JPS59190235A - Production of parent material for optical fiber - Google Patents

Production of parent material for optical fiber

Info

Publication number
JPS59190235A
JPS59190235A JP6237083A JP6237083A JPS59190235A JP S59190235 A JPS59190235 A JP S59190235A JP 6237083 A JP6237083 A JP 6237083A JP 6237083 A JP6237083 A JP 6237083A JP S59190235 A JPS59190235 A JP S59190235A
Authority
JP
Japan
Prior art keywords
gas
flame
glass particles
particles
fine glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6237083A
Other languages
Japanese (ja)
Other versions
JPS6228100B2 (en
Inventor
Hiroyuki Suda
裕之 須田
Shoichi Sudo
昭一 須藤
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6237083A priority Critical patent/JPS59190235A/en
Publication of JPS59190235A publication Critical patent/JPS59190235A/en
Publication of JPS6228100B2 publication Critical patent/JPS6228100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:A mixture of 2 or more different kinds of combustible gases is used as a flame-burning gas for synthesizing fine glass particles to enable high-speed production of the titled parent material, avoiding reduction in the deposition efficiency of fine glass particles. CONSTITUTION:Fine glass particles are synthesized in the flame flow so that the particles are deposited in the axis direction to form a porous parent material 1, then the material is heated and sintered at high temperatures to give a clear parent material for optical glass fibers. At this time, a mixed gas of 2 or more different kinds of combustible gases such as hydrogen, methane or propane is used as a flame-burning gas for synthesis of fine glass particles from, e.g., SiCl4+GeCl4. For example, a mixed gas of methane and hydrogen, as its mixing ratio is controlled by means of flow meters 3, 4, respectively and fed together with oxygen gas and the starting gas for glass to the synthesis torch 2 to form a flame and fine glass particles.

Description

【発明の詳細な説明】 本発明はVAD法による光フアイバ母相の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an optical fiber matrix using a VAD method.

従来、V A、 D法では、カラス’5に粒子を合成す
るための火炎燃焼ガスとしては水素(H2)ガスのみが
使用さi]ていた。この従来のV’AD法(こおいて、
火炎温度、すなわち発生する熱エネルギー全増加させる
ため(こけ、水素ガス流量の増加が必要であり、水素ガ
ス流量を増加すると、火炎流速か増加するという問題が
あった。この火炎流速の増加は、ざらに多孔質母材成伎
面上へのガラス微粒子の堆積効率を低下させるという問
題を引き起こす。その結果として多孔僧母材の製造連用
が低下するという欠点を生じた。
Conventionally, in the VA, D method, only hydrogen (H2) gas was used as the flame combustion gas for synthesizing particles in Karasu'5. This conventional V'AD method (here,
In order to increase the flame temperature, that is, the total heat energy generated (moss), it is necessary to increase the hydrogen gas flow rate, and there is a problem that increasing the hydrogen gas flow rate increases the flame flow velocity. This causes a problem of lowering the deposition efficiency of glass particles on the surface of the porous base material.As a result, there is a drawback that the continuous production of the porous base material is reduced.

この欠点は、ガラス原料伊糾f1jを増加し、多孔質母
材の製造速度を高める場合に顕著となり、反応効率分低
下ぎせないためOこ、火炎温度すなわち発生ずる熱エネ
ルギーを増加させる必要がある場合0こ、水素ガス流量
の増加、すなわち〕(炎流速の増加Gこよってガラス微
粒子堆柁・効率か低下し、多孔質母料の高速製茫が困難
(こなるという欠点があった。
This drawback becomes noticeable when increasing the glass raw material strength and increasing the manufacturing speed of the porous base material, and in order to prevent the reaction efficiency from decreasing, it is necessary to increase the flame temperature, that is, the thermal energy generated. In the case of 0, an increase in the hydrogen gas flow rate, i.e. an increase in the flame flow velocity, resulted in a decrease in the deposition efficiency of glass particles, making it difficult to form a porous matrix at high speed.

本発明はこれらの欠点を解決するためGこ、水素(H2
)、メタン[OH,)、プロパン(C3H8)等のσ[
燃性ガスのうちの二棹以上の混合ガスを火炎燃焼用ガス
として使用して多孔a母′I:Aを作製することを特徴
としたもので、その目的はガラス?R粒子堆積効率の低
下を防止し、VAD法における高速母材製造を−i1能
Gこすることにある。
In order to solve these drawbacks, the present invention uses G, hydrogen (H2
), methane [OH, ), propane (C3H8), etc. σ[
The feature is that a mixture of two or more combustible gases is used as a flame combustion gas to produce a porous a matrix, and its purpose is to prepare glass. The objective is to prevent a decrease in R particle deposition efficiency and improve high-speed base material production in the VAD method.

