JPH0117267B2 - - Google Patents

Info

Publication number
JPH0117267B2
JPH0117267B2 JP56186346A JP18634681A JPH0117267B2 JP H0117267 B2 JPH0117267 B2 JP H0117267B2 JP 56186346 A JP56186346 A JP 56186346A JP 18634681 A JP18634681 A JP 18634681A JP H0117267 B2 JPH0117267 B2 JP H0117267B2
Authority
JP
Japan
Prior art keywords
impurity region
layer
region
impurity
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56186346A
Other languages
Japanese (ja)
Other versions
JPS5887869A (en
Inventor
Toshihiko Aimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18634681A priority Critical patent/JPS5887869A/en
Publication of JPS5887869A publication Critical patent/JPS5887869A/en
Publication of JPH0117267B2 publication Critical patent/JPH0117267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 この発明はP1―N1―P2―N24層構造を持つサ
イリスタのゲート特性の改善に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the gate characteristics of a thyristor having a four-layer structure of P 1 --N 1 --P 2 --N 2 .

従来P1―N1―P2―N2構造を持つサイリスタに
おいてはP1P2層の形成の為にN1型基板の両面よ
りボロン、ガリウム等の不純物を高温で拡散し
P1及びP2層を設け、さらに片側よりリン等の不
純物を拡散してN2層を形成する。
In conventional thyristors with the P 1 -N 1 -P 2 -N 2 structure, impurities such as boron and gallium are diffused at high temperatures from both sides of the N 1 type substrate to form the P 1 P 2 layer.
P 1 and P 2 layers are provided, and an impurity such as phosphorus is further diffused from one side to form an N 2 layer.

P型半導体とN型半導体のフエルミレベルにつ
いて考えると不純物濃度が高い程P型半導体では
価電子帯、又N型半導体では伝導帯に近いところ
にフエルミレベルを生ずるので、PN接合の接触
電位差V0はP型N型どちらの場合でも不純物濃
度が高くなるとV0は大きくなる方向へゆく。従
つてP2―N2ダイオードを考えると、N2層の不純
物濃度勾配は表面周辺部附近の横方向縦方向がほ
ぼ等しいと考えた場合P2層の不純物濃度が高い
方が順方向立ち上り電圧Vが高い。
Considering the Fermi level of P-type semiconductors and N-type semiconductors, the higher the impurity concentration, the higher the Fermi level is in the valence band in P-type semiconductors, and in the conduction band in N-type semiconductors, so the contact potential difference V 0 of the PN junction is P In both cases, as the impurity concentration increases, V 0 tends to increase. Therefore, when considering a P 2 - N 2 diode, assuming that the impurity concentration gradient of the N 2 layer is almost equal in the horizontal and vertical directions near the surface periphery, the forward rise voltage will be higher if the impurity concentration of the P 2 layer is higher. V is high.

この場合、シリコン基板の両方の主面より内側
に向つてP型となる不純物を拡散するので、表面
より内側に進むにつれて、拡散不純物濃度が低下
する。従つてカソードN2領域層が縦方向で一番
深い位置でP2領域層と交叉して生ずる接合近傍
におけるP2領域層の不純物濃度はゲートP2領域
表面近傍の不純物濃度よりも低い。従つてゲート
に正、カソードに負の電圧を印加した場合、表面
層より遠い内部のPN接合に電流が流れ始め、内
部に向つてエレクトロンが放出される。この為
N2P2N1トランジスタのエミツタN2から放出され
た少数キヤリアであるエレクトロンはエミツタ電
流として有効に働き、ごくわずかなベース電流で
あるゲート電流によつてP1―N1―P2―N2サイリ
スタは導通状態に導かれる。従つてサイリスタを
導通状態に導くに必要な最低のゲート電流である
ゲートトリガー電流(IGT)は非常に小さく、
10μA以下となつてしまう。従来よりIGTを大き
くコントロールする為にカソード領域を拡散法に
て形成する際、あらかじめ、公知の光学的手段を
用いて、シリコン酸化膜に選択的に点状に残して
後N2領域となるリン等を拡散すると部分的にN
が入らない領域が生じ、この部分はゲート領域の
P2層が表面に露出した型となる。その後、これ
に電極を形成する際にP2―N2が電極によつて接
続され、シヨートするいわゆるシヨーテツドエミ
ツタ・構造がとられていた。このシヨート領域に
流れるゲート・カソード間の電流は無効電流とな
つて流れるのでシヨート抵抗によつて決る電流分
だけIGTを大きくすることができる。しかしなが
ら数μA〜1mA程度のものは光学的手法の精度及
び拡散コントロール精度の組み合せにより再現性
良く製造することは非常に困難であつた。
In this case, since the P-type impurity is diffused inward from both main surfaces of the silicon substrate, the concentration of the diffused impurity decreases as it progresses inward from the surface. Therefore, the impurity concentration of the P 2 region near the junction where the cathode N 2 region intersects with the P 2 region at the deepest position in the vertical direction is lower than the impurity concentration near the surface of the gate P 2 region. Therefore, when a positive voltage is applied to the gate and a negative voltage is applied to the cathode, current begins to flow through the internal PN junction far from the surface layer, and electrons are emitted inward. For this reason
The electrons, which are minority carriers, emitted from the emitter N 2 of the N 2 P 2 N 1 transistor effectively act as an emitter current, and the gate current, which is a very small base current, increases P 1 ―N 1 ―P 2 ―N. 2 thyristors are brought into conduction. Therefore, the gate trigger current (IGT), which is the minimum gate current required to bring the thyristor into conduction, is very small.
It becomes less than 10μA. Conventionally, when forming a cathode region by a diffusion method in order to greatly control IGT, a well-known optical method is used in advance to selectively leave dots on the silicon oxide film to form phosphorus which will become N2 regions. etc., partially N
There is a region where the gate region does not enter, and this region
The P2 layer is exposed on the surface. Thereafter, when forming an electrode on this, P 2 --N 2 was connected by the electrode and shot, creating a so-called shot emitter structure. Since the current flowing between the gate and the cathode in this short region flows as a reactive current, IGT can be increased by the amount of current determined by the short resistance. However, it has been extremely difficult to manufacture a device with a high reproducibility of several μA to 1 mA due to the combination of the precision of the optical method and the precision of diffusion control.

