JPH01140772A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01140772A
JPH01140772A JP29757487A JP29757487A JPH01140772A JP H01140772 A JPH01140772 A JP H01140772A JP 29757487 A JP29757487 A JP 29757487A JP 29757487 A JP29757487 A JP 29757487A JP H01140772 A JPH01140772 A JP H01140772A
Authority
JP
Japan
Prior art keywords
substrate
region
drain
semiconductor device
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29757487A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsuo
仁司 松尾
Moorisu Rii Piitaa
ピーター・モーリス・リー
Hiroo Masuda
弘生 増田
Tatsu Toyabe
達 鳥谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29757487A priority Critical patent/JPH01140772A/en
Publication of JPH01140772A publication Critical patent/JPH01140772A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow excessive carriers to be discharged and to improve breakdown voltages by providing in a substrate a region where conductivity is high, and reducing generation of excessive carriers within the substrate and a resistance against an accumulation region. CONSTITUTION:An N-channel MIS transistor comprising a source 1, a drain 2, and a gate 3 is arranged on a P-type silicon substrate, wherein a P<+>-layer 16 which is heavily doped compared to a substrate introduced through a groove- shaped vertical hole is formed, the groove having a highly conductive electrode material 17 buried therein which is in contact with the P<+>-layer 16. According to the constitution, the distance between the accumulation region 8, and the buried region 17 which will be a substrate contact can be short and a resistance therebetween can drastically be reduced by the heavy doping of the P<+>-layer, whereby a source-drain breakdown voltage against avalanche breakdown can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置およびその製造方法に係り、特に
素子の高耐圧化に好適な構造及びその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a structure suitable for increasing the withstand voltage of an element and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の装置は、米国特許第4132997号において論
じられているように、トランジスタの耐圧向上の為に、
MIS型半導体装置の近傍に表面に基板とのコンタクト
を設定し、基板内で発生した過剰キャリアを流出させる
ことによって耐圧を向上させることを行なっていた。
Conventional devices, as discussed in U.S. Pat. No. 4,132,997, use
Contact with the substrate is established on the surface near the MIS type semiconductor device, and excess carriers generated within the substrate are flowed out to improve breakdown voltage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は1表面から過剰キャリアを流出させてい
たため、基板内部深くに蓄積したキャリアの流出に関し
ては対応されておらず、過剰キャリアの発生量が多い場
合は充分流出させることができず、耐圧向上に限界があ
った。
Since the above conventional technology causes excess carrier to flow out from one surface, it does not deal with the flow of carrier accumulated deep inside the substrate, and if a large amount of excess carrier is generated, it is not possible to flow out sufficiently, and withstand voltage There were limits to improvement.

本発明の目的は、この過剰キャリアの流出を容易ならし
め、トランジスタの耐圧を向上させることにある。
An object of the present invention is to facilitate the outflow of excess carriers and improve the breakdown voltage of the transistor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、基板内に導電性の高い領域を設定し、基板
内部の過剰キャリア発生、蓄積領域との抵抗を低下させ
ることにより、容易に過剰キャリアを流出させ、耐圧の
向上を達成できる。
The above objective is to easily drain excess carriers and improve breakdown voltage by setting a highly conductive region in the substrate and lowering the resistance with the generation and accumulation region of excess carriers inside the substrate.

〔作用〕[Effect]

第1図に、本発明の半導体装置の構造を示、す。 FIG. 1 shows the structure of a semiconductor device of the present invention.

