JPS6228100B2 - - Google Patents

Info

Publication number
JPS6228100B2
JPS6228100B2 JP58062370A JP6237083A JPS6228100B2 JP S6228100 B2 JPS6228100 B2 JP S6228100B2 JP 58062370 A JP58062370 A JP 58062370A JP 6237083 A JP6237083 A JP 6237083A JP S6228100 B2 JPS6228100 B2 JP S6228100B2
Authority
JP
Japan
Prior art keywords
gas
base material
hydrogen
glass particles
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58062370A
Other languages
Japanese (ja)
Other versions
JPS59190235A (en
Inventor
Hiroyuki Suda
Shoichi Sudo
Motohiro Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6237083A priority Critical patent/JPS59190235A/en
Publication of JPS59190235A publication Critical patent/JPS59190235A/en
Publication of JPS6228100B2 publication Critical patent/JPS6228100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はVAD法による光フアイバ母材の製造
方法に関するものである。 従来、VAD法では、ガラス微粒子を合成する
ための火炎燃焼ガスとしては水素(H2)ガスのみ
が使用されていた。この従来のVAD法におい
て、火炎温度、すなわち発生する熱エネルギーを
増加させるためには、水素ガス流量の増加が必要
であり、水素ガス流量を増加すると、火炎流速が
増加するという問題があつた。この火炎流速の増
加は、さらに多孔質母材成長面上へのガラス微粒
子の堆積効率を低下させるという問題を引き起こ
す。その効果として多孔質母材の製造速度が低下
するという欠点を生じた。 この欠点は、ガラス原料供給量を増加し、多孔
質母材の製造速度を高める場合に顕著となり、反
応効率を低下させないために、火炎温度すなわち
発生する熱エネルギーを増加させる必要がある場
合に、水素ガス流量の増加、すなわち火炎流速の
増加によつてガラス微粒子堆積効率が低下し、多
孔質母材の高速製造が困難になるという欠点があ
つた。 本発明はこれらの欠点を解決するために、水素
と水素以外の可燃性ガスとの混合ガスを用いて多
孔質母材を形成することを特徴としたもので、そ
の目的はガラス微粒子堆積効率の低下を防止し、
VAD法における高速母材製造を可能にすること
にある。 第1図は本発明の一実施例の構成図で、1は多
孔質母材、2は合成トーチ、3,4はそれぞれメ
タンガス、水素ガス用の流量計である。この実施
例では燃焼用ガスとして水素ガスにメタンガスを
混合したものを用いた。ここで燃焼用ガスの水素
ガス、メタンガスの混合比は流量計3,4によつ
て調節した。単位容量あたりの発熱量は水素ガス
とメタンガスでは1:3.12であり、メタンガスの
方が容積あたりの発熱量は大きい。表1に水素ガ
ス40/minの流量で得られる発熱量と同じ発熱
量を得るための水素ガス流量とメタンガス流量の
必要量を示した。
The present invention relates to a method for manufacturing an optical fiber base material using the VAD method. Conventionally, in the VAD method, only hydrogen (H 2 ) gas has been used as the flame combustion gas for synthesizing glass particles. In this conventional VAD method, in order to increase the flame temperature, that is, the generated thermal energy, it is necessary to increase the hydrogen gas flow rate, and when the hydrogen gas flow rate is increased, the flame flow velocity increases. This increase in flame velocity further causes the problem of reducing the deposition efficiency of glass particles onto the porous matrix growth surface. As a result, the production speed of the porous base material was reduced. This disadvantage becomes noticeable when increasing the feed rate of frit and increasing the production rate of the porous matrix, and when it is necessary to increase the flame temperature, that is, the thermal energy generated, in order not to reduce the reaction efficiency. This method has the disadvantage that an increase in the hydrogen gas flow rate, that is, an increase in the flame velocity, reduces the glass particle deposition efficiency, making it difficult to produce a porous base material at high speed. In order to solve these drawbacks, the present invention is characterized by forming a porous base material using a mixed gas of hydrogen and a combustible gas other than hydrogen, and its purpose is to improve the glass particle deposition efficiency. prevent decline,
The objective is to enable high-speed base material manufacturing using the VAD method. FIG. 1 is a block diagram of an embodiment of the present invention, in which 1 is a porous base material, 2 is a synthesis torch, and 3 and 4 are flowmeters for methane gas and hydrogen gas, respectively. In this example, a mixture of hydrogen gas and methane gas was used as the combustion gas. Here, the mixing ratio of hydrogen gas and methane gas as combustion gases was adjusted by flowmeters 3 and 4. The calorific value per unit capacity is 1:3.12 for hydrogen gas and methane gas, with methane gas having a larger calorific value per volume. Table 1 shows the necessary amounts of hydrogen gas flow rate and methane gas flow rate to obtain the same calorific value as that obtained with a hydrogen gas flow rate of 40/min.

