JPH02145450A - Production of porous optical fiber preform - Google Patents

Production of porous optical fiber preform

Info

Publication number
JPH02145450A
JPH02145450A JP29814988A JP29814988A JPH02145450A JP H02145450 A JPH02145450 A JP H02145450A JP 29814988 A JP29814988 A JP 29814988A JP 29814988 A JP29814988 A JP 29814988A JP H02145450 A JPH02145450 A JP H02145450A
Authority
JP
Japan
Prior art keywords
optical fiber
cooling
fine particles
glass fine
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29814988A
Other languages
Japanese (ja)
Inventor
Masahide Saito
斉藤 真秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29814988A priority Critical patent/JPH02145450A/en
Publication of JPH02145450A publication Critical patent/JPH02145450A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve deposition ratio of glass fine particles on a porous preform for optical fiber and to improve yield of production by depositing glass fine particles on a starting material while cooling a plate comprising a material of good thermal conductivity set close to porous optical fiber preform. CONSTITUTION:A cooling plate equipped with a pipe 8 through which cooling water is passed is set at a position opposing a burner 1 while sandwiching porous optical fiber preform 6 in between the preform and the burner and part not covered with a stream 2 of glass fine particles and with a stream 3 of oxyhydrogen flame among deposited face of glass fine particles are cooled by heat transfer of radiation. Liquid N2, liquid Ar and fluorocarbon besides H2O may be used as a cooling medium and the distance between the cooling plate 9 and the deposited face of glass fine particles is any distance, provided that the cooling plate 9 is not directly brought into contact with the stream 2 of glass fine particle or the stream of oxyhydrogen flame. SiCl4 or GeCl4 is used as the raw material for preform and a hydrocarbon-based gas such as H2, O2, CO or methane is used as a combustion assisting gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はVAD法(気相軸付法Vapor Phase
AXial Deposition Method )
による多孔質光ファイバ母材の製造方法の改良に係わる
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses the VAD method (Vapor Phase
Axial Deposition Method)
This invention relates to an improvement in the manufacturing method of a porous optical fiber preform.

〔従来の技術〕[Conventional technology]

光ファイバの多孔質母材の製造方法として、例えばVA
D法は酸水素炎中に5iC6aを投入し、火炎加水分解
反応により微細な810. の粒子を出発材の長手方向
に堆積させて多孔質母材を形成する方法である。この場
合、BiO2と燃焼ガスとを噴出し反応させるバーナー
全多重′#構造に分割し、その一部から()ec4%の
添加物を同時に噴出反応させてGe01 等を作り、8
10.とGao!  等が所定の半径方向の空間的濃度
分布になるようにしている。
As a method for manufacturing a porous base material of an optical fiber, for example, VA
In method D, 5iC6a is put into an oxyhydrogen flame, and fine 810. This is a method of depositing particles in the longitudinal direction of a starting material to form a porous matrix. In this case, the burner is divided into a fully multiplexed structure in which BiO2 and combustion gas are ejected and reacted, and an additive of ()ec4% is simultaneously ejected and reacted from a part of the burner to produce Ge01, etc.
10. and Gao! etc. are made to have a predetermined spatial concentration distribution in the radial direction.

また、外付は法は酸水素炎中に810!aとGeCj4
等の添〃口物を供給して火炎加水分解させ、生成した8
10.及びGe0fi等の微粒子を出発材であるガラス
棒心材外周に堆積させながら、ガラス棒心材を心材の軸
方向に移動させ、Sin、及びGo 02等の微粒子体
を軸方向に成長させる方法である。
Also, the external method is 810 during oxyhydrogen flame! a and GeCj4
8 produced by flame hydrolysis by supplying additives such as
10. This is a method in which the glass rod core material is moved in the axial direction of the core material while depositing fine particles such as Sin and Ge0fi on the outer periphery of the glass rod core material, which is a starting material, to grow fine particles such as Sin and Go02 in the axial direction.