MIS型電界効果トランジスタは、ソース1.ドレイン
2及びゲート3から成る。ソース1.ドレイン2間に電
圧を印加するとキャリアである電子あるいは正孔が電界
により加速され、ドレイン近傍4でインパクトイオン化
をおこし、正孔、電子対を生成する。第2図にインパク
トイオン化及びその後のキャリアの挙動をnチャネル型
MISトランジスタを例に示す。ソースドレイン電界に
より加速された電子は表面付近の電流経路9に沿って流
れ、ドレイン近傍の領域10でインバク1−イオン化を
行ない、電子、正孔の対を生成する。生成された電子は
経路11を通りドレインに流れるが、正孔は経路12を
経て基板コンタクトに流れる。基板は抵抗成分があるた
め、この正孔電流によって、チャネル下の領域13の電
位が上昇し、ソース・基板間のP−N接合の順バイアス
条件を満足するまで上昇する。領域13の電位は順バイ
アス約0.7vで固定されてしまうため、ソースドレイ
ン間にさらに電子電流9が流れ、さらにインパクトイオ
ン化を生じ、この正帰還ループによって、ソース・ドレ
イン間に大量の電流が流れる、いわゆるなだれ降伏現象
を起こすことになる。ここで問題となるのは、順バイア
スを保持するために、電位が固定され、領域13に蓄積
した正孔は。
The MIS type field effect transistor has a source 1. It consists of a drain 2 and a gate 3. Source 1. When a voltage is applied across the drain 2, electrons or holes, which are carriers, are accelerated by the electric field, impact ionization occurs near the drain 4, and pairs of holes and electrons are generated. FIG. 2 shows impact ionization and subsequent carrier behavior using an n-channel MIS transistor as an example. Electrons accelerated by the source-drain electric field flow along a current path 9 near the surface, undergo in-vacuum ionization in a region 10 near the drain, and generate pairs of electrons and holes. The generated electrons flow through path 11 to the drain, while holes flow through path 12 to the substrate contact. Since the substrate has a resistive component, the potential of the region 13 under the channel increases due to this hole current until it satisfies the forward bias condition of the PN junction between the source and the substrate. Since the potential of region 13 is fixed at a forward bias of about 0.7V, an additional electron current 9 flows between the source and drain, further causing impact ionization, and this positive feedback loop causes a large amount of current to flow between the source and drain. This will cause the so-called avalanche yield phenomenon. The problem here is that the potential is fixed in order to maintain the forward bias, and the holes accumulated in the region 13.

基板コンタクトとの間の電位差と抵抗14によって定ま
る正孔電流15によってのみ放出されることである。す
なわち、抵抗が大きければ一定時間に放出される正孔は
少なく、抵抗が小さければ放出される正孔は多くなる。
The hole current 15 is determined by the potential difference between the substrate contact and the resistor 14. That is, if the resistance is high, fewer holes will be released in a certain period of time, and if the resistance is low, more holes will be released.

そこで、この抵抗を小さくすれば領域13の電位上昇も
順バイアス以下に抑えることができ、インパクトイオン
化による電子・正孔対がより多くならないとなだれ降伏
を生じないようにすることができる。つまり、なだれ降
伏の生じるソース・ドレイン間の電位差をより大きくす
ることができトランジスタの耐圧が向上する。
Therefore, by reducing this resistance, the potential rise in the region 13 can be suppressed to below the forward bias, and avalanche breakdown can be prevented unless the number of electron-hole pairs due to impact ionization increases. In other words, the potential difference between the source and drain at which avalanche breakdown occurs can be made larger, and the breakdown voltage of the transistor is improved.

この基板の抵抗14は、図1に示すように基板コンタク
ト7と蓄積領域8間の抵抗値に相当する。
This substrate resistance 14 corresponds to the resistance value between the substrate contact 7 and the storage region 8, as shown in FIG.

この蓄積領域は第3図に示すようシミュレーション結果
でも明らかな様に表面から5μm程度をピークに、20
〜30μm程度にまで伸びていることを新たに発見した
As shown in Figure 3, this accumulation region peaks at about 5 μm from the surface, and as is clear from the simulation results,
It was newly discovered that it extends to about 30 μm.

