JPS59191365A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59191365A
JPS59191365A JP6533483A JP6533483A JPS59191365A JP S59191365 A JPS59191365 A JP S59191365A JP 6533483 A JP6533483 A JP 6533483A JP 6533483 A JP6533483 A JP 6533483A JP S59191365 A JPS59191365 A JP S59191365A
Authority
JP
Japan
Prior art keywords
type
layer
buried layer
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6533483A
Other languages
Japanese (ja)
Other versions
JPH0475660B2 (en
Inventor
Yasuaki Kowase
小和瀬 靖明
Toru Inaba
稲葉 透
Tatsuitsu Takagi
高木 辰逸
Akira Takigawa
滝川 章
Susumu Tokuoka
徳岡 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP6533483A priority Critical patent/JPS59191365A/en
Publication of JPS59191365A publication Critical patent/JPS59191365A/en
Publication of JPH0475660B2 publication Critical patent/JPH0475660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent electrostatic breakdown by isoplanar structure by forming high-concentration n<+> type layer for extracting potential from an n<+> type buried layer to one part of an island region on the n<+> type buried layer so that the buried layer is used as a resistance section and employing a p-n junction as a protective diode. CONSTITUTION:An n<+> buried layer 12 is formed to a p<->type Si substrate 11. n<+> layers 14, 15 are formed, and an isoplanar oxide film 13 is formed to one part of the Si layer. A p type isolation section 18 is diffused so that a p type impurity is connected to the p type substrate 11. The high-concentration n<+> type layers 14, 15 are separated by the isoplanar oxide film so that the n<+> type buried layer 12 is used as a resistance section and formed at two positions. An Al electrode 16 is brought into ohmic-contact on one n<+> type layer 14, and connected to an external terminal (PAD) for a chip. An Al electrode 17 is brought into ohmic-contact on the other n<+> type layer 15, and connected to a base or an emitter in a transistor to be protected.

Description

【発明の詳細な説明】 〔抄型分野〕 本発明は半導体装置における静笥破壊防止技術に関し、
特にアイソプレーナ分離による半導体集積回路装置(以
下工0と称する)を対象とする。
[Detailed description of the invention] [Field of paper molding] The present invention relates to a technique for preventing static box damage in semiconductor devices,
In particular, the subject is a semiconductor integrated circuit device using isoplanar isolation (hereinafter referred to as process 0).

〔背景技術〕[Background technology]

一つの半導体基体内で種々の半導体素子を組合ゼて回路
を構成した工Oにおいては、外部から瞬間的に流れる高
い電圧(主として静電気)Kよる素子の破壊を防止する
ために基体上のパヴド(外部端子)と上記素子との間に
保静素子を般けている。この保護素子は例えば半導体基
体内のpn接合を利用した保護ダイオードが使われる。
In a process in which a circuit is constructed by combining various semiconductor elements within a single semiconductor substrate, a paved ( A static retaining element is provided between the external terminal (external terminal) and the above-mentioned element. As this protection element, for example, a protection diode utilizing a pn junction within a semiconductor substrate is used.

第1図にこれまでバイポーラICに用いられていた保護
ダイオードの一例が示される。
FIG. 1 shows an example of a protection diode conventionally used in bipolar ICs.

同図において、1はp型S1(シリコン)2i板(サブ
ストレート)、2はn+型埋込層、3は基板の上にエピ
タキシャル取長させfcn型S型層1層はp型アイソレ
ーション層で、これによシn型81層3は周囲の他の領
域から電気的に離隔される。5はp型(ベース)拡散層
で電極7は保護されるべき素子、たとえはトランジスタ
めエミヴタ又はベースに接続される。8はn+型(エミ
ヴ41)拡散層で通常ボンディングパダドPADと他の
トランジスタのエミヅタ又ハヘ−、c (Bor B 
) rWJを電気的に接続している、9は受面酸化膜(
5102膜)であら。
In the figure, 1 is a p-type S1 (silicon) 2i plate (substrate), 2 is an n+ type buried layer, 3 is an fcn-type S-type layer epitaxially grown on the substrate, and 1 layer is a p-type isolation layer. This electrically isolates the n-type 81 layer 3 from other surrounding regions. Reference numeral 5 denotes a p-type (base) diffusion layer, and electrode 7 is connected to an element to be protected, such as an emitter or base of a transistor. 8 is an n+ type (Emiv 41) diffusion layer, which is usually used for bonding PAD and other transistor emitters, c (Bor B
) 9 is the receiving surface oxide film (
5102 membrane).