ここで屈折率分布をつけるための添加物としてCh*C
1aを挙けたが、この他の6≦加物でもよく、複数の添
加物を混合させる方法もめる。さらに、火炎反応の際、
添加物を加えて反応させる?lJを示したが、純粋の8
10.の多孔質体を作り、焼結時に添加物を注入する方
法も知られている。
Here, Ch*C is used as an additive to create a refractive index distribution.
Although 1a is mentioned, other additives with 6≦ may also be used, and a method of mixing a plurality of additives is also discussed. Furthermore, during the flame reaction,
Do you add additives and react? lJ was shown, but the pure 8
10. Another method is known in which a porous body is made and additives are injected during sintering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

VAD法により多孔質元ファイバ母材を尚速合成する場
合、単位時間自りの原料投入讐を増加させる必景がある
が、ガラス微粒子の多孔實光ファイバ母材上への付層効
率低下のため、原料投入量に比例して多孔質元ファイバ
母材への堆積速度を増加させることができないという問
題がめった。
When rapidly synthesizing a porous original fiber base material by the VAD method, it is necessary to increase the amount of raw material input per unit time, but the layering efficiency of the glass particles on the porous optical fiber base material may decrease. Therefore, a problem frequently arises in that it is not possible to increase the deposition rate on the porous original fiber base material in proportion to the amount of raw material input.

上記の問題を解決する方法として、従来第2図に示し死
ように多孔質光ファイバ母材6をと9かこむマツフル4
の全ての壁面に対し、その外壁面に対して良熱伝導材か
らなるパイプ8を取り付け、該パイプ8内に冷却用液体
または気体を通すことにより多孔質光ファイバ母材6を
冷却する方法が取られていた。同図中の斜線部はガラス
微粒子の流れ2及び酸水素火炎流5に榎われたガラス微
粒子堆積面、1は合成用バーナ、5は排気曾を示す。こ
の方法はガラス微粒子の堆積面付着に寄与する刀の1つ
としてサーモフオレシス効果(温度勾配のめる流れ場に
おいて、微細な粒子が温度の低い万に向かって力を受け
る現JR)’e利用したもので、マツフル4の全ての壁
面を冷却することによジ、多孔員光ファイバ母材6表面
から冷却しているマツフル4の内壁面への輻射伝熱′I
kt−増加することにより・ガラス微粒子堆積面温度を
下げ、ガラス微粒子2を含むH*102(酸水素)火炎
流3よりこの堆積面へ向かう負の温度勾配を増大させ、
サーモフオレシス効果によりガラス微粒子の多孔質光フ
ァイバ母材上の付着効率を増加させるというものであっ
た(特開昭62−171938号公報)。
As a method to solve the above problem, conventionally, as shown in FIG.
There is a method of cooling the porous optical fiber preform 6 by attaching a pipe 8 made of a good heat conductive material to the outer wall surface of all the walls and passing a cooling liquid or gas through the pipe 8. It had been taken. The shaded area in the figure shows the surface on which glass particles are deposited by the flow 2 of glass particles and the oxyhydrogen flame flow 5, 1 is a synthesis burner, and 5 is an exhaust vent. This method utilizes the thermophoresis effect (in a flow field where the temperature gradient is reduced, fine particles receive a force toward the lower temperature) as one of the factors that contributes to the adhesion of glass fine particles to the deposition surface. , by cooling all the wall surfaces of the Matsufuru 4, radiation heat transfer 'I from the surface of the porous optical fiber base material 6 to the inner wall surface of the Matsufuru 4 being cooled.
By increasing kt, the temperature of the glass particle deposition surface is lowered, and the negative temperature gradient toward this deposition surface from the H*102 (oxyhydrogen) flame flow 3 containing the glass particles 2 is increased;
The idea was to increase the adhesion efficiency of glass particles onto a porous optical fiber base material by the thermophoresis effect (Japanese Patent Application Laid-open No. 171938/1983).