したがって、ソース1.ドレイン2の側方に基板コンタ
クト7と接続されかつ第3図に示した程度の基板深くま
で存在する低抵抗領域5を設けることにより、基板コン
タクト7と蓄積領域8の実効的な抵抗を下げることがで
き、耐圧が向上するにの低抵抗領域5は表面からイオン
打込みで形成することも可能であるが、蓄積領域8が約
2μmから数十μmにわたって存在するため、深い領域
まで形成する必要があり、その為に一度Si基板に穴を
作り、その内部に、高濃度不純物を有するStを埋め込
むことにより、より深い低抵抗領域を形成できる。さら
に、この領域には多結晶シリコンや金属などの導電体を
埋め込めば、より抵抗値が低下できるし、穴を形成した
状態でイオン打込みにより基板深くまで高濃度の不純物
層を形成することによっても深い低抵抗領域が得られ、
耐圧の向上が実現できる。
Therefore, source 1. By providing a low resistance region 5 connected to the substrate contact 7 on the side of the drain 2 and existing deep into the substrate as shown in FIG. 3, the effective resistance of the substrate contact 7 and the storage region 8 can be lowered. Although it is possible to form the low resistance region 5 from the surface by ion implantation to improve the breakdown voltage, since the accumulation region 8 exists from about 2 μm to several tens of μm, it is necessary to form it deep. Therefore, a deeper low-resistance region can be formed by once making a hole in the Si substrate and filling the inside with St having a high concentration of impurity. Furthermore, if a conductor such as polycrystalline silicon or metal is buried in this region, the resistance value can be lowered further, or by forming a highly concentrated impurity layer deep into the substrate by ion implantation with a hole formed. A deep low resistance region is obtained,
Improved pressure resistance can be achieved.

以上説明した低抵抗領域はソース、ドレインの両便にあ
る場合最も効果的であるが、片方のみでも充分に機能を
はたす。この場合は、ソース電位の方がドレインより低
いためドレイン側よりもソース側に設定する方が、正孔
の流出に有利である。
The low-resistance region described above is most effective when it is present in both the source and drain regions, but it can function satisfactorily even if it is present in only one region. In this case, since the source potential is lower than that of the drain, it is more advantageous for hole outflow to set it on the source side than on the drain side.

〔実施例〕〔Example〕

第4図(a)は、本発明の一実施例になる半導体装置の
構造である。P型Si基板6上にソース1、ドレイン2
.ゲート3によりNチャネルMISトランジスタが形成
されている。ソース。
FIG. 4(a) shows the structure of a semiconductor device according to an embodiment of the present invention. A source 1 and a drain 2 are placed on a P-type Si substrate 6.
.. Gate 3 forms an N-channel MIS transistor. sauce.

ドレインの側方に、溝型に深さ10μm程度に形成した
たて穴を通して導入された基板よりも高濃度のP中層1
6を形成してあり、溝内には導伝性の高い電極材17が
埋め込まれ、P+層16と接触している。本実施例によ
れば、蓄積領域8と基板コンタクトとなる埋込み領域1
7の距離が短くかつP+層の高濃度化により両者間の抵
抗値を著しく減少でき、基板内に蓄積した正孔が容易に
基板から基板コンタクトに流出するため、なだれ降伏に
よるソースドレインの耐圧を第4図(b)に示す如く約
1〜3v程度向上させることができた。
A P intermediate layer 1 with a higher concentration than the substrate was introduced through a vertical hole formed in a groove shape with a depth of about 10 μm on the side of the drain.
A highly conductive electrode material 17 is embedded in the groove and is in contact with the P+ layer 16. According to this embodiment, the storage region 8 and the buried region 1 serving as the substrate contact
7 is short and the concentration of the P+ layer is high, the resistance value between the two can be significantly reduced, and the holes accumulated in the substrate can easily flow from the substrate to the substrate contact, reducing the withstand voltage of the source and drain due to avalanche breakdown. As shown in FIG. 4(b), it was possible to improve the voltage by about 1 to 3V.