【表】【table】

【表】 またこの実施例で使用した合成トーチ2(燃焼
用ガスの吹き出し層、外径30mmφ、内径24mmφ)
の先端部における混合ガスの平均流速を計算した
ものを表1の右欄に示した。 この実施例において同一発熱量を得るために、
水素ガスとメタンガスを混合することにより、合
成トーチ先端における流速を84cm/secから260
cm/secまで変化させることができた。 第2図は他のモデル実験で得られた火炎レイノ
ルズ数と多孔質母材に堆積するガラス微粒子堆積
量の関係を示したものである。ここで火炎レイノ
ルス数とは、 Re=Ud/ν U:ガス流速 d:合成トーチ先端の層間隙 ν:ガスの動粘性係数 で表わされる量で定義したものである。合成トー
チ先端の層間隙が一定の場合、流速に比例する量
として読みかえることができる。このモデル実験
は燃焼に使用される酸素ガス流速について測定さ
れたものである。また第2図中にFRと表示され
ているののは、ガラス原料供給量を示している。 第2図によると各合成トーチにより、ガラス微
粒子堆積量が最も多くなる最適なガス流速(すな
わち最適レイノルズ数)があり、その最適ガス流
速を越えるとガス流速(すなわちレイノルズ数)
が増加するに従つてガラス微粒子堆積量は低下す
る。このガス流速とガラス微粒子堆積量の関係
は、水素ガス等の燃焼ガスでも同じような傾向が
見られ、同一火炎温度において流速が速いほど堆
積効率が低下することが見られた。この実施例に
おいてSiCl4ガラス原料を5g/minの割合で供給
した場合、水素ガスのみを40l/minの流量で燃焼
させたとき、ガラス微粒子の収率は約30%であつ
た。これを水素ガス12/min、メタンガス9
/minの混合ガスとすると、ガラス微粒子の収
率は約60%と向上した。また流量13/minのメ
タンガスのみにすると、火炎が安定せず収率は約
40%となり、二種類の可燃性ガスを混合すること
により、火炎ガス流速を調節し、堆積効率を向上
させることができた。 また他の可燃性ガスの総発熱量を表2に示す。
[Table] Synthetic torch 2 used in this example (combustion gas blowing layer, outer diameter 30 mmφ, inner diameter 24 mmφ)
The calculated average flow velocity of the mixed gas at the tip of the tube is shown in the right column of Table 1. In order to obtain the same calorific value in this example,
By mixing hydrogen gas and methane gas, the flow velocity at the tip of the synthesis torch can be increased from 84 cm/sec to 260 cm/sec.
It was possible to change it up to cm/sec. Figure 2 shows the relationship between the flame Reynolds number and the amount of glass particles deposited on the porous base material obtained in another model experiment. Here, the flame Reynolds number is defined as a quantity expressed by Re=Ud/ν U: gas flow rate d: interlayer gap at the tip of the synthetic torch ν: kinematic viscosity coefficient of gas. If the interlayer gap at the tip of the synthetic torch is constant, it can be interpreted as a quantity proportional to the flow velocity. This model experiment measured the oxygen gas flow rate used for combustion. Furthermore, the symbol FR in FIG. 2 indicates the amount of glass raw material supplied. According to Figure 2, each synthesis torch has an optimal gas flow rate (i.e., optimal Reynolds number) at which the amount of glass particle deposition is the largest, and when the optimal gas flow rate is exceeded, the gas flow rate (i.e., Reynolds number)
As the amount of glass particles increases, the amount of glass particles deposited decreases. The relationship between the gas flow rate and the amount of glass particles deposited has a similar tendency with combustion gases such as hydrogen gas, and it was found that at the same flame temperature, the faster the flow rate, the lower the deposition efficiency. In this example, when SiCl 4 glass raw material was supplied at a rate of 5 g/min and only hydrogen gas was combusted at a flow rate of 40 l/min, the yield of glass particles was about 30%. Hydrogen gas 12/min, methane gas 9/min
/min, the yield of glass particles improved to about 60%. Furthermore, if only methane gas is used at a flow rate of 13/min, the flame will not be stable and the yield will be approximately
By mixing two types of combustible gases, it was possible to adjust the flame gas flow rate and improve the deposition efficiency. Table 2 also shows the total calorific value of other combustible gases.