介の高い知4圧印)JD時は、半導体8,5.3で構成
されるNPNトランジスタがONし、正の高い電圧印加
時は、半導体1.2と3,5で構成されるP−NP)ラ
ンリスタがONLそれぞれ内部素子を保護する働きが有
る。
4) During JD, the NPN transistor composed of semiconductors 8 and 5.3 is turned on, and when a high positive voltage is applied, the P-NP transistor composed of semiconductors 1.2 and 3 and 5 is turned on. ) The run lister has the function of protecting the internal elements of each ONL.

ところで、最近の半導体装置の高速化、高集積化に伴い
、素子はますます小型化し、うすいエピタキシャルSi
層において面積を多くとらないアイソプレーナ分離方式
による素子間分離がなされるように々った。
By the way, as semiconductor devices have become faster and more highly integrated in recent years, devices have become smaller and smaller, and thin epitaxial Si
The isoplanar isolation method, which does not take up much area in the layers, has been used to isolate elements.

このアイソブレーナ分離方式はエピタキシャルS1層の
表面の一部をあらかじめエッチして凹部を形成し、この
四部とp型基板との間のエピタキシャル層にp型アイソ
レーション層を形成するとともに連部酸化によって凹部
上に犀い酸化膜(81021換)を形成することにより
、面積をとらず、かつ表面の平坦性を甚だしく損うこと
のないアイソレーション酸化膜を得るものである。
In this isoplanar isolation method, a part of the surface of the epitaxial S1 layer is etched in advance to form a recess, a p-type isolation layer is formed in the epitaxial layer between these four parts and the p-type substrate, and the recess is formed by continuous oxidation. By forming a thin oxide film (equivalent to 81021) thereon, an isolation oxide film that does not occupy a large area and does not significantly impair the surface flatness is obtained.

このアイソプレーナ分離方式で分離されり価、域に前記
のベース・エミッタ表面を利用した保護ダイオードを形
成しようとする場合、表面の電極以外の部分は厚い酸化
膜で覆われるため第1図で示す形でn+型エミ、り上に
うすい5L02Bをかふせることができず又、浅いエミ
ッタ表面にAt寛極を伺けることが困難であるなどの問
題があった。
When attempting to form a protective diode using the base-emitter surface described above in the region separated by this isoplanar isolation method, the surface area other than the electrodes is covered with a thick oxide film, as shown in Figure 1. There were problems in that it was impossible to overlay thin 5L02B on the n+ type emitter due to the shape, and it was difficult to obtain At tolerance on the shallow emitter surface.

〔発明の目的〕[Purpose of the invention]

本発明はアイソブレーナ方式によるICにおける静電破
壊防止用のpΩ接合を利用した保護ダイオード構造を提
供することにある。
An object of the present invention is to provide a protection diode structure using a pΩ junction for preventing electrostatic damage in an isobrain type IC.

〔発明のW袂〕[W sleeve of invention]

