JPS63307137A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPS63307137A
JPS63307137A JP14108187A JP14108187A JPS63307137A JP S63307137 A JPS63307137 A JP S63307137A JP 14108187 A JP14108187 A JP 14108187A JP 14108187 A JP14108187 A JP 14108187A JP S63307137 A JPS63307137 A JP S63307137A
Authority
JP
Japan
Prior art keywords
gas
nozzle
burner
raw material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14108187A
Other languages
Japanese (ja)
Inventor
Masatoshi Mikami
雅俊 三上
Hideji Hasegawa
長谷川 英児
Hisashi Matsumoto
松本 久司
Hiroshi Fujita
藤田 博視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14108187A priority Critical patent/JPS63307137A/en
Publication of JPS63307137A publication Critical patent/JPS63307137A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a glass preform having long-period stable qualities, by vaporizing raw materials or additives for glass preform, having a boiling point higher than room temperature under heating, feeding to a burner nozzle and heating the root end part of the nozzle. CONSTITUTION:A burner 1 has structure wherein a glass raw material gas is made to flow from two nozzles to the burner. In the burner, SiCl4 as the glass raw material gas and hydrogen as a combustible gas are made to flow from a central nozzle 2, respectively, an inert gas comprising argon, etc., is sent from a second nozzle 3 successively to the outside, SiCl4 and GeCl4 as the raw material gas plus oxygen as an auxiliary gas are made to flow from a third nozzle 4. Another gas comprising an inert gas such as argon is fed from a fourth nozzle 5. The central nozzle 2 to send the glass raw materials and the combustion gas and the third nozzle 4 to feed the glass raw material gas and the auxiliary gas are equipped with heaters 6 at the root end parts, respectively. The heaters 6 are connected temperature control device to control the temperatures in desired temperatures.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、加炭加水分解用バーナを用いた気相反応によ
る光ファイバ用ガラス母材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a glass preform for an optical fiber by a gas phase reaction using a carbohydrolysis burner.

〔従来技術〕[Prior art]

従来より、光ファイバ用ガラス母材の製造方法としてV
AD法がよく知られている。この方法は多重管バーナを
用いて、気化された原料あるいはGeCl4等の添加物
を可燃性ガス、助燃性ガスあるいは不活性ガスと共に前
記多重管バーナの所定のノズルに導き、該ノズルの前方
で気相反応させてガラス微粒子を合成し、これを回転す
る支持棒上に堆積させることによって光ファイバ用ガラ
ス母材を製造するものである。
Conventionally, V
The AD method is well known. This method uses a multi-tube burner to guide vaporized raw materials or additives such as GeCl4 together with combustible gas, combustion assisting gas, or inert gas to a predetermined nozzle of the multi-tube burner, and then air is introduced in front of the nozzle. A glass preform for optical fibers is manufactured by synthesizing glass particles through a phase reaction and depositing them on a rotating support rod.

ところで通常使用される原料および添加物としては、5
iC14、GeC1a 、TiCl4、POCl2等が
あるが、これらの物質は室温では通常液体または固体で
ある。そこで従来から他の気体を用いて強制的に気化さ
せた後、この濃度を一定に保持し前記バーナノズルに送
給するシステムが採られている。
By the way, commonly used raw materials and additives include 5
These substances include iC14, GeC1a, TiCl4, POCl2, etc., and these substances are usually liquid or solid at room temperature. Therefore, conventionally, a system has been adopted in which the gas is forcibly vaporized using another gas, and then the concentration is maintained constant and the vapor is fed to the burner nozzle.

それ故、バーナに連通ずる配管系はヒータ等により加温
されガラス原料(以下添加物も含めガラス原料と称する
)の液化や固化を防いでいる。
Therefore, the piping system communicating with the burner is heated by a heater or the like to prevent the glass raw material (hereinafter referred to as glass raw material including additives) from liquefying or solidifying.

前述した従来の光ファイバ用ガラス母材の製造方法にお
いては、配管の継手部分やバーナノズル、とりわけガラ
ス原料用の中心部のノズルでは加熱効率が悪く、これら
の箇所でガラス原料ガスの液化や固化が起こることがあ
った。その結果長期にわたってガラス母材の製造を続け
ているとガラス原料ガス用のノズルが詰まる等の現象が
起こり、一定量のガラス原料の送給ができず品質の安定
した光ファイバ用ガラス母材を製造できないという問題
があった。
In the conventional manufacturing method of glass base material for optical fibers described above, heating efficiency is poor at the piping joints, burner nozzles, and especially the nozzle in the center for glass raw material, and the glass raw material gas tends to liquefy or solidify at these locations. Something happened. As a result, if glass base material is manufactured for a long period of time, phenomena such as clogging of the nozzle for glass raw material gas may occur, making it impossible to feed a certain amount of glass raw material, resulting in a stable quality glass base material for optical fibers. There was a problem that it could not be manufactured.

