JPS6245709B2 - - Google Patents

Info

Publication number
JPS6245709B2
JPS6245709B2 JP12919879A JP12919879A JPS6245709B2 JP S6245709 B2 JPS6245709 B2 JP S6245709B2 JP 12919879 A JP12919879 A JP 12919879A JP 12919879 A JP12919879 A JP 12919879A JP S6245709 B2 JPS6245709 B2 JP S6245709B2
Authority
JP
Japan
Prior art keywords
region
layer
impurity concentration
gate
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12919879A
Other languages
Japanese (ja)
Other versions
JPS5651868A (en
Inventor
Toshihiko Aimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12919879A priority Critical patent/JPS5651868A/en
Publication of JPS5651868A publication Critical patent/JPS5651868A/en
Publication of JPS6245709B2 publication Critical patent/JPS6245709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置に係り、特にP1−N1
P2−N24層構造を持つサイリスタのゲート特性の
改善に関するものである。
[Detailed Description of the Invention] The present invention relates to a semiconductor device, and particularly to a P 1 −N 1
This invention relates to improving the gate characteristics of a thyristor having a P 2 −N 2 four-layer structure.

従来P1−N1−P2−N2構造を持つサイリスタに
おいてはP1、P2層の形成の為にN1型基板の両面
よりボロン、ガリウム等の不純物を高温で拡散
し、P1及びP2層を設け、さらに片側よりリン等の
不純物を拡散してN2層を形成する。
In conventional thyristors with a P 1 −N 1 −P 2 −N 2 structure, impurities such as boron and gallium are diffused at high temperature from both sides of an N 1 type substrate to form the P 1 and P 2 layers. and P 2 layers are provided, and an impurity such as phosphorus is further diffused from one side to form an N 2 layer.

P型半導体とN型半導体のフエルミレベルにつ
いて考えると不純物濃度が高い程P型半導体では
価電子帯へ、又N型半導体では伝導帯に近いとこ
ろにフエルミレベルを生ずるのでPN接合の接触
電位差V0はP型N型どちらの場合でも不純物濃
度が高くなるとV0は大きくなる方向へゆく。従
つてP2−N2ダイオードを考えるとN2層の不純物
濃度勾配が表面周辺接合附近の横方向、縦方向が
ほぼ等しいと考えた場合P2層の不純物濃度が高い
方が順方向立ち上り電圧V0が高い。
Considering the Fermi level of P-type semiconductors and N-type semiconductors, the higher the impurity concentration, the higher the Fermi level is in the valence band in P-type semiconductors, and in the conduction band in N-type semiconductors, so the contact potential difference V 0 of the PN junction is P In both cases, as the impurity concentration increases, V 0 tends to increase. Therefore, considering a P 2 −N 2 diode, if the impurity concentration gradient of the N 2 layer is almost equal in the horizontal and vertical directions near the surface-periphery junction, then the forward rise voltage will be higher if the impurity concentration of the P 2 layer is higher. V0 is high.