本願において開示される発明のうち代表的なもののW要
を簡単に説明すれば、例えはp型半導体基板の上にΩ 
型埋込層を介して半導体エピタキシャル層を形成し、こ
の半導体エピタキシャル層の表面に選択的に酸化膜を形
ばすることによって互いにt2気的に離隔された島領域
とし、これら島領域に半導体素子を形成した半導体装置
において、一つのn 型埋込層を抵抗性とするようにそ
の土の島領域の一部Kn  型埋込層から電1位取り出
しの汽めの高濃度n+型層を般け、n+型岬込層とp型
基板との間のpn接合を上記他額竣に形成さhi素子の
保護ダイオードとしたものであシ、これKより、アイソ
ブレーナ分離構造で静電破壊防止素子を実現したもので
ある。
To briefly explain the W points of a typical invention disclosed in this application, for example, an Ω
A semiconductor epitaxial layer is formed through a mold embedding layer, and an oxide film is selectively formed on the surface of this semiconductor epitaxial layer to form island regions separated from each other by t2, and semiconductor elements are formed in these island regions. In a semiconductor device in which one n-type buried layer is made resistive, a high-concentration n+-type layer is generally used to take out the potential from the Kn-type buried layer in a part of the soil island region. In this case, the pn junction between the n+ type capping layer and the p type substrate is formed as a protective diode for the HI element. This has been realized.

〔実施例〕I 第2図は本発明によるアイソブレーナ分離された島領域
に静電破壊防止素子を形成した一実施例を示す断面図で
ある。
[Embodiment] I FIG. 2 is a sectional view showing an embodiment of the present invention in which an electrostatic breakdown prevention element is formed in an island region separated by an isobrener.

同図において、11はp−型81基板、12はn 型埋
込層である。
In the figure, 11 is a p-type 81 substrate, and 12 is an n-type buried layer.

と+7)!つに一部でn+型埋込層の形成されたp−m
基板上に全面にエピタキシャル成長によJ)81層(一
部がn+層14.15として示される)が形成され、こ
の81層の一部にアイソブレーナ酸化膜13が形成され
る。アイソブレーナ酸化膜13はエピタキシャル成長8
1層の表面の一部K 81 N等をマスクにエッチして
凹部(図示されない)を形成し、この凹部内にp型不純
物をイオン打込み後、81Nマスクを耐酸化マスクとし
て連部的低温酸化を行なうことによυ形成するものであ
る。
+7)! p-m with n+ type buried layer formed in part
An 81 layer J) (a part of which is shown as an n+ layer 14, 15) is formed on the entire surface of the substrate by epitaxial growth, and an isoplanar oxide film 13 is formed on a part of this 81 layer. Isobrain oxide film 13 is epitaxially grown 8
A part of the surface of the first layer is etched using a mask such as K 81 N to form a recess (not shown), and after ion implantation of p-type impurities into the recess, continuous low-temperature oxidation is performed using an 81N mask as an oxidation-resistant mask. By doing this, we form υ.

18は前記p型不純物がp型基板11に接fl″jるよ
うに拡散されたp型アイソレーション部である。
18 is a p-type isolation portion in which the p-type impurity is diffused so as to be in contact with the p-type substrate 11 fl″j.

14.15はアイソブレーナ酸化膜13をマスクとして
エピタキシャルB1層に高濃度n型不純物を導入しn 
型埋込層12と接続する高#度であり、通常npn)ラ
ンリスタのコレクタ取出し部として形成される部分であ
る。この高濃2度n4型層14.15はD+型埋込層1
2が抵抗性となるようにアイソプレーナ酸化膜で隔てら
れて、2個所に般けられる。
14.15 introduces high concentration n-type impurities into the epitaxial B1 layer using the isoplanar oxide film 13 as a mask.
This is a high-density portion connected to the mold buried layer 12, and is usually formed as a collector extraction portion of an npn (npn) run lister. This high-concentration n4 type layer 14.15 is the D+ type buried layer 1.
2 is distributed in two locations separated by an isoplanar oxide film so as to be resistive.

16は一方のD+型層14上にオーミック◆コンタクト
させたAlt極でチップの外端子(PAD)K接続され
る。
Reference numeral 16 is connected to an external terminal (PAD) K of the chip by an Alt pole which is in ohmic contact with one D+ type layer 14.

17は他方の0+型層15上にオーミック・コンタクト
させ7’CAt電極で同じチップ(基体)上の保護され
るべきトランジスタのベース又はエミヴタに接続される
17 is in ohmic contact with the other 0+ type layer 15 and is connected to the base or emitter of a transistor to be protected on the same chip (substrate) through a 7' CAt electrode.