上記従来法ではマツフル内壁面温度を下げて火炎流ごし
に堆積面を冷却するわけで、この場合のガラス微粒子堆
積面温度はガラス微粒子を含む酸水素火炎流から堆積面
側に伝達される熱量と、堆積面からマツフル内壁面に伝
達される熱量から下記0)式のように定まる。すなわち
、αa(’I’r−T8)=α(Tf’ −To’ )
 + (Ts’ −TM’ )、°、α5(Tf−Ts
)=α(Tf’ −TM’ )       ・・・+
1)ここで(1)式におけるTf* TBe TMはそ
れぞれガラス微粒子を含む酸水素火炎流の温度、ガラス
微粒子堆積面温度、マツフル内壁面温度でるる。
In the above conventional method, the temperature of the inner wall surface of Matsuful is lowered to cool the deposition surface through the flame flow, and in this case, the temperature of the glass particle deposition surface is the amount of heat transferred from the oxyhydrogen flame flow containing glass particles to the deposition surface side. From the amount of heat transferred from the deposition surface to the inner wall surface of Matsufuru, it is determined as shown in the following equation 0). That is, αa('I'r-T8)=α(Tf'-To')
+ (Ts' - TM'), °, α5 (Tf - Ts
)=α(Tf'-TM')...+
1) Here, Tf* TBe TM in equation (1) is the temperature of the oxyhydrogen flame flow containing glass particles, the temperature of the glass particle deposition surface, and the temperature of the inner wall surface of the pine tree, respectively.

また、α8は火炎流と堆積面との間の熱伝達率、σはス
テファン・ホルツマン足数である。
Further, α8 is the heat transfer coefficient between the flame flow and the deposition surface, and σ is the Stefan-Holtzmann foot number.

従来の方法では、火炎流とガラス微粒子堆積面の間の温
度差Tf−’rBを大きくとるためマツフルの全ての壁
面を冷却していた。その結果、火炎流ごしに堆積@iを
冷却するため火炎流温度Tfも低下してしまい、(1)
式における火炎流とガラス微粒子堆積面の間の温度差T
f−’I’、を大きくすることができず、従ってガラス
微粒子の付着効率を顕著に向上することはできなかった
In the conventional method, all the wall surfaces of the matsufuru were cooled in order to increase the temperature difference Tf-'rB between the flame flow and the surface on which the glass particles were deposited. As a result, since the deposit @i is cooled through the flame flow, the flame flow temperature Tf also decreases, and (1)
The temperature difference T between the flame flow and the glass particle deposition surface in Eq.
It was not possible to increase f-'I', and therefore it was not possible to significantly improve the adhesion efficiency of glass fine particles.

本発明は従来技術の間趙点を解消する為になされたもの
で、多孔質光ファイバ母材上へのガラス微粒子の付着率
の向上と同時に、製造歩留の向上が可能な新規な光ファ
イバ用母材の製造法を提供することを目的とする。
The present invention was made to solve the problem of the Zhao point in the prior art, and is a novel optical fiber that can improve the adhesion rate of glass particles on the porous optical fiber base material and improve the manufacturing yield. The purpose of this invention is to provide a method for manufacturing base materials for use in industrial applications.

〔課題を解決するための手段〕[Means to solve the problem]

本発明省ら扛火炎流温度への影IM/−を少なくガラス
微粒子堆4x面を有効に冷却する手段を開発するべく努
力の結果、本発明に到ったのである。
The present invention was achieved as a result of efforts by the Ministry of the Invention and others to develop a means for effectively cooling the surface of the glass particle pile 4x with less influence on the flame flow temperature.

すなわち、本発明はバーナーにガラス原料及び燃焼ガス
を供給して火炎加水分解反応させることによp生成した
ガラス微粒子を出発材表面に堆積させて多孔實元ファイ
バ母材を製造する方法に於て、咳多孔質元ファイバ母材
をはさんで該バーナーと対向する位置に於て該多孔質元
ファイバ母材に近接して良熱伝導材料からなる板を設置
し、上記の板を冷却しながら上記出発材にガラス微粒子
を堆積させることを特徴とする多孔質光ファイバ母材の
製造方法に関する。
That is, the present invention provides a method for producing a porous actual fiber preform by depositing glass particles produced on the surface of a starting material by supplying a glass raw material and combustion gas to a burner and causing a flame hydrolysis reaction. , a plate made of a good heat conductive material is installed near the porous original fiber base material at a position facing the burner across the porous original fiber base material, and while cooling the plate, The present invention relates to a method for producing a porous optical fiber preform, which comprises depositing glass particles on the starting material.