この場合シリコン基板の両方の主面より内側に
向つてP型となる不純物を拡散するので、表面よ
り内側に進むにつれて拡散不純物濃度が低下す
る。従つてカソードN2領域層が縦方向で一番深
い位置でP2領域層と交叉して生ずる接合近傍にお
けるP2領域層の不純物濃度はゲートP2領域表面近
傍の不純物濃度よりも低い。従つてゲートに正、
カソードに負の電圧を印加した場合、表面層より
遠い内部PN接合に電流が流れ始め内部に向つて
エレクトロンが放出される。この為N2P2N1トラ
ンジスタのエミツタN2から放出された少数キヤ
リアーはエミツタ電流として有効に働きごくわず
かなベース電流であるゲート電流にてP1−N1
P2−N2サイリスタは導通状態に導かれる。従つ
てサイリスタを導通状態に導くに必要な最低のゲ
ート電流であるゲートトリガー電流(IGT)は非
常に小さく10〓A以下となつてしまう。従来より
GTを大きくするためにカソードN2領域を拡散
法にて形成する際あらかじめ、光学的手段を用い
てシリコン酸化膜に選択的に点状に酸化膜を残し
て後N2領域となりリン等を拡散すると部分的に
Nが入らない領域が生じ、この部分はゲート領域
のP2層が表面に露出した型となる。その後これに
電極を形成された際にP2−N2が電極によつて接
続されシヨートするいわゆるシヨーテツドエミツ
タ構造がとられていた。このシヨート領域に流れ
るゲート、カソード間の電流は無効電流となつて
流れるのでシヨート抵抗によつて決まる電流分だ
けIGTを大きくすることができる。しかしながら
数μA〜1mA程度のものは光学的手法の精度及
び拡散コントロール精度の組み合せにより再現性
よく製造することは非常に困難であつた。
In this case, since the P-type impurity is diffused inward from both main surfaces of the silicon substrate, the concentration of the diffused impurity decreases as it goes inward from the surface. Therefore, the impurity concentration of the P 2 region near the junction where the cathode N 2 region crosses the P 2 region at the deepest position in the vertical direction is lower than the impurity concentration near the surface of the gate P 2 region. Therefore, positive to the gate,
When a negative voltage is applied to the cathode, current begins to flow through the internal PN junction farther from the surface layer and electrons are emitted inward. For this reason, the minority carriers emitted from the emitter N 2 of the N 2 P 2 N 1 transistor effectively work as an emitter current, and the gate current, which is a very small base current, causes P 1 −N 1
The P 2 −N 2 thyristor is brought into conduction. Therefore, the gate trigger current (I GT ), which is the minimum gate current required to bring the thyristor into conduction, is extremely small, less than 10 A. Conventionally, when forming the cathode N2 region by a diffusion method in order to increase I GT , an oxide film is selectively left in dots on the silicon oxide film using optical means, and then the N2 region becomes phosphorous. By diffusing N, etc., a region is created where N does not enter, and this region becomes a type in which the P 2 layer in the gate region is exposed at the surface. When an electrode was then formed on this, a so-called shot emitter structure was adopted in which P 2 -N 2 was connected by the electrode and shot. Since the current flowing between the gate and the cathode in this shot region flows as a reactive current, I GT can be increased by the amount of current determined by the shot resistance. However, it has been extremely difficult to manufacture a device with a high reproducibility of several μA to 1 mA due to the combination of the precision of the optical method and the precision of diffusion control.

従つて本発明はIGTを例えば数μA〜1mA程
度となる様に再現性良く製造されたサイリスタを
提供することが目的である。
Therefore, it is an object of the present invention to provide a thyristor manufactured with good reproducibility so that I GT is, for example, about several μA to 1 mA.

前記欠点を解決するためには表面層に無効電流
を積極的に流してやれば良いので表面近傍のP2
N2接合の順方向立ち上り電圧V0を内部のP2−N2
接合の立ち上り電圧V0よりも低くすれば良い。
従つて前従の理由によりゲート電極の設けられる
P2領域表面層の不純物濃度を拡散法又は熱処理に
より、カソード電極の設けられるN2領域層が縦
方向の一番深い位置でP2領域層と交叉して生ずる
接合位置におけるP2領域層の不純物濃度よりも低
くなる様にする。この様にすると表面層近傍のP2
−N2ダイオードの立ち上り電圧は低く低い電流
領域においてはこの部分に始めに電流が流れるの
で無効電流となり内部に向つて少数キヤリアーの
放出が起らない。よつてIGTを数μA〜1mA程
度に精度良くコントロールすることができる。
In order to solve the above drawback, it is sufficient to actively flow a reactive current through the surface layer, so that P 2 − near the surface
The forward rising voltage V 0 of the N 2 junction is expressed as the internal P 2 −N 2
It is sufficient if the voltage is lower than the junction rise voltage V 0 .
Therefore, the gate electrode is provided for the same reason as before.
The impurity concentration of the P 2 region surface layer is reduced by diffusion method or heat treatment to reduce the impurity concentration of the P 2 region layer at the junction position where the N 2 region layer where the cathode electrode is provided intersects with the P 2 region layer at the deepest vertical position. Make it lower than the impurity concentration. In this way, P 2 near the surface layer
The rising voltage of the −N 2 diode is low and in the low current region, current first flows through this portion, so it becomes a reactive current and no minority carriers are emitted toward the inside. Therefore, I GT can be precisely controlled to about several μA to 1 mA.