このような構造において、外端子(PAD)Ic例λば
静電気の高いやの電圧が瞬時に印加された場合、同図の
D+型埋込層12とp−型基板11との間の接合ダイオ
ードJ2がONとなり、p−型基板11からt流が渡れ
エミッタ(In)又はベース(B)の端子に加わる電圧
は少なくなり静電破壊から保護される。
In such a structure, if a voltage with high static electricity is instantaneously applied to the external terminal (PAD) Ic, for example λ, the junction diode between the D+ type buried layer 12 and the p- type substrate 11 in the figure J2 is turned on, the t current crosses from the p-type substrate 11, the voltage applied to the emitter (In) or base (B) terminal is reduced, and it is protected from electrostatic damage.

〔実施例〕■ 第3し1は本発明によるアイソブレーナ分離さねた島飴
域に正負両方向の静電破壊防止素子を般けた場合の一実
施例を示す断面図である。
[Embodiment] 3. Part 1 is a cross-sectional view showing an embodiment in which electrostatic damage prevention elements in both positive and negative directions are provided in the isobrener separated dome area according to the present invention.

同図において(A)で示す区域は前記の実施例1で設明
し女糎雷破壊防止素子と同一構造を有する。
In the figure, the area indicated by (A) has the same structure as the lightning damage prevention element established in the first embodiment.

同図において(B)で示す区域は正の裏電圧がPADに
印加され71合の破壊防止素子の構造を示している。
In the same figure, the area indicated by (B) shows the structure of the breakdown prevention element of 71 cases where a positive back voltage is applied to the PAD.

19は0 型埋込層の形成さねたp型基板の上全面にエ
ピタキシャル防長さ一+!″kn型S1層の一部である
。20はアイソレージリン酸化膜13により囲まれたn
型81層表面にp型ベース拡散しfCp型領域である。
19 is an epitaxial barrier length of 1+ on the entire surface of the p-type substrate on which the 0-type buried layer has been formed! 20 is a part of the kn type S1 layer.
The p-type base is diffused on the surface of the type 81 layer, forming an fCp-type region.

このp層領域20の表面にAl電極22が般けられ、外
端子(PAD)に接続される。21はアイソレーション
酸化膜13によシ囲まれた他のn型81層表面に高濃度
Ω 型拡散しfct++型埋込層12に接続するn+型
働域である。このD+型領球21にA!電、極23が設
けられ例えばt源(vo0’)に接続される。
An Al electrode 22 is spread on the surface of this p-layer region 20 and connected to an external terminal (PAD). Reference numeral 21 denotes an n+ type active region which is highly concentrated Ω type diffused on the surface of the other n type 81 layer surrounded by the isolation oxide film 13 and connected to the fct++ type buried layer 12. A to this D+ type sphere 21! An electric pole 23 is provided and connected to, for example, a t source (vo0').

この(B)に示す構造においてはn 型埋込層12が抵
枳分R2となるとともにn 型埋込層12(n型層19
)とp型慟域20との間のpn接合J3が保讃ダイオー
ドとして利用される。
In the structure shown in (B), the n-type buried layer 12 has a resistance R2, and the n-type buried layer 12 (n-type layer 19
) and the p-type region 20 is used as a protection diode.

〔実施例〕■ 第4図は第3図に示した実施例の改良を示す半導体装置
の部分断面図である。すなわち、第3図に示した半導体
装置の(A)部は埋込層部の抵抗R,をもつことになる
。この抵抗R,を回路上加えると不都合な場合、第4図
(A)部に示す如くダイオードのみのパターンとすると
よい。この場合、負のインパルス印加時、内部素子より
も、このダイオードの方が速くONして防止効果を持つ
ことになる。
[Embodiment] (1) FIG. 4 is a partial sectional view of a semiconductor device showing an improvement of the embodiment shown in FIG. That is, the part (A) of the semiconductor device shown in FIG. 3 has a resistance R of the buried layer part. If it is inconvenient to add this resistor R to the circuit, it is preferable to use a pattern consisting only of diodes as shown in part (A) of FIG. In this case, when a negative impulse is applied, this diode turns on faster than the internal elements and has a prevention effect.

