. Therefore, when a positive voltage is applied to the gate and a negative voltage is applied to the cande, a current begins to flow through the internal PN junction far from the surface layer, and electrons are emitted inward. For this reason, the minority carriers released from N2P2N, ) run risk emitters and RI N2 effectively act as emitter currents, and P, -N, -P2-N2 run risks conduct with a very small gate current, which is a base current. The gate trigger current IGT, which is the lowest gate current required to bring the thyristor into the conducting state, is very small and has a value of less than lOμ8.

ノイズの影響を小とする為に従来よk IGTを大きく
する手法として、カソードN2領域に公知の光学的手段
を用いて点状にシリコン酸化膜を残して拡散することに
ょシ、部分的にNが点状に酸化膜の残った部分のみNが
拡散されず、ゲート領域の22層が表面に露出した形と
なる、その後これに電極を形成した際にP2−N2が電
極によって接続されショートする、いわゆるショーテッ
ドエミッタ構造を用いていた。
In order to reduce the influence of noise, the conventional method of increasing k IGT is to leave a dot-like silicon oxide film in the cathode N2 region using known optical means and diffuse it. However, N is not diffused only in the areas where the oxide film remains in the form of dots, and the 22nd layer of the gate region is exposed on the surface.When an electrode is formed on this later, P2-N2 is connected by the electrode and a short circuit occurs. , a so-called shorted emitter structure was used.

このショート領域に流れるゲート、カソード間の電流は
無効電流となって流れるので、ショート抵抗によって決
る電流分だけ’ G Tを大きくすることができる。し
かしながらIGTが数μA〜1mA程度のものは光学的
手法の精度及び、拡散コントロール祠朋の組み合せによ
り再現性良く製造することは非常に困難であった。
Since the current flowing between the gate and the cathode in this short region flows as a reactive current, 'GT can be increased by the amount of current determined by the short resistance. However, it has been extremely difficult to manufacture IGTs with an IGT of several μA to 1 mA with good reproducibility due to the combination of the precision of the optical method and the diffusion control mill.

従って本発明はIGTを数μへ〜1mA程度となる様に
再現性良く製造する手法を提供することが目的である。
Therefore, it is an object of the present invention to provide a method for manufacturing IGT with good reproducibility so that the IGT has a current of several microns to about 1 mA.

前記欠点を解決する為には表面層に無効電流を積極的に
流せは良いので表面近傍のP2−N2接合の順方向立ち
上り電圧vFoを内部のP2−N2接合の立ち上9電圧
VFOよシも低くすれは良い。しかしながら表面に低不
純物濃度層の22層が露出すると拡散工程で表面層がN
に反転する危険が高く、IGTの変動の原因となりうる
。そこでエピタキシャル法又はイオンインプランテーシ
ョン法又は拡散法によショート領域表面層では高濃度P
2領域を設け、その直下層では表面層よシより低濃度P
2領域層を設け、さらにその直下層においては再び高濃
度P22領域を設は低濃度12層が上下高濃度P。
In order to solve the above-mentioned drawback, it is better to actively flow a reactive current in the surface layer, so the forward rising voltage vFo of the P2-N2 junction near the surface can be made to be higher than the rising voltage VFO of the internal P2-N2 junction. Low and low is good. However, when 22 layers of low impurity concentration layers are exposed on the surface, the surface layer becomes N due to the diffusion process.
There is a high risk of reversal, which could cause fluctuations in IGT. Therefore, by epitaxial method, ion implantation method, or diffusion method, a high concentration of P is formed in the surface layer of the short region.
Two regions are provided, and the layer immediately below has a lower concentration of P than the surface layer.
Two area layers are provided, and in the layer immediately below, a high concentration P22 area is provided again, and 12 low concentration layers are provided above and below with high concentration P.