第5図は1本発明の一実施例になる半導体装置の構造で
ある。これは、ソース1.ドレイン2の側方に、P型不
純物濃度の高い5i18を約20μmの溝型の穴中に埋
め込んで形成しである。これによっても、基板内に蓄積
した正孔の放出を著しく容易ならしめソースドレイン耐
圧を約1〜3V程度向上させることができた。
FIG. 5 shows the structure of a semiconductor device according to an embodiment of the present invention. This is source 1. 5i18 having a high concentration of P-type impurities is embedded in a groove-shaped hole of about 20 μm on the side of the drain 2. This also made it possible to significantly facilitate the release of holes accumulated in the substrate and to improve the source/drain breakdown voltage by about 1 to 3 V.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ソースドレイン間のインパクトイオン
化による過剰電子/正孔対の放出を短時間に行なうこと
ができるので、過剰キャリアの正帰還現象に起因するな
だれ降伏を制御することができ、MIS型電界効果トラ
ンジスタのソースドレイン耐圧を1〜3■程度向上させ
る効果がある。
According to the present invention, since excess electron/hole pairs can be emitted in a short time by impact ionization between the source and drain, avalanche breakdown caused by the positive feedback phenomenon of excess carriers can be controlled, and MIS This has the effect of improving the source-drain breakdown voltage of a type field effect transistor by about 1 to 3 cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のMIS型トランジスタの断面構造図、
第2図は本発明の論理基盤となる物理現象を説明する図
、第3図は蓄積領域の深さを示す図、第4図は本発明の
一実施例のMIS型電界効果トランジスタの断面図、第
5図は本発明の一実施例のMIS型電界効果トランジス
タの断面図を示す。 1・・・ソース、2・・・ドレイン、3・・・ゲート。 ¥A 1 (2) 42 田 ttJlcTgelN C#cl!N7!QnDN I
N CH4Not、’e eaNe&l71ZA7’X
 oN rN Cs −3芽 4 田
FIG. 1 is a cross-sectional structural diagram of the MIS type transistor of the present invention,
FIG. 2 is a diagram explaining the physical phenomenon that is the logical basis of the present invention, FIG. 3 is a diagram showing the depth of the storage region, and FIG. 4 is a cross-sectional view of an MIS field effect transistor according to an embodiment of the present invention. , FIG. 5 shows a sectional view of an MIS type field effect transistor according to an embodiment of the present invention. 1...source, 2...drain, 3...gate. ¥A 1 (2) 42 田ttJlcTgelN C#cl! N7! QnDN I
N CH4Not,'e eaNe&l71ZA7'X
oN rN Cs-3 sprout 4 field

Claims (1)

【特許請求の範囲】 1、第1導電型の半導体基板上に形成されたMIS型電
界効果トランジスタにおいて、そのソース・ドレインを
形成する第2導電型の半導体領域の外側に、少なくとも
ひとつの高濃度でかつ基板内部まで深く形成された第1
導電型の半導体領域を有することを特徴とする半導体装
置。 2、特許請求の範囲第1項記載の半導体装置において、
高濃度の第1導電型半導体領域の深さが少なくとも基板
表面から2マイクロメータ以上であることを特徴とする
半導体装置。 3、特許請求の範囲第1項記載の半導体装置において、
高濃度かつ深く形成された第1導電型の半導体領域に替
えて、導電性物質領域を形成したことを特徴とする半導
体装置。 4、第1導電型の半導体基板上に形成されたMIS型電
界効果トランジスタにおいて、そのソース・ドレインを
形成する第2導電型の半導体領域の外側に、少なくとも
ひとつの高濃度でかつ基板内部まで深く形成された第1
導電型の半導体領域を有することを特徴とする半導体装
置の製造方法において、上記高濃度かつ深く形成された
第1導電型半導体領域及び導電性物質領域を基板に溝を
堀った後に該領域を形成する工程を有することを特徴と
する半導体装置の製造方法。
[Claims] 1. In a MIS field effect transistor formed on a semiconductor substrate of a first conductivity type, at least one highly doped semiconductor region is provided outside the semiconductor region of the second conductivity type that forms the source and drain of the MIS field effect transistor. The first plate is large and is formed deep inside the substrate.
A semiconductor device characterized by having a conductive type semiconductor region. 2. In the semiconductor device according to claim 1,
A semiconductor device characterized in that the depth of the highly concentrated semiconductor region of the first conductivity type is at least 2 micrometers or more from the surface of the substrate. 3. In the semiconductor device according to claim 1,
1. A semiconductor device characterized in that a conductive material region is formed in place of a first conductivity type semiconductor region formed deeply and highly concentrated. 4. In a MIS field effect transistor formed on a semiconductor substrate of a first conductivity type, at least one highly doped semiconductor region is formed outside the semiconductor region of the second conductivity type that forms the source and drain of the transistor and deep into the substrate. first formed
In a method for manufacturing a semiconductor device characterized by having a semiconductor region of a conductive type, the first conductive type semiconductor region and the conductive material region formed at high concentration and depth are trenched in the substrate, and then the region is removed. 1. A method of manufacturing a semiconductor device, comprising a step of forming a semiconductor device.
JP29757487A 1987-11-27 1987-11-27 Semiconductor device and manufacture thereof Pending JPH01140772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29757487A JPH01140772A (en) 1987-11-27 1987-11-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29757487A JPH01140772A (en) 1987-11-27 1987-11-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01140772A true JPH01140772A (en) 1989-06-01