第1図は本発明の一実施例の枯成図で、1は多孔質母材
、2は合成トーチ、3,4はそれぞれメタンガス、水素
ガス用の流散計である。この実施例では燃焼用カスとし
て水素カスGこメタンガスを混合したものを用いた。こ
こで焙炉、用ガスの水素ガス、メタンガスの渭合比は流
が・計39手によってん1)節した。単位容積あたりの
発熱htは水素ガスとメタンガスでは1 : 8.12
であり、メタンガスの方が容積あたりの発熱量は大きい
。表1&こ水素ガス401/mlnの流IH,5で得ら
れる発熱量と同じ発熱量を得るための水素ガス流量とメ
タンガス流i1にの必要反を示した。
FIG. 1 is a drying diagram of an embodiment of the present invention, in which 1 is a porous base material, 2 is a synthetic torch, and 3 and 4 are flowmeters for methane gas and hydrogen gas, respectively. In this example, a mixture of hydrogen gas and methane gas was used as the combustion gas. Here, the combined ratio of hydrogen gas and methane gas used in the roasting furnace was determined by hand, with a total of 39 flows. Heat generation ht per unit volume is 1:8.12 for hydrogen gas and methane gas.
Therefore, methane gas has a higher calorific value per volume. Table 1 & Table 1 show the necessary ratio of hydrogen gas flow rate and methane gas flow i1 to obtain the same calorific value as that obtained with flow IH, 5 of hydrogen gas 401/ml.

口I+へ■寸叩ロト句■〇−囚Cり寸−cトの。Q:V
I  へ 凶 へ 凶 へ N 〜 N 囚 鈴 の 
の の 命 へ リ ω め の 寸またこの実mji
例で使用した合成トーチ2(燃焼用ガスの吹き出し層、
外径3 Q mmφ、内径24 mniφの先端部にお
ける混合ガスの平均流速を計鏡したものを表1の右欄(
こ示した。
To the mouth I+■Smashing Lotto phrase■〇-prison C risun-cto. Q:V
I to Aku to Aku to N ~ N Prison Bell's
To the life of the person
Synthetic torch 2 used in the example (combustion gas blowing layer,
The average flow velocity of the mixed gas at the tip with an outer diameter of 3 Q mmφ and an inner diameter of 24 mmφ is shown in the right column of Table 1 (
I showed this.

この実施例Gこおいて同−発熱九(を得るために、水素
カスとメタンガスを法合することGこより、合成トーチ
先端における流速を34 cm / Seeがら260
 Cm/ SeCまで変化させることかできた。
In this Example G, hydrogen gas and methane gas are combined in order to obtain the same exothermic energy (G), and the flow velocity at the tip of the synthesis torch is set to 34 cm/See to 260
I was able to change it up to Cm/SeC.

第2図は他のモデル実験で(qらねた火炎レイノルズ数
と多孔ノα母材に堆積するガラス徳r粒子ガf栢ii1
の関係を示したものである。ここで火炎レイノルズ数Y
とはX U(I e −− U:ガス流速 d:合成トーチ先端の層間隙 ν:ガスの動粘性係数 で表わされる量で定義したものである。合成、トーチ先
端の層間[(炬が一定の場合、流速に比例する量として
読みかえることができる。このモデル実験は燃焼に使用
される酸素ガス流速Gこついて沖I宇さねたものである
。また第2図中にFRと表示されているのは、ガラス原
料供紹慴を示している。
Figure 2 shows the relationship between the simulated flame Reynolds number and the glass particles deposited on the porous matrix using another model experiment.
This shows the relationship between Here, the flame Reynolds number Y
is defined as the amount expressed by In the case of , it can be interpreted as a quantity proportional to the flow velocity.This model experiment was carried out due to the oxygen gas flow velocity G used for combustion.Furthermore, in Fig. 2, FR is indicated. It shows the glass raw material supply.