層にはさまれた構造とする。この様に配置するとP2−
N2ダイオードの立ち上bitt圧■Foは上下両層に
はさまれた低濃度P2層とN2層によって生ずるダイオ
ードの順方向特性vF1と上下両層の22層とN2層に
よって生ずるダイオード順方向特性vF2とが並列接続
されているのと同様の効果を生じ、より低いvFlの方
で無効電流が流れvFoずなゎちIGTが■F1で決定
される。
It has a structure sandwiched between layers. If arranged like this, P2-
The rising bit pressure of the N2 diode ■Fo is the diode forward characteristic vF1 caused by the low concentration P2 layer and N2 layer sandwiched between the upper and lower layers, and the diode forward characteristic vF2 caused by the 22 layer and the N2 layer in both the upper and lower layers. This produces the same effect as when the two are connected in parallel, and the reactive current flows at the lower vFl, and the IGT is determined by F1 instead of vFo.

すなわち表面近傍に設けた低め度P2層とN2層によっ
て生ずるP2−N2ダイオードの立ち上り電圧V。は低
く、小電ML領域においてはこの部分に始めに電流が流
れ内部に少数キャリアーの放出が起らない為無効電流と
なシエ。Tを数μA〜1mA程度に精度良くコントロー
ルすることができる。
That is, the rising voltage V of the P2-N2 diode is generated by the low-level P2 layer and N2 layer provided near the surface. is low, and in the small current ML region, current flows first in this part and no minority carriers are released inside, so it is a reactive current. T can be precisely controlled to about several μA to 1 mA.

次に本発明の一実施例を図面を用いて説明する。Next, one embodiment of the present invention will be described using the drawings.

−まず比抵抗30〜40Ω函のNuシリコン基板1を化
学的に研磨して厚さ250μm程夏とす6次にシリコン
基板1の両面にGot用いて1250’0で拡散し p
、、PJiJ’に設ける、この除に表面にシリコン酸化
膜か生ずるので、これを公知の光学的手法により酸化膜
のマドを設はカソード領域N2層となるべき部分をとシ
去った後リンを用いて1250°CにてN2層を拡散す
る。その後全面にイオンインプランテーションを用いて
リンを打込み熱拡散を行う。この様にすると22層の表
面層に近い部分にP一層4を生ずる。さらにP一層4の
上に選択的にP+層をボロンを用いて拡散し、表面にP
層5を設ける。この様にして得られたシリコン基板を通
常の方法にて素子に構成しアノード電極9、ゲートを極
7、カソード電極8を設けてIGTを測定した結果P層
を設ける条件によ、910μ八〜100μ八程度のIG
Tがえられた。
- First, a Nu silicon substrate 1 with a resistivity of 30 to 40 Ω is chemically polished to a thickness of about 250 μm.6 Next, Got is used on both sides of the silicon substrate 1 to diffuse it at 1250'0.
,, Since a silicon oxide film is formed on the surface of PJiJ', a layer of oxide film is formed using a known optical method. After removing the portion that will become the cathode region N2 layer, phosphorus is removed. to diffuse the N2 layer at 1250°C. Thereafter, ion implantation is used to implant phosphorus into the entire surface and thermal diffusion is performed. In this way, a P layer 4 is produced in a portion close to the surface layer of the 22nd layer. Furthermore, a P+ layer is selectively diffused on the P layer 4 using boron, and the P+ layer is spread on the surface.
Layer 5 is provided. The silicon substrate obtained in this manner was constructed into a device using a conventional method, and an anode electrode 9, a gate electrode 7, and a cathode electrode 8 were provided, and the IGT was measured. IG of about 100μ8
I got T.