Family

ID=17848313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29757487A Pending JPH01140772A (en) 1987-11-27 1987-11-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01140772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001570A1 (en) * 1989-07-18 1991-02-07 Seiko Instruments Inc. Semiconductor device
US5345103A (en) * 1989-07-18 1994-09-06 Seiko Instruments Inc. Gate controlled avalanche bipolar transistor
JP2004502313A (en) * 2000-07-04 2004-01-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Terminal support and method of bonding the terminal support to an injection molded member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001570A1 (en) * 1989-07-18 1991-02-07 Seiko Instruments Inc. Semiconductor device
US5345103A (en) * 1989-07-18 1994-09-06 Seiko Instruments Inc. Gate controlled avalanche bipolar transistor
JP2004502313A (en) * 2000-07-04 2004-01-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Terminal support and method of bonding the terminal support to an injection molded member

Similar Documents

Publication Publication Date Title
JP4307732B2 (en) High voltage type semiconductor component
US5434435A (en) Trench gate lateral MOSFET
US4101922A (en) Field effect transistor with a short channel length
EP0417738B1 (en) Power semiconductor device
US4514747A (en) Field controlled thyristor with double-diffused source region
DE112014003712T5 (en) Semiconductor device and method of manufacturing a semiconductor device
JP2007043123A (en) Semiconductor device
US20190312106A1 (en) Enhancements to cell layout and fabrication techniques for mos-gated devices
JP2005510061A (en) Trench gate semiconductor device and manufacturing method thereof
JP2008021981A (en) Insulated gate bipolar transistor, and method for manufacturing it
US6160306A (en) Diode of semiconductor device and method for manufacturing the same
JP2002368214A (en) Mos transistor
US20210134989A1 (en) Semiconductor device and method of manufacturing thereof
JP2003338624A (en) Semiconductor device
KR20150061201A (en) Power semiconductor device and method of fabricating the same
US10256331B2 (en) Insulated gate turn-off device having low capacitance and low saturation current
JPH01140772A (en) Semiconductor device and manufacture thereof
JPH0888357A (en) Lateral igbt
KR102094769B1 (en) Power Semiconductor with P Shield Structure Implemented by Multiple Epi-Growth Method and Fabrication Method
KR0149705B1 (en) A structure of the insulated gate bipolar transistor and manufacturing method of the same
JP2000031483A (en) Static induction semiconductor device
JP4088263B2 (en) High voltage semiconductor element
JP3214242B2 (en) Semiconductor device
JPS639386B2 (en)
JPS6115369A (en) Semiconductor device and manufacture thereof