第2図Gこよると各合成トーチにより、ガラス微粒子堆
積量が最も多くなる最適なガス流速(すなわぢ最適レイ
ノルズ数)があり、その最適ガス流速を越えるとガス流
D(tなわちレイノルズ数)が増加するに従ってガラス
微粒子堆積h4は低下する。このガス流速とガラス微粒
子堆積量の関係は、水素ガス等の燃焼ガスでも同じよう
な傾向が見らt]2、同一火炎温度Gこおいて流速が速
いほど堆積効率が低下することが見られた。この実施例
において5iOA4ガラス原料を597 mlnの割合
で供給した場合、水素ガスのみ’i: 40 t / 
minの流量で燃焼させたとき、ガラス微粒子の収率は
約30%であった。これを水素ガス12 l / ml
n、メタンガス9A’/minの混合ガスとすると、ガ
ラス微粒子の収率は約60%と向上した。また流量]3
1/minのメタンガスのみにすると、火炎が安定せず
収率は約40%となり、二種類の可燃性ガスを温合する
ことGこより、火炎カス流速を調IWi L、堆積効率
を向上させることができた。
According to Figure 2, each synthesis torch has an optimal gas flow rate (i.e., optimal Reynolds number) at which the amount of glass particles deposited is the largest, and when the optimal gas flow rate is exceeded, the gas flow D (i.e., Reynolds number) increases. As the number) increases, the glass fine particle deposition h4 decreases. The relationship between the gas flow velocity and the amount of glass particles deposited has a similar tendency with combustion gases such as hydrogen gas [2], and it can be seen that at the same flame temperature G, the faster the flow velocity is, the lower the deposition efficiency is. Ta. In this example, when 5iOA4 glass raw material was supplied at a rate of 597 mln, only hydrogen gas 'i: 40 t/
The yield of glass particles was about 30% when the combustion was performed at a flow rate of min. Add this to 12 l/ml of hydrogen gas
When a mixed gas of n and methane gas was used at 9 A'/min, the yield of glass particles was improved to about 60%. Also flow rate] 3
If only 1/min of methane gas is used, the flame will not be stable and the yield will be about 40%. By warming two types of combustible gases, it is necessary to adjust the flow rate of flame debris and improve the deposition efficiency. was completed.

また他の可燃性ガスの総発熱工けを表2に示す。Table 2 shows the total heat production of other combustible gases.

同様Gこ混合ガスとしてプロパンガスを使用した場合、
最適混合りにとして水素カス1517m1n 。
Similarly, when propane gas is used as the mixed gas,
1517ml of hydrogen gas was used for optimal mixing.

プロパンガス8.51 / minを得た。この時のバ
ーナ先端における混合ガスの吹き出し速度は約1.20
Crn/SeCてあった。またガラス微粒子の収率は5
5%であり、水素ガスのみの場合におけるガラス微粒子
の収率Gこ比軸して向上した。こねは水9Zガスとメタ
ンガスを混合した堵i合と同様である。メタンガスとプ
ロパンガスとの収率くの差は、安定して作製するために
必要としたRり素カス流14jが異なったためである。
Propane gas was obtained at 8.51/min. At this time, the blowing speed of the mixed gas at the tip of the burner is approximately 1.20
There was Crn/SeC. In addition, the yield of glass particles is 5
5%, and the yield of glass fine particles G was improved compared to that in the case of using only hydrogen gas. Kneading is the same as mixing water, 9Z gas, and methane gas. The difference in yield between methane gas and propane gas is due to the difference in R sludge flow 14j required for stable production.

またバーナにおける酸素ガス吹き出し口の口径を4 m
m大きくしたバーナでは、−6j、 合ガスとしてプロ
パンガス?使用した#+1合、ガラス微粒子の収率ハロ
0%となった。
Also, the diameter of the oxygen gas outlet in the burner was set to 4 m.
With a burner larger than m, -6j, propane gas as a combined gas? When #+1 was used, the yield of glass fine particles was 0% halo.

このようQこ、バーナ口径、ガラス原r1供給Jit等
Gこ応じ、水素ガスに他のoi燃性ガスを法合し、その
混合量?最適に選ぶことGこより、ガラス微粒子の収率
を向上ぎせることができた。
In this way, depending on the burner diameter, glass raw material supply, etc., other combustible gases are combined with hydrogen gas, and the amount of mixture? Optimal selection of G made it possible to improve the yield of glass fine particles.