従つて本発明はIGTを数μA〜1mA程度となる
様に再現性良く製造する手法を提供することが目
的である。
Therefore, it is an object of the present invention to provide a method for manufacturing IGT with good reproducibility so that the IGT is on the order of several μA to 1 mA.

前記欠点を解決しIGTを大きくするためには表
面層に無効電流を積極的に流してやれば良いので
表面近傍のP2―N2接合の順方向立ち上り電圧V1
を内部のP2―N2接合の立ち上り電圧V2よりも低
くすれば良い。従つて前述の理由によりゲート電
極の設けられるP2領域表面層の不純物濃度をイ
オンインプランテーシヨン又は拡散法等によりカ
ソード電極の設けられるN2領域層が縦方向の一
番深い位置でP2領域層と交叉して生ずる接合位
置におけるP2領域層の不純物濃度よりも低くな
る様にする。この様にすると表面層近傍のP2
N2ダイオードの立ち上り電圧は低く、低い電流
領域においてはこの部分に始めに電流が流れるの
で無効電流となり、内部に向つて少数キヤリアの
放出が起らない。従つてIGTを数μA〜1mA程度
に精度良くコントロールすることができる。しか
しながら表面層に低不純物濃度領域による接合を
設けるとダイオードP2―N2は逆方向特性におい
てチヤンネル波形を生ずる心配がある。そこでこ
れをさけるためにカソードN2層とゲートP2層に
よつて生じた接合が表面に露出した線よりも離し
てゲートP2表面にP型でかつ高濃度の不純物領
域を持つたP+層を設けることによりチヤンネル
は破断される。しかしこのままではP層P-層に
よる電位差を生じ表面電流が流れにくくなる為に
P+層の直下より直接P-層を通さずにN2層からP2
層への少数キヤリアの一放出が起りIGTは小とな
る。そこでP型高濃度不純物領域の直下にN型反
転層又は埋込領域を設けることによりP+層P2
を通してN2層からの少数キヤリアの放出がなく
なりP-層とN2層の間だけで無効電流が流れる様
になり前記目的をP2―N2層のチヤンネル現象な
くIGTコントロールを行うことができる。
In order to solve the above drawback and increase the IGT, it is sufficient to actively flow a reactive current through the surface layer, so that the forward rising voltage V 1 of the P 2 - N 2 junction near the surface
should be lower than the rising voltage V 2 of the internal P 2 - N 2 junction. Therefore, for the reasons mentioned above, the impurity concentration of the surface layer of the P2 region where the gate electrode is provided is reduced to P2 at the deepest vertical position of the N2 region layer where the cathode electrode is provided by ion implantation or diffusion method. The impurity concentration is set to be lower than the impurity concentration of the P 2 region layer at the junction position where it intersects with the region layer. In this way, P 2 near the surface layer -
The rise voltage of the N 2 diode is low, and in the low current region, current first flows through this portion, resulting in a reactive current, and no minority carriers are emitted inward. Therefore, IGT can be precisely controlled to about several μA to 1 mA. However, if a junction with a low impurity concentration region is provided in the surface layer, there is a risk that the diode P 2 -N 2 will produce a channel waveform in its reverse characteristics. Therefore, in order to avoid this, the junction created by the cathode N2 layer and the gate P2 layer is separated from the line exposed on the surface, and the gate P2 surface has a P type and highly concentrated impurity region P + By applying the layers, the channels are broken. However, if this continues, a potential difference will occur due to the P layer and the P - layer, making it difficult for the surface current to flow.
P 2 directly from the N 2 layer directly below the P + layer without passing through the P - layer
One release of minority carriers into the layer occurs, and the IGT becomes small. Therefore, by providing an N-type inversion layer or a buried region directly under the P-type high concentration impurity region, the emission of minority carriers from the N2 layer through the P + layer and the P2 layer is eliminated, and only between the P- layer and the N2 layer . In this case, a reactive current flows, and IGT control can be performed without the channel phenomenon of the P 2 -N layer.