本発明は例えば、半導体基板の両面より基板不
純物と反対の導電型を持つ第1の不純物を拡散
し、さらにその片面より基板と同一の導電型を持
つ不純物を部分的に拡散してなるP1−N1−P2
N2構造を有するサイリスタにおいて、ゲート電
極の設けられる前記P2の領域表面層の不純物濃度
を、拡散法又は熱処理によりカソード電極の設け
られる前記N2の領域層が縦方向の一番深い位置
で前記P2の領域層と交叉して生ずる接合位置にお
ける該P2の領域層の不純物濃度よりも低くなつて
いることを特徴としたサイリスタである。
For example, in the present invention, a first impurity having a conductivity type opposite to that of the substrate impurity is diffused from both sides of a semiconductor substrate, and an impurity having the same conductivity type as the substrate is partially diffused from one side of the semiconductor substrate. −N 1 −P 2
In a thyristor having an N2 structure, the impurity concentration of the surface layer of the P2 region where the gate electrode is provided is reduced by a diffusion method or heat treatment at the deepest vertical position of the N2 region layer where the cathode electrode is provided. The thyristor is characterized in that the impurity concentration is lower than the impurity concentration of the P 2 region layer at a junction position that intersects with the P 2 region layer.

次に本発明の一実施例を第1図及び第3図等を
用いながら説明する。まず比抵抗30〜40Ω・cmの
N型シリコン基板1を化学的に研磨して厚さ
250〓m程度とする。次にシリコン基板1の両面
よりBcl3を用いてボロン1050℃30分間拡散する。
その後1250℃で30時間拡散しP12,P23層を設け
る。この際に生じたシリコン酸化膜の片面を光学
的手法によりカソード領域となる部分のみとり去
つた後リンを用いて1250℃にて拡散層N24とな
る領域を設ける。この後一旦シリコン酸化膜を全
面除去した後に再度比較的低い1000℃〜1150℃で
8〜10時間酸化し酸化膜を作る。この際、ボロン
はシリコン酸化膜中によく吸収されP2層のごく表
面は不純物濃度が低つたP-層5となる。上記で
不充分な場合は1000℃程度でさらに長時間10〜50
時間熱処理すれば効果は大きくなる。この様にし
てえられたシリコン基板を通常の方法にて素子に
構成し、アノード電極6、ゲート電極7、カソー
ド電極8を設けてIGTを測定した結果、10〜
50〓AのIGTが得られた。高温で酸化を行うと第
2図の様な拡散プロフアイルをとる。すなわち、
P2層は特性曲線10、N2層は特性曲線11を描
く。しかし、低温で熱処理した場合には第4図の
様な拡散プロフアイルすなわち、各々特性曲線1
0′、特性曲線11′となり、表面での不純物濃度
はPN接合が図で生じている点の不純物濃度より
も低くなつている。又表面層のPN接合の順方向
電流と内部のPN接合を流れる順方向電流とが一
致する点でIGTが決まるのでP-層を厚くすると
GTが大きくなりすぎる。
Next, one embodiment of the present invention will be described using FIG. 1, FIG. 3, etc. First, an N-type silicon substrate 1 with a specific resistance of 30 to 40 Ω・cm is chemically polished to a thickness of
The length should be approximately 250〓m. Next, boron is diffused from both sides of the silicon substrate 1 using Bcl 3 at 1050° C. for 30 minutes.
Thereafter, it was diffused at 1250°C for 30 hours to form 2 P 1 and 3 P 2 layers. After removing only the portion that will become the cathode region from one side of the silicon oxide film produced at this time using an optical method, a region that will become the diffusion layer N 2 4 is formed at 1250° C. using phosphorus. After this, once the silicon oxide film is completely removed, it is oxidized again at a relatively low temperature of 1000°C to 1150°C for 8 to 10 hours to form an oxide film. At this time, boron is well absorbed into the silicon oxide film, and the very surface of the P 2 layer becomes a P - layer 5 with a low impurity concentration. If the above is insufficient, heat the temperature at around 1000℃ for an additional 10 to 50 minutes.
The effect will be greater if the heat treatment is carried out for a longer period of time. The silicon substrate obtained in this manner was constructed into a device using a conventional method, and an anode electrode 6, a gate electrode 7, and a cathode electrode 8 were provided, and the I GT was measured.
I GT of 50〓 A was obtained. When oxidized at high temperatures, a diffusion profile as shown in Figure 2 is obtained. That is,
The characteristic curve 10 is drawn for the P 2 layer, and the characteristic curve 11 is drawn for the N 2 layer. However, when heat treated at a low temperature, the diffusion profile as shown in Figure 4, that is, each characteristic curve 1
0', the characteristic curve is 11', and the impurity concentration at the surface is lower than the impurity concentration at the point where the PN junction occurs in the figure. Furthermore, I GT is determined by the point where the forward current flowing through the PN junction in the surface layer matches the forward current flowing through the internal PN junction, so if the P - layer is made thicker, I GT becomes too large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサイリスタの断面図、第2図は
従京のサイリスタの拡散濃度プロフアイルを示す
特性図、第3図は本発明の実施例によるサイリス
タの断面図であり、第4図は第3図のサイリスタ
の拡散濃度プロフアイルを示す特性図である。 尚、図において、1……N型シリコン基板、2
……アノードP型層、3……ゲートP型層、4…
…カソードN型層、5……ゲートP-層、6……
アノード電極、7……ゲート電極、8……カソー
ド電極。
Fig. 1 is a cross-sectional view of a conventional thyristor, Fig. 2 is a characteristic diagram showing the diffusion concentration profile of the thyristor of Jukyo, Fig. 3 is a cross-sectional view of a thyristor according to an embodiment of the present invention, and Fig. 4 is a sectional view of a thyristor according to an embodiment of the present invention. FIG. 4 is a characteristic diagram showing a diffusion concentration profile of the thyristor of FIG. 3; In the figure, 1...N-type silicon substrate, 2
...Anode P-type layer, 3...Gate P-type layer, 4...
...Cathode N-type layer, 5...Gate P - layer, 6...
Anode electrode, 7...gate electrode, 8...cathode electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板において、一導電型の第1の領
域、逆導電型の第2の領域、一導電型の第3の領
域及び逆導電型の第4の領域がこの順に接合して
おり、該第3の領域と該第4の領域は、おのおの
ゲート電極と主電極を主表面に有し、該ゲート電
極と接する部分の該第3の領域の不純物濃度は、
該第4の領域と主接合を有する部分の該第3の領
域のそれよりも低くなつていることを特徴とする
半導体装置。
1 In a semiconductor substrate, a first region of one conductivity type, a second region of the opposite conductivity type, a third region of one conductivity type, and a fourth region of the opposite conductivity type are bonded in this order, and the The region No. 3 and the fourth region each have a gate electrode and a main electrode on their main surfaces, and the impurity concentration of the third region in contact with the gate electrode is as follows:
A semiconductor device characterized in that a portion having a main junction with the fourth region is lower than that of the third region.
JP12919879A 1979-10-05 1979-10-05 Semiconductor device Granted JPS5651868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12919879A JPS5651868A (en) 1979-10-05 1979-10-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12919879A JPS5651868A (en) 1979-10-05 1979-10-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5651868A JPS5651868A (en) 1981-05-09
JPS6245709B2 true JPS6245709B2 (en) 1987-09-28