以上説明したようGこ、本発明の方法Gこより、光フア
イバ母材製造におけるガラス微粒子の堆積効率が向上す
ることがら、VAD法における多孔質母材合成速度の高
汁化を図ることができ、光フアイバ製造コストを低減で
きるという利点がある。
As explained above, the method G of the present invention improves the deposition efficiency of glass particles in the production of optical fiber preforms, so that it is possible to increase the synthesis rate of porous preforms in the VAD method. This has the advantage of reducing optical fiber manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、 第2図はVAD法Gこおける多孔質母材合成(こお、け
る火炎レイノルズ数とガラス微粒干鰯、柚量の関係図で
ある。 ]・・・多孔竹母梠、2・・・合成トーチ、3・・・メ
タンガス用流h(計、4・・・水素ガス用流量計。 特許出願人  日本電信電話公社 第1図 1 3i C14千Ge Cj、 4 第2図 ′に炎しイノルス′枚
Fig. 1 is a block diagram of an embodiment of the present invention, and Fig. 2 is a diagram showing the relationship between the flame Reynolds number and the amount of dried sardines and yuzu in glass particles.・・・Porous bamboo mortar, 2...Synthesis torch, 3...Methane gas flow h (total), 4...Hydrogen gas flowmeter. Patent applicant: Nippon Telegraph and Telephone Public Corporation Figure 1 1 3i C14,000 Ge Cj, 4 Figure 2 'Inolus'

Claims (1)

【特許請求の範囲】[Claims] 1 火炎流内0こおいてカラス微粒子を合成し、こねを
軸方向Gこ堆積して、多孔質母相企形成した7、;、、
該多孔’If fi材を高温に加熱・焼結して透明な光
ファイバ母相を得る製造方法(V A D ;7 ) 
&こおいて、ガラス微粒子を合成するための火炎添加1
ガスとして水繋(H2)、メタン(OH4,) 、”i
o%ン(03HB 1等(7)il”1旬ソS′11カ
スのうちの二押以上の混合ガスを用いて多孔性母相を形
成することを%徴とする光フアイバ母材の製造方法。
1.Crow fine particles were synthesized in the flame flow, and the particles were deposited in the axial direction to form a porous matrix7.
Manufacturing method of heating and sintering the porous 'If fi material to a high temperature to obtain a transparent optical fiber matrix (V A D ; 7)
& Flame addition 1 for synthesizing glass particles
Water (H2), methane (OH4,), "i" as gases
Production of optical fiber base material characterized by forming a porous matrix using a mixed gas of two or more of the following: Method.
JP6237083A 1983-04-11 1983-04-11 Production of parent material for optical fiber Granted JPS59190235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6237083A JPS59190235A (en) 1983-04-11 1983-04-11 Production of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6237083A JPS59190235A (en) 1983-04-11 1983-04-11 Production of parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS59190235A true JPS59190235A (en) 1984-10-29
JPS6228100B2 JPS6228100B2 (en) 1987-06-18

Family

ID=13198160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6237083A Granted JPS59190235A (en) 1983-04-11 1983-04-11 Production of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS59190235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207813A (en) * 1990-09-07 1993-05-04 Sumitomo Electric Industries, Ltd. Method for producing glass article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614443A (en) * 1979-07-17 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of preform for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614443A (en) * 1979-07-17 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of preform for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207813A (en) * 1990-09-07 1993-05-04 Sumitomo Electric Industries, Ltd. Method for producing glass article

Also Published As

Publication number Publication date
JPS6228100B2 (en) 1987-06-18

Similar Documents

Publication Publication Date Title
JPS59232934A (en) Production of base material for optical fiber
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
JP4043768B2 (en) Manufacturing method of optical fiber preform
JPH06247722A (en) Production of porous glass base material
JPS59190235A (en) Production of parent material for optical fiber
KR870001277B1 (en) Method for making of optical fiber preform
AU646490B2 (en) Method for producing glass article
JP3567574B2 (en) Burner for synthesis of porous glass base material
JPS6253452B2 (en)
JPS5852260Y2 (en) Torch for making step-type optical fiber base material
JPS6044258B2 (en) synthesis torch
JPS55144433A (en) Producing optical fiber matrix
JPS63307137A (en) Production of glass preform for optical fiber
JPS6126526A (en) Burner for synthesizing porous quartz glass base material
JPS59124303A (en) Manufacture of optical fiber material
JP2003212560A (en) Method for manufacturing fine glass deposit
JPS6259063B2 (en)
JPS6055450B2 (en) Manufacturing method of optical fiber base material
JPS6168337A (en) Production of parent material for optical fiber
JPS62182131A (en) Production of piled material of glass fine particle
CN101565272B (en) Method for improving production efficiency of optical fiber preform
JPS6287429A (en) Method for producing optical fiber preform and apparatus therefor
JPS6353138B2 (en)
JPH09301719A (en) Focusing multiple burner for synthesis of glass fine particle
JPH02145450A (en) Production of porous optical fiber preform