次に本発明の一実施例を図面を用いながら説明
する。まず、基板の比抵抗30〜40Ω・cmのN型シ
リコン基板1を化学的に研磨して厚さ250μm程度
とする。次にシリコン基板1の両面よりガリウム
を用いて封管拡散にて1250℃20時間程度拡散し
P1(2)P2(3)層を設ける。ウエハーを高温で酸化し、
シリコン酸化膜を設け、公知の光学的方法により
カソード領域となる部分のみをとり去つた後、リ
ンを用いて1250℃にて拡散層N2(4)となる領域を
設ける。同様に選択的にN型埋込領域10となる
部分をイオンインプランテーシヨン又は拡散にて
設けた後、全面にイオンインプランテーシヨン又
は拡散にて浅いN型層を設け拡散を行い反転させ
てP-領域となる表面層8を設ける。さらに同様
にして選択的にP+領域9となる部分へボロンを
用いて拡散を行う。この際順番は不純物濃度・深
さを適当に選ぶことにより変えることができる。
Next, one embodiment of the present invention will be described with reference to the drawings. First, an N-type silicon substrate 1 having a specific resistance of 30 to 40 Ω·cm is chemically polished to a thickness of about 250 μm. Next, gallium was diffused from both sides of the silicon substrate 1 using sealed tube diffusion at 1250°C for about 20 hours.
Provide P 1 (2) P 2 (3) layers. Oxidize the wafer at high temperature,
After a silicon oxide film is provided and only the portion that will become the cathode region is removed by a known optical method, a region that will become the diffusion layer N 2 (4) is provided using phosphorus at 1250° C. Similarly, after selectively providing a portion that will become the N-type buried region 10 by ion implantation or diffusion, a shallow N-type layer is provided on the entire surface by ion implantation or diffusion, and diffusion is performed to invert the region. A surface layer 8 which becomes a P - region is provided. Furthermore, in the same manner, boron is selectively diffused into the portion that will become the P + region 9. At this time, the order can be changed by appropriately selecting the impurity concentration and depth.