以上はイオンインプランテーションを用いり場合を説明
したがエピタキシャル層でP一層を設けても良いし、拡
散法を用いてP一層を設けても良い。
Although the case has been described above using ion implantation, a single P layer may be provided as an epitaxial layer, or a single P layer may be provided using a diffusion method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサイリスクの断面図、第2図は本発明に
よるサイリスタの断面図を示している。 1・・・・・・シリコン基板、2・・・・・・ゲートP
型層、3・・・・・・アノードP型層、4・・・・・・
グー)P一層、5・・・・・・ゲート2層、 6・・・
用カンードN型層、7・・・・・・グー1篭極、8・・
・・・・カンード電極。
FIG. 1 shows a sectional view of a conventional thyristor, and FIG. 2 shows a sectional view of a thyristor according to the present invention. 1...Silicon substrate, 2...Gate P
Type layer, 3... Anode P type layer, 4...
Goo) P 1st layer, 5...Gate 2nd layer, 6...
Cando N-type layer, 7...Goo 1 cage pole, 8...
...Cand electrode.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の両面に他の導電型の第1および
第2の領域を有し、さらに該第1の領域の表面に前記−
導電型の第3の領域を有するPl−N1−P、−N、構
造を持ったサイリスタにおいて、ゲート電極の設けられ
る前記第1の領域の不純物#度プロファイルを表面では
尚濃度でそのすぐ下層では表面層よりは低濃度であシ、
さらにその下層では前記低濃度よシ濃度の高い高濃度と
なる様にした事を特徴とするサイリスタ。
A semiconductor substrate of one conductivity type has first and second regions of another conductivity type on both sides, and the surface of the first region is further provided with the -
In a thyristor having a Pl-N1-P, -N structure having a third region of conductivity type, the impurity concentration profile of the first region where the gate electrode is provided is as follows: The concentration is lower than that of the surface layer.
Furthermore, the thyristor is characterized in that the lower layer has a high concentration higher than the low concentration.
JP6946783A 1983-04-20 1983-04-20 Thyristor Granted JPS59195867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6946783A JPS59195867A (en) 1983-04-20 1983-04-20 Thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6946783A JPS59195867A (en) 1983-04-20 1983-04-20 Thyristor

Publications (2)

Publication Number Publication Date
JPS59195867A true JPS59195867A (en) 1984-11-07
JPH0586671B2 JPH0586671B2 (en) 1993-12-13

Family

ID=13403490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6946783A Granted JPS59195867A (en) 1983-04-20 1983-04-20 Thyristor

Country Status (1)

Country Link
JP (1) JPS59195867A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651868A (en) * 1979-10-05 1981-05-09 Nec Corp Semiconductor device
JPS5680165A (en) * 1979-12-04 1981-07-01 Mitsubishi Electric Corp Gate turn-off thyristor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651868A (en) * 1979-10-05 1981-05-09 Nec Corp Semiconductor device
JPS5680165A (en) * 1979-12-04 1981-07-01 Mitsubishi Electric Corp Gate turn-off thyristor

Also Published As

Publication number Publication date
JPH0586671B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US5156981A (en) Method of making a semiconductor device of a high withstand voltage
US4652895A (en) Zener structures with connections to buried layer
JPS6046551B2 (en) Semiconductor switching device and its manufacturing method
EP0077004B1 (en) Semiconductor rectifier diode
US4419681A (en) Zener diode
US4089020A (en) High power semiconductor diode
US6160306A (en) Diode of semiconductor device and method for manufacturing the same
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
JPH01217973A (en) Gate turn-off power thyristor and its manufacture
JP3718223B2 (en) Semiconductor device for high voltage with vertical groove
US5773868A (en) Semiconductor device and method of manufacturing the same
US11495663B2 (en) Semiconductor device including insulated gate bipolar transistor, diode, and current sense regions
JPS59195867A (en) Thyristor
US3656034A (en) Integrated lateral transistor having increased beta and bandwidth
JP2557818B2 (en) Reverse conduction gate turn-off thyristor device
JPS621259B2 (en)
JPS6245709B2 (en)
JP4011772B2 (en) Semiconductor device and manufacturing method thereof
JP2003133553A (en) Insulated-gate bipolar transistor and method of manufacturing the same
JPS5821866A (en) Semiconductor device
JP4046995B2 (en) Optical semiconductor device
JPS6258678A (en) Transistor
JPH0117267B2 (en)
JPH01140772A (en) Semiconductor device and manufacture thereof
JPH01272158A (en) Semiconductor device and manufacture thereof