〔効果〕〔effect〕

(1)n+型埋込層をそのまま抵払分として使用でき、
抵枳値の制御も容易である。D+型埋込層よりの電極取
出し部はコレクタ取出し部をそのまま使用でき、浅いエ
ミリタ拡散層への電極数υ付けに此して容易にできる。
(1) The n+ type buried layer can be used as it is as a mortgage part,
It is also easy to control the resistance value. The collector lead-out part can be used as it is as the electrode lead-out part from the D+ type buried layer, and the number of electrodes υ can be easily attached to the shallow emitter diffusion layer.

(2)n+型埋込層よシの電極取出し部としてコレクタ
取出し部とベース拡散層を使用すれは正負両方向の保給
ダイオードとして破壊対の向上ができる。
(2) By using the collector lead-out part and the base diffusion layer as the electrode lead-out part of the n+ type buried layer, it is possible to improve the breakdown pair as a holding diode in both the positive and negative directions.

匂上本発明者によってなされた発明を実施例にもとづき
具体的KB明したが本発明は上記実施例に限定されるも
のでなく、その要旨を逸脱しない範囲で種々に変更T+
]能であることはいうまでもない。
Although the invention made by the inventor of the present invention has been described in detail based on examples, the present invention is not limited to the above-mentioned examples, and various modifications may be made without departing from the gist thereof.
] Needless to say, it is Noh.

〔利用分野〕[Application field]

本発明はアイソブレーナ分離技術を用いたバイボーラエ
C(リニア半導体製品)のすべてに応用できるものであ
る。
The present invention can be applied to all bibolar E-C (linear semiconductor products) using isobrain separation technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこれまでのバイポーラICに用いられる保護ダ
イオードの一例を示す断面図である。 第2図は本発明によるアイソブレーナ分離された島領塘
に静電破壊防止素子(負方向)を形成した場合の一実鵠
例を示す半導体装置の断面図である。 43図は本発明によるアイソブレーナ分離された島佃域
に正負両方向の静を破壊防止素子を形成した場合の一実
施例を示す半導体装置の断面図である。 第4図はさらに本発明の他の実施例を示す半導体装置の
断面図である。 1・・・p−型半導体基板、2・・・Ω+型埋込層、3
・・・n型エピタキシャル半導体層、4・・・p型アイ
ソレーション部、5・・・p型拡散抵抗、6,7・・・
Al電極、9・・・酸化膜、11・・・p−型層1基板
、12・・・n+型埋込層、13・・・連部酸化膜(8
1o2)&!、14.15’・・・n+型拡散層(コレ
クタ取出し部)、16.17・・・Al電極、1B・・
・p型チャネルヌト1,7バ、19・・・J!Iエピタ
キシャルSi層、20・・・p型拡散ベース、21・・
−n+型拡散層(コレクタ取出し部)、22.23・・
・Azt極。 ジニアリング株式会社 小平市上水本町1479番地
FIG. 1 is a cross-sectional view showing an example of a protection diode used in a conventional bipolar IC. FIG. 2 is a sectional view of a semiconductor device showing an example of the present invention in which an electrostatic breakdown prevention element (in the negative direction) is formed on an isobrain-separated island. FIG. 43 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention in which a static destruction prevention element in both positive and negative directions is formed in an island area separated by an isobrener. FIG. 4 is a sectional view of a semiconductor device showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 2...Ω+ type buried layer, 3
... n-type epitaxial semiconductor layer, 4... p-type isolation section, 5... p-type diffused resistance, 6, 7...
Al electrode, 9... Oxide film, 11... P- type layer 1 substrate, 12... N+ type buried layer, 13... Continuous oxide film (8
1o2)&! , 14.15'...n+ type diffusion layer (collector extraction part), 16.17...Al electrode, 1B...
・P-type channel nut 1, 7, 19...J! I epitaxial Si layer, 20... p-type diffusion base, 21...
-n+ type diffusion layer (collector extraction part), 22.23...
・Azt pole. Geneering Co., Ltd. 1479 Josui Honmachi, Kodaira City