この様にしてえられたシリコンウエハーを通常
の方法にて、素子に構成し、アノード電極5、カ
ソード電極6、ゲート電極7を設けてIGTを測定
した結果P-層を設けるイオンインプランテーシ
ヨンの条件により1μA〜1mA程度の範囲で自由
にIGTをコントロールすることができ、又、
P2N2層ダイオードの逆方向波形にもチヤンネル
はなく良好な結果が得られた。
The silicon wafer obtained in this manner was constructed into a device using a conventional method, and an anode electrode 5, a cathode electrode 6, and a gate electrode 7 were provided, and the IGT was measured.Ion implantation was performed to provide a P - layer. IGT can be freely controlled in the range of 1 μA to 1 mA depending on the conditions, and
Good results were obtained with no channel in the reverse waveform of the P 2 N two- layer diode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサイリスタの断面図、第2図は
本発明のサイリスタの断面図を示している。 なお図において、1……シリコン基板、2……
アノードP型層、3……ゲートP型層、4……カ
ソードN型層、5……アノード電極、6……カソ
ード電極、7……ゲート電極、8……P-ゲート
層、9……P+ゲート層、10……N型ゲート埋
込層、である。
FIG. 1 shows a sectional view of a conventional thyristor, and FIG. 2 shows a sectional view of a thyristor according to the present invention. In the figure, 1... silicon substrate, 2...
Anode P-type layer, 3... Gate P-type layer, 4... Cathode N-type layer, 5... Anode electrode, 6... Cathode electrode, 7... Gate electrode, 8... P - gate layer, 9... P + gate layer, 10 . . . N type gate buried layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半動体基板と、該半動体基板の一
主面に設けられた他の導電型の第1の不純物領域
と、前記半導体基板の他の主面に設けられた前記
他の導電型の第2の不純物領域と、前記第1の不
純物領域の前記一主面側に設けられた前記一導電
型の第3の不純物領域と、前記第1の不純物領域
の前記一主面側に前記第3の不純物領域と接して
設けられ前記第1の不純物領域の前記第3の不純
物領域と接する領域における不純物濃度より低い
不純物濃度を有する前記他の導電型の第4の不純
物領域と、前記第1の不純物領域の前記一主面側
に前記第4の不純物領域と接し前記第3の不純物
領域と離間して設けられた前記他の導電型の高濃
度の第5の不純物領域と、前記第1の不純物領域
内に前記第5の不純物領域の底部と接して設けら
れた前記一導電型の第6の不純物領域と、前記第
5の不純物領域と接して設けられたゲート電極
と、前記第3の不純物領域と接続して設けられた
第1の主電極と、前記第2の不純物領域と接続し
て設けられた第2の主電極とを有することを特徴
とするサイリスタ。
1. A semi-moving body substrate of one conductivity type, a first impurity region of another conductivity type provided on one main surface of the semi-moving body substrate, and the other conductive region provided on the other main surface of the semiconductor substrate. a second impurity region of the type, a third impurity region of the one conductivity type provided on the one main surface side of the first impurity region, and a third impurity region of the one conductivity type provided on the one main surface side of the first impurity region. a fourth impurity region of the other conductivity type that is provided in contact with the third impurity region and has an impurity concentration lower than an impurity concentration in a region of the first impurity region that is in contact with the third impurity region; a high concentration fifth impurity region of the other conductivity type provided on the one main surface side of the first impurity region in contact with the fourth impurity region and spaced apart from the third impurity region; a sixth impurity region of one conductivity type provided in the first impurity region in contact with the bottom of the fifth impurity region; a gate electrode provided in contact with the fifth impurity region; A thyristor comprising: a first main electrode connected to the third impurity region; and a second main electrode connected to the second impurity region.
JP18634681A 1981-11-20 1981-11-20 Thyristor Granted JPS5887869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18634681A JPS5887869A (en) 1981-11-20 1981-11-20 Thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18634681A JPS5887869A (en) 1981-11-20 1981-11-20 Thyristor

Publications (2)

Publication Number Publication Date
JPS5887869A JPS5887869A (en) 1983-05-25
JPH0117267B2 true JPH0117267B2 (en) 1989-03-29

Family

ID=16186741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18634681A Granted JPS5887869A (en) 1981-11-20 1981-11-20 Thyristor

Country Status (1)

Country Link
JP (1) JPS5887869A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966080A (en) * 1972-09-06 1974-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966080A (en) * 1972-09-06 1974-06-26

Also Published As

Publication number Publication date
JPS5887869A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
US3202887A (en) Mesa-transistor with impurity concentration in the base decreasing toward collector junction
US5156981A (en) Method of making a semiconductor device of a high withstand voltage
EP0009367A1 (en) Gate turn-off thyristor
US4298881A (en) Semiconductor device with double moat and double channel stoppers
JPH05347413A (en) Manufacture of semiconductor device
JPS5938742B2 (en) transistor
JPS6046551B2 (en) Semiconductor switching device and its manufacturing method
US3538401A (en) Drift field thyristor
US3772577A (en) Guard ring mesa construction for low and high voltage npn and pnp transistors and diodes and method of making same
US4089020A (en) High power semiconductor diode
US4419681A (en) Zener diode
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
US3426253A (en) Solid state device with reduced leakage current at n-p junctions over which electrodes pass
JP3718223B2 (en) Semiconductor device for high voltage with vertical groove
US3634931A (en) Method for manufacturing pressure sensitive semiconductor device
US4910562A (en) Field induced base transistor
US3327183A (en) Controlled rectifier having asymmetric conductivity gradients
JPH0117267B2 (en)
US3697830A (en) Semiconductor switching device
JPH0992828A (en) Insulated bipolar transistor and its manufacture
JPS6245709B2 (en)
JP2557818B2 (en) Reverse conduction gate turn-off thyristor device
JPS621259B2 (en)
US3435515A (en) Method of making thyristors having electrically interchangeable anodes and cathodes
US4081818A (en) Semiconductor temperature sensitive switching device with short carrier lifetime region