この解決手段として、例えば特開昭6O−16i34B
号公報に記載の如く、バーナノズルの各隔壁内に中空部
を設け、この中にノズル加熱用の熱媒体を封入しておく
等の提案もなされているが、この方法だとバーナが複雑
化しかつ大型化してしまうという問題があった。
As a means of solving this problem, for example,
As described in the above publication, a proposal has been made to provide a hollow part in each partition wall of the burner nozzle and seal a heat medium for heating the nozzle in the hollow part, but this method makes the burner complicated and There was a problem that it became large.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、従来のバーナに簡単な
改良を加えるだけで容易にガラス原料ガスの液化、固化
を防止でき、もって長期にわたって品質の安定した光フ
ァイバ用ガラス母材を製造できる光ファイバ用ガラス母
材の製造方法を提供することにある。
In view of the above problems, an object of the present invention is to easily prevent liquefaction and solidification of glass raw material gas by simply making improvements to conventional burners, and thereby to produce a glass base material for optical fibers with stable quality over a long period of time. An object of the present invention is to provide a method for manufacturing a glass preform for optical fiber.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、気相反応により光ファ
イバ用ガラス母材を製造する方法において、沸点が室温
より高い上記ガラス母材の原料あるいは添加物を原料供
給装置によって加熱気化させガラス原料ガスとしてバー
ナノズルに送給すると共に、該ガラス原料ガスが送給さ
れるバーナノズルの基端部を加熱することを特徴とする
ものである。
In order to achieve the above object, the present invention provides a method for manufacturing a glass preform for optical fibers by a gas phase reaction, in which raw materials or additives for the glass preform having a boiling point higher than room temperature are heated and vaporized by a raw material supply device to produce a glass raw material. It is characterized in that it is fed as a gas to the burner nozzle and that the base end of the burner nozzle to which the frit gas is fed is heated.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の光ファイバ用ガラス母材の製造方法に
て使用するバーナの一実施例を示している。
FIG. 1 shows an embodiment of a burner used in the method of manufacturing a glass preform for optical fiber according to the present invention.

本図が示すように本発明に使用するバーナ1はガラス原
料ガスが2つのノズルから流れる構造のバーナであって
、これは中心ノズル2からガラス原料ガスである5iC
14と可燃性ガスである水素とをそれぞれ流し、順次外
側に向かって第2ノズル3からはアルゴン等からなる不
活性ガスを流し、第3ノズル4からガラス原料ガスであ
る5iC1nとGeCl4とに助燃性ガスである酸素を
加えて流し、第4ノズル5には例えばアルゴン等の不活
性ガスからなるその他のガスを流すようになっていて、
ガラス原料ガスを流す各ノズル、すなわちガラス原料と
可燃性ガスを流す中心ノズル2及びガラス原料ガスと助
燃性ガスを流す第3ノズル4の基端部には各々ヒータ6
が装着されており、該各ヒータ6は図示しない温度調節
器に接続されていて所望の温度になるように制御される
As shown in this figure, the burner 1 used in the present invention has a structure in which frit gas flows from two nozzles.
14 and hydrogen, which is a combustible gas, are flowed respectively, and an inert gas such as argon is sequentially flowed outward from the second nozzle 3, and auxiliary combustion is performed on the glass raw material gas 5iC1n and GeCl4 from the third nozzle 4. Oxygen, which is a reactive gas, is added and flowed through the fourth nozzle 5, and another gas consisting of an inert gas such as argon is flowed through the fourth nozzle 5.
A heater 6 is installed at the base end of each nozzle through which the frit gas flows, that is, the central nozzle 2 through which the frit gas and combustible gas flow, and the third nozzle 4 through which the frit gas and combustion auxiliary gas flow.
Each heater 6 is connected to a temperature controller (not shown) and is controlled to a desired temperature.

前記第1図において全ノズルの基端部をヒータで覆って
もよいが、ヒータの大型化を防ぐ意味で最小限前述した
ガラス原料ガス用のノズル基端部のみヒータで加熱する
のがより好ましい。
In FIG. 1, the base ends of all the nozzles may be covered with a heater, but in order to prevent the heater from increasing in size, it is more preferable to heat only the base end of the frit gas nozzle described above with the heater. .

また本発明は前記実施例に示す構造のバーナに限定され
るものではなく、種々の構造のバーナに適用できること
はいうまでもない。
Furthermore, it goes without saying that the present invention is not limited to the burner structure shown in the embodiments described above, but can be applied to burners of various structures.