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板の上に一部で第2導亀型埋込
MY介して牛導体エピタキシャル層ケ形原〔、この半導
体エピタキシャル層の表面に牛導体醇化膜を選択的に形
成することによって互いに電気的に離隔した島俳鰺とし
、これら島飴域に半導体素子を形原した半導体装置であ
って、一つの第2導電型押込層を抵抗性とするようにそ
の上の島sI鰺の一部に第2導電型埋込層からの電位取
出し領域を汐け、この第2導電型埋込層と第1導電型基
板との間のシ合を他の島佃域に形Wされた素子の併置ダ
イオードとしたことを%像とする半導体装置。
[Claims] 1. A conductor epitaxial layer is formed on the first conductivity type semiconductor substrate through a second conductive turtle-type embedding MY, and a conductor fused film is formed on the surface of this semiconductor epitaxial layer. This is a semiconductor device in which a semiconductor element is formed in the island area by selectively forming islands that are electrically separated from each other, and one of the pressed layers of the second conductivity type is made resistive. A potential extraction region from the second conductive type buried layer is placed on a part of the upper island sI, and the connection between the second conductive type buried layer and the first conductive type substrate is established on another island. A semiconductor device characterized by having a diode arranged in parallel with a W-shaped element in a region.
JP6533483A 1983-04-15 1983-04-15 Semiconductor device Granted JPS59191365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6533483A JPS59191365A (en) 1983-04-15 1983-04-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6533483A JPS59191365A (en) 1983-04-15 1983-04-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59191365A true JPS59191365A (en) 1984-10-30
JPH0475660B2 JPH0475660B2 (en) 1992-12-01

Family

ID=13283916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6533483A Granted JPS59191365A (en) 1983-04-15 1983-04-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59191365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184359A (en) * 1987-01-27 1988-07-29 Toshiba Corp Input protective circuit of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326686A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Protection circuit device for semi conductor
JPS587845A (en) * 1981-07-06 1983-01-17 Seiko Instr & Electronics Ltd Protecting circuit for bipolar integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326686A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Protection circuit device for semi conductor
JPS587845A (en) * 1981-07-06 1983-01-17 Seiko Instr & Electronics Ltd Protecting circuit for bipolar integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184359A (en) * 1987-01-27 1988-07-29 Toshiba Corp Input protective circuit of semiconductor device
JPH0413865B2 (en) * 1987-01-27 1992-03-11 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPH0475660B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
JP3342918B2 (en) Diode structure to protect pads against electrostatic discharge in integrated circuits
KR100208632B1 (en) Semiconductor integrated circuit and method of fabricating it
JPS6157711B2 (en)
JPH03224263A (en) Static charge protective construction for cmos integrated circuit
US9543420B2 (en) Protection device and related fabrication methods
JP2628988B2 (en) Semiconductor device and manufacturing method thereof
JP3493681B2 (en) Buried avalanche diode
JPS59191365A (en) Semiconductor device
JPH0622998Y2 (en) Semiconductor device
JPS5810834A (en) Semiconductor device
JPH079385Y2 (en) Semiconductor integrated circuit device
JP3149913B2 (en) Method for manufacturing transistor
JPH0474478A (en) Diode
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
GB1249812A (en) Improvements relating to semiconductor devices
JPS60776B2 (en) semiconductor equipment
KR0145118B1 (en) Darlington connected semiconductor device and manufacturing method thereof
JPH0766956B2 (en) Device for preventing electrostatic breakdown of semiconductor integrated circuit devices
JPH0574791A (en) Semiconductor device
JPS5861665A (en) Semiconductor device
JPS61280661A (en) Transistor
JPS60103640A (en) Semiconductor device
JPS629663A (en) Semiconductor device
JPS61125164A (en) Mos type semiconductor device
JPS61256767A (en) Semiconductor device