第1図は本発明による多孔5iL元ファイバ母材製造方
法と、これに用いる装置の実施態様を示す概略図である
。第1図に於て、冷却水を流通させるパイプ8t−内部
に配設した冷却板9は、多孔實光ファイバ母材6をはき
んでバーナー1と対向する位置に設置し、ガラス微粒子
堆積面のうち、ガラス微粒子の流れ2及び酸水素火炎流
3の覆っていない部分を輻射熱伝達により冷却する。冷
却水はH,Oの他にも例えは液体NII e液体Ar、
  液体He等やフロンの様な冷媒を使用することがで
きる。冷却板9の大きさは、鴨が多孔質光ファイバ母材
6の外径りを基準とすると%n〜2D程度とし、高さは
D〜2D程度とする。さらに冷却板9とガラス微粒子堆
積面との距離は、冷却板9が直接ガラス微粒子の流れ2
や酸水素火炎流5と接触しない程度を取れば良い。また
冷却板9の構成材料は金属(例えば鉄、ステンレス、ニ
ッケル、アルミニウム等ト、あるいはそれらの合金材料
)ばかりでなく、ガラス(石英、パイレックス等)やセ
ラミック系材料を使用してもかまわなhoさらに上記金
属とガラス材料及びセラミック系材料の複合されたもの
であっても、なんら不都合は生じない。
FIG. 1 is a schematic diagram showing an embodiment of a method for producing a porous 5iL original fiber preform according to the present invention and an apparatus used therefor. In FIG. 1, a cooling plate 9 disposed inside a pipe 8t through which cooling water flows is installed at a position facing the burner 1 with the porous optical fiber base material 6 removed, and the cooling plate 9 is placed in a position facing the burner 1 with the porous optical fiber base material 6 removed. Of these, the portions that are not covered by the glass particle flow 2 and the oxyhydrogen flame flow 3 are cooled by radiant heat transfer. In addition to H and O, the cooling water can also be liquid NII e liquid Ar,
A refrigerant such as liquid He or chlorofluorocarbon can be used. The size of the cooling plate 9 is approximately %n~2D based on the outer diameter of the porous optical fiber preform 6, and the height is approximately D~2D. Furthermore, the distance between the cooling plate 9 and the glass particle deposition surface is such that the cooling plate 9 is directly connected to the flow 2 of the glass particles.
It suffices to take care that it does not come into contact with the oxyhydrogen flame flow 5. Furthermore, the constituent material of the cooling plate 9 is not limited to metals (for example, iron, stainless steel, nickel, aluminum, etc., or alloys thereof), but may also be glass (quartz, Pyrex, etc.) or ceramic materials. Further, even if the above-mentioned metal is combined with a glass material or a ceramic material, no problem will arise.

また第1図では冷却パイプを内部に配置した冷却板を示
したが、冷却板がジャケット構造で冷却媒体の入口部と
出口部が取pつけられた冷却ジャケットを用いてもよい
Further, although FIG. 1 shows a cooling plate with cooling pipes disposed inside thereof, a cooling jacket may be used in which the cooling plate has a jacket structure and is provided with an inlet and an outlet for a cooling medium.

なお多孔實光ファイバ母材の製造方法に於て、原料とし
ては8iC4、GeC4、POC4が、燃焼ガスまたは
支燃用ガスとしてはHla 02+ COeメタン等の
炭化水素系のガスが使用される。さらにバーナーは単数
であっても複数であってもかまわない。
In the method for manufacturing the porous optical fiber preform, 8iC4, GeC4, and POC4 are used as raw materials, and hydrocarbon gas such as Hla 02+ COe methane is used as the combustion gas or combustion-supporting gas. Furthermore, the number of burners may be singular or plural.

〔作 用〕[For production]

以上のように、冷却板を多孔質光ファイバ母材をはさん
でバーナーと対向する位置に設置し、多孔質光ファイバ
母材′t−製造するに当9、ガラス微粒子堆積面のうち
、ガラス微粒子や酸水素火炎流の覆っていない部分を輻
射熱伝達により選択的に冷却する本方法は、ガラス微粒
子を含む酸水素火炎流の温度を下げることなくガラス微
粒子堆積面の温度を下げ、両者の温度差を大きくでき、
生成したガラス微粒子の熱泳動を促進し、多孔質光ファ
イバ母材への付着効率を高めることができる。
As described above, the cooling plate is installed at a position facing the burner across the porous optical fiber preform, and when manufacturing the porous optical fiber preform, the glass particles are This method, which selectively cools the uncovered part of the fine particles and oxyhydrogen flame stream by radiant heat transfer, lowers the temperature of the glass particle deposition surface without lowering the temperature of the oxyhydrogen flame stream containing glass particles, and lowers the temperature of both. You can make a big difference,
It is possible to promote thermophoresis of the generated glass particles and increase the adhesion efficiency to the porous optical fiber base material.