前述の如きバーナ1を使用して光ファイバ用ガラス母材
の製造したところ、ガラス原料ガスを供給する各ノズル
2及び4には結露が全く見られず、長期にわたってノズ
ル目詰まりが発生しなかった。
When a glass base material for optical fiber was manufactured using the burner 1 as described above, no condensation was observed at all in the nozzles 2 and 4 for supplying frit gas, and no nozzle clogging occurred for a long period of time. .

その結果品質の安定した光ファイバ用ガラス母材を長期
にわたって製造することができた。
As a result, we were able to manufacture a glass base material for optical fibers with stable quality over a long period of time.

〔発明の効果〕〔Effect of the invention〕

前述の如く本発明によれば、バーナに極めて簡単な改良
を加えるだけで、ガラス原料ガスの液化や固化を防止で
き、もって長期にわたって品質の安定した光ファイバ用
ガラス母材を製造することができる。
As described above, according to the present invention, by making extremely simple improvements to the burner, it is possible to prevent the glass raw material gas from liquefying or solidifying, thereby making it possible to produce a glass base material for optical fibers with stable quality over a long period of time. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用するバーナの一実施例をを示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of a burner used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 気相反応により光ファイバ用ガラス母材を製造する方法
において、沸点が室温より高い上記ガラス母材の原料あ
るいは添加物を原料供給装置によって加熱気化させガラ
ス原料ガスとしてバーナノズルに送給すると共に、該ガ
ラス原料ガスが送給されるバーナノズルの基端部を加熱
することを特徴とする光ファイバ用ガラス母材の製造方
法。
In a method for manufacturing a glass preform for optical fibers by a gas phase reaction, raw materials or additives for the glass preform having a boiling point higher than room temperature are heated and vaporized by a raw material supply device and fed to a burner nozzle as a glass raw material gas, and the A method for producing a glass preform for optical fibers, which comprises heating the base end of a burner nozzle to which frit gas is fed.
JP14108187A 1987-06-05 1987-06-05 Production of glass preform for optical fiber Pending JPS63307137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14108187A JPS63307137A (en) 1987-06-05 1987-06-05 Production of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14108187A JPS63307137A (en) 1987-06-05 1987-06-05 Production of glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPS63307137A true JPS63307137A (en) 1988-12-14

Family

ID=15283768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14108187A Pending JPS63307137A (en) 1987-06-05 1987-06-05 Production of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JPS63307137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942020A (en) * 1996-01-11 1999-08-24 Tensor Machinery Limited Apparatus for evacuating air from curing area of UV lamps for fiber-like substrates
JP2002338287A (en) * 2001-05-18 2002-11-27 Furukawa Electric Co Ltd:The Device and method for manufacturing optical fiber preform
EP2762456A4 (en) * 2011-09-29 2015-06-03 Sumitomo Electric Industries Methods for manufacturing glass fine particle deposit and glass base material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942020A (en) * 1996-01-11 1999-08-24 Tensor Machinery Limited Apparatus for evacuating air from curing area of UV lamps for fiber-like substrates
JP2002338287A (en) * 2001-05-18 2002-11-27 Furukawa Electric Co Ltd:The Device and method for manufacturing optical fiber preform
EP2762456A4 (en) * 2011-09-29 2015-06-03 Sumitomo Electric Industries Methods for manufacturing glass fine particle deposit and glass base material
US9630872B2 (en) 2011-09-29 2017-04-25 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material
US10604439B2 (en) 2011-09-29 2020-03-31 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material

Similar Documents

Publication Publication Date Title
CA2128188A1 (en) Gas producing apparatus and method and apparatus for manufacturing optical waveguide and optical fiber preform
JP2549901B2 (en) Method of manufacturing an internally doped transparent glass tube, especially for manufacturing optical fibers doped with rare earths
JPS63307137A (en) Production of glass preform for optical fiber
JPH0480860B2 (en)
JPS6135846A (en) Production of aerosol stream
JPS593942B2 (en) Manufacturing method of glass fiber base material
JPS62223037A (en) Formation of porous glass layer
AU646490B2 (en) Method for producing glass article
JPS59174538A (en) Manufacture of base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPH0725563B2 (en) Method for manufacturing base material for optical fiber
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPS604978Y2 (en) Glass particle synthesis torch
JPS63107825A (en) Production of synthetic quartz tube
JPS6126504B2 (en)
JPS604979Y2 (en) Glass particle synthesis torch
JPS61151032A (en) Apparatus for feeding raw material gas for production of optical fiber preform
JPS59190235A (en) Production of parent material for optical fiber
JP3017724B1 (en) Silica glass manufacturing equipment
JP2722735B2 (en) Method for producing glass preform for optical fiber
JPS6121178B2 (en)
JPS60260433A (en) Manufacture of base material for optical fiber
JPS5688835A (en) Preparation of porous preform for optical fiber
JPS62182131A (en) Production of piled material of glass fine particle
JPS63159234A (en) Production of optical fiber preform