Family

ID=15003558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12919879A Granted JPS5651868A (en) 1979-10-05 1979-10-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5651868A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195867A (en) * 1983-04-20 1984-11-07 Nec Corp Thyristor
JPS59214261A (en) * 1983-05-20 1984-12-04 Mitsubishi Electric Corp Gate turn-off thyristor
JPS61287269A (en) * 1985-06-14 1986-12-17 Res Dev Corp Of Japan Semiconductor element

Also Published As

Publication number Publication date
JPS5651868A (en) 1981-05-09

Similar Documents

Publication Publication Date Title
US3202887A (en) Mesa-transistor with impurity concentration in the base decreasing toward collector junction
US3226613A (en) High voltage semiconductor device
US5068704A (en) Method of manufacturing semiconductor device
US5156981A (en) Method of making a semiconductor device of a high withstand voltage
US4370180A (en) Method for manufacturing power switching devices
JPH05347413A (en) Manufacture of semiconductor device
US4089020A (en) High power semiconductor diode
US3513035A (en) Semiconductor device process for reducing surface recombination velocity
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
US4227203A (en) Semiconductor device having a polycrystalline silicon diode
JPS6245709B2 (en)
JPS5942989B2 (en) High voltage semiconductor device and its manufacturing method
US3500141A (en) Transistor structure
US4682198A (en) Gate turn-off thyristor with integral capacitive anode
US2874083A (en) Transistor construction
JPS61285766A (en) Manufacture of semiconductor device
JPS621259B2 (en)
JPH0117267B2 (en)
JPS6146067B2 (en)
JPH0550858B2 (en)
JPS6258678A (en) Transistor
US3341379A (en) Method of manufacture of silicon transistor
US3298082A (en) Method of making semiconductors and diffusion thereof
JPS59195867A (en) Thyristor
JPS5957476A (en) Manufacture of semiconductor device