〔実施例〕〔Example〕

次に本発明の実除の効果について具体例により説明する
Next, the effect of real division of the present invention will be explained using a specific example.

実施例及び比較例 第1図に示す構成の多孔實光7アイパ母材製造装置を用
い、ガラス微粒子合成バーナーは外径20■の4重管を
使用した。ガラス原料、可燃性ガス、助燃性ガスは、5
iC4α58t/分。
EXAMPLES AND COMPARATIVE EXAMPLES A porous 7-IPA base material manufacturing apparatus having the configuration shown in FIG. 1 was used, and the glass fine particle synthesis burner was a quadruple tube with an outer diameter of 20 cm. Glass raw materials, combustible gases, and combustible gases are 5
iC4α58t/min.

Gect4  α05t/分、He toz/分、 H
l 6.01.7分。
Gect4 α05t/min, He toz/min, H
l 6.01.7 minutes.

Ar五aty分、0112t/分の流量を流した。冷却
水は、冷却板表面及びマツフル内壁面温度が20℃にな
るよう―整した。
Argon was flown for 5 minutes at a flow rate of 0.112 t/min. The cooling water was adjusted so that the temperature of the surface of the cooling plate and the inner wall of Matsufuru was 20°C.

以上の条件で本発明による方法で冷却を行った場合(実
施例)と、第2図の従来の方法で冷却を行った場合(比
較例1)、そして冷却を全く行わない場合(比較例2)
について多孔質光ファイバ母材を作成し友。ガラス微粒
子の多孔質光ファイバ母材上への付着効率は、冷却を全
く行わない場合で65%、従来の方法では66−1そし
て本発明の方法では78悌となシ、明らかに従来方法に
比べて付着効率の改善が認められた。
Under the above conditions, cooling is performed using the method according to the present invention (Example), cooling is performed using the conventional method shown in FIG. 2 (Comparative Example 1), and no cooling is performed at all (Comparative Example 2). )
About creating porous optical fiber preforms. The adhesion efficiency of glass particles onto the porous optical fiber base material was 65% without any cooling, 66-1 for the conventional method and 78% for the method of the present invention, clearly superior to the conventional method. An improvement in adhesion efficiency was observed.

なお、上記実施例におけるガラス微粒子堆積面の選択的
冷却、(すなわち、ガラス微粒子を含む酸水素火炎流温
度を低下させずに堆積面のみを冷却すること。)はマツ
フルとは分離した形態になっているが、マツフル自身に
同様の冷却機構を具有するものであってもかまわない。
In addition, the selective cooling of the glass particle deposition surface in the above example (that is, cooling only the deposition surface without lowering the temperature of the oxyhydrogen flame stream containing glass particles) is a separate form from Matsufuru. However, the Matsuful itself may have a similar cooling mechanism.

〔発明の効果〕〔Effect of the invention〕

以上の様に、冷却板を多孔質元ファイバ母材をはさんで
バーナーと対向する位置に設置して多孔實元ファイバ母
材を製造するにあたり、ガラス微粒子堆積面のうちガラ
ス微粒子や酸水素・火炎流の覆っていない部分を輻射熱
伝達により選択的に冷却する本発明の方法は、ガラス微
粒子を含む酸水素火炎流の温度を下けることなくガラス
微粒子堆積面の温度を下げ、両者の温度差を大きくでき
るので生成したガラス微粒子の熱泳動を促進して多孔質
光ファイバ母材への付着効率を高めることができる。
As described above, when manufacturing a porous original fiber preform by installing a cooling plate at a position facing the burner across the porous original fiber preform, glass fine particles, oxyhydrogen, etc. The method of the present invention, which selectively cools the uncovered portion of the flame stream by radiant heat transfer, lowers the temperature of the glass particle deposition surface without lowering the temperature of the oxyhydrogen flame stream containing glass particles, and reduces the temperature difference between the two. can be made larger, promoting thermophoresis of the generated glass particles and increasing the adhesion efficiency to the porous optical fiber base material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すrMr面図、第2図は
従来の方法の#面図である。 図中1はバーナー 2はガラス微粒子の流れ、3は酸水
素火炎流、4はマツフル、5は排気・θ、6は多孔質光
ファイバ母材、7は出発材、8はパイプ、9は冷却板、
斜線部線ガラス微粒子の流れ2及び酸水素火炎流5に覆
われたガラス微粒子堆積lIYを示す。
FIG. 1 is an rMr side view showing an embodiment of the present invention, and FIG. 2 is a # side view of a conventional method. In the figure, 1 is a burner, 2 is a flow of glass particles, 3 is an oxyhydrogen flame flow, 4 is a matzuru, 5 is an exhaust/θ, 6 is a porous optical fiber base material, 7 is a starting material, 8 is a pipe, and 9 is cooling board,
The shaded area shows the glass particle deposit 1IY covered by the glass particle flow 2 and the oxyhydrogen flame flow 5.

Claims (1)

【特許請求の範囲】 バーナーにガラス原料び燃焼ガスを供給し て火炎加水分解反応させることにより生成したガラス微
粒子を出発材表面に堆積させて多孔質光ファイバ母材を
製造する方法に於て、該多孔質光ファイバ母材をはさん
で該バーナーと対向する位置に於て該多孔質光ファイバ
母材に近接して良熱伝導材料からなる板を設置し、上記
の板を冷却しながら上記出発材にガラス微粒子を堆積さ
せることを特徴とする多孔質光ファイバ母材の製造方法
[Claims] A method for producing a porous optical fiber preform by depositing glass fine particles produced by a flame hydrolysis reaction on the surface of a starting material by supplying frit and combustion gas to a burner, A plate made of a good heat conductive material is installed close to the porous optical fiber base material at a position facing the burner across the porous optical fiber base material, and while cooling the plate, the A method for producing a porous optical fiber preform, which comprises depositing glass particles on a starting material.
JP29814988A 1988-11-28 1988-11-28 Production of porous optical fiber preform Pending JPH02145450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29814988A JPH02145450A (en) 1988-11-28 1988-11-28 Production of porous optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29814988A JPH02145450A (en) 1988-11-28 1988-11-28 Production of porous optical fiber preform

Publications (1)

Publication Number Publication Date
JPH02145450A true JPH02145450A (en) 1990-06-04

Family

ID=17855831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29814988A Pending JPH02145450A (en) 1988-11-28 1988-11-28 Production of porous optical fiber preform

Country Status (1)

Country Link
JP (1) JPH02145450A (en)

Similar Documents

Publication Publication Date Title
US4618354A (en) Method, apparatus and burner for fabricating an optical fiber preform
KR100317414B1 (en) Glass Silica Manufacturing Method and Silica Composite Burner
CA1130547A (en) Fabrication of optical fibers utilizing thermophoretic deposition of glass precursor particulates
GB2168967A (en) Process for producing metal oxide particles having a very small and uniform size
EP1160209A3 (en) Method and apparatus for manufacturing quartz glass ingot
CA1228773A (en) Process and apparatus for manufacturing optical fibre preforms at high deposition rate
CN205115285U (en) A device for loose body of deposit OVD
JPH02145450A (en) Production of porous optical fiber preform
JP4165879B2 (en) Method and apparatus for manufacturing glass optical fiber preform by vapor phase growth method
JPS6168340A (en) Production of parent glass material for optical fiber
GB726250A (en) Process for the production of finely divided oxides
Graham et al. Experimental study of the outside vapor deposition process
CN217947963U (en) Deposition kiln for synthesizing quartz
JPH02102146A (en) Production of glass fine particle deposit
JP3498362B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS6126526A (en) Burner for synthesizing porous quartz glass base material
JPS6126527A (en) Production of porous quartz glass base material
US11236006B2 (en) Method for fabrication of optical fibre soot preform
JPS5978943A (en) Manufacture of glass containing fluorine
JPS59190235A (en) Production of parent material for optical fiber
JPS6045133B2 (en) Method for manufacturing base material for optical glass fiber
JPS6117432A (en) Manufacture of optical fiber preform
JP3295444B2 (en) Method for producing porous silica preform
JP3788073B2 (en) Manufacturing method of optical fiber preform
JPS604979Y2 (en) Glass particle synthesis torch