【表】 同様に混合ガスとしてプロパンガスを使用した
場合、最適混合量として水素ガス15/min、プ
ロパンガス3.5/minを得た。この時のバーナ
先端における混合ガスの吹き出し速度は約120
cm/secであつた。またガラス微粒子の収率は55
%であり、水素ガスのみの場合におけるガラス微
粒子の収率に比較して向上した。これは水素ガス
とメタンガスを混合した場合と同様である。メタ
ンガスとプロパンガスとの収率の差は、安定して
作製するために必要とした酸素ガス流量が異なつ
たためである。 またバーナにおける酸素ガス吹き出し口の口径
を4mm大きくしたバーナでは、混合ガスとしてプ
ロパンガスを使用した場合、ガラス微粒子の収率
は60%となつた。 このように、バーナ口径、ガラス原料供給量等
に応じ、水素ガスに他の可燃性ガスを混合し、そ
の混合量を最適に選ぶことにより、ガラス微粒子
の収率を向上させることができた。 以上説明したように、本発明の方法により、光
フアイバ母材製造におけるガラス微粒子の堆積効
率が向上することから、VAD法における多孔質
母材合成速度の高速化を図ることができ、光フア
イバ製造コストを低減できるという利点がある。
[Table] Similarly, when propane gas was used as the mixed gas, the optimum mixing amounts were 15/min for hydrogen gas and 3.5/min for propane gas. At this time, the blowing speed of the mixed gas at the tip of the burner is approximately 120
It was cm/sec. In addition, the yield of glass particles is 55
%, which was improved compared to the yield of glass fine particles in the case of using only hydrogen gas. This is similar to the case where hydrogen gas and methane gas are mixed. The difference in yield between methane gas and propane gas is due to the difference in the oxygen gas flow rate required for stable production. Furthermore, in a burner in which the diameter of the oxygen gas outlet in the burner was increased by 4 mm, the yield of glass particles was 60% when propane gas was used as the mixed gas. In this way, by mixing hydrogen gas with other combustible gases and optimally selecting the amount of the mixture depending on the burner diameter, glass raw material supply amount, etc., it was possible to improve the yield of glass particles. As explained above, the method of the present invention improves the deposition efficiency of glass particles in the production of optical fiber preforms, making it possible to increase the synthesis rate of porous preforms in the VAD method, and thereby making it possible to produce optical fibers. This has the advantage of reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は
VAD法における多孔質母材合成における火炎レ
イノルズ数とガラス微粒子堆積量の関連図であ
る。 1…多孔質母材、2…合成トーチ、3…メタン
ガス用流量計、4…水素ガス用流量計。
Fig. 1 is a configuration diagram of an embodiment of the present invention, and Fig. 2 is a block diagram of an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the flame Reynolds number and the amount of glass particles deposited in porous base material synthesis using the VAD method. 1...Porous base material, 2...Synthesis torch, 3...Methane gas flowmeter, 4...Hydrogen gas flowmeter.

Claims (1)

【特許請求の範囲】 1 火炎流内においてガラス微粒子を合成し、こ
れを軸方向に堆積して、多孔質母材を形成した
後、該多孔質母材を高温に加熱・焼結して透明な
光フアイバ母材を得る製造方法(VAD法)にお
いて、ガラス微粒子を合成するための火炎燃焼ガ
スとして水素と水素以外の可燃性ガスとの混合ガ
スを用いて多孔質母材を形成することを特徴とす
る光フアイバ母材の製造方法。 2 水素以外の可燃性ガスとしては、一酸化炭
素、アンモニア、メタン、アセチレン、エチレ
ン、プロパンであることを特徴とする特許請求の
範囲第1項記載の光フアイバ母材の製造方法。
[Claims] 1. Glass particles are synthesized in a flame stream, deposited in the axial direction to form a porous base material, and then the porous base material is heated to a high temperature and sintered to make it transparent. In the manufacturing method (VAD method) for obtaining optical fiber base materials, a porous base material is formed using a mixed gas of hydrogen and a combustible gas other than hydrogen as the flame combustion gas for synthesizing glass particles. Characteristic method for manufacturing optical fiber base material. 2. The method for producing an optical fiber preform according to claim 1, wherein the combustible gas other than hydrogen is carbon monoxide, ammonia, methane, acetylene, ethylene, or propane.
JP6237083A 1983-04-11 1983-04-11 Production of parent material for optical fiber Granted JPS59190235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6237083A JPS59190235A (en) 1983-04-11 1983-04-11 Production of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6237083A JPS59190235A (en) 1983-04-11 1983-04-11 Production of parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS59190235A JPS59190235A (en) 1984-10-29
JPS6228100B2 true JPS6228100B2 (en) 1987-06-18

Family

ID=13198160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6237083A Granted JPS59190235A (en) 1983-04-11 1983-04-11 Production of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS59190235A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118822B2 (en) * 1990-09-07 2000-12-18 住友電気工業株式会社 Method for manufacturing glass articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614443A (en) * 1979-07-17 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of preform for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614443A (en) * 1979-07-17 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of preform for optical fiber

Also Published As

Publication number Publication date
JPS59190235A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
US4618354A (en) Method, apparatus and burner for fabricating an optical fiber preform
AU776420B2 (en) Burner for synthesizing glass particles and method for producing porous glass body
US4765815A (en) Method for producing glass preform for optical fiber
JPS6228100B2 (en)
US4781740A (en) Method for producing glass preform for optical fiber
JPS6253452B2 (en)
KR940006410B1 (en) Method of producing glass article
JPH0324417B2 (en)
JP3131087B2 (en) Method for producing porous glass preform for optical fiber
JPS6261541B2 (en)
JPS61183140A (en) Production of base material for optical fiber
JPH04228443A (en) Burner for producing optical fiber preform
JP2722735B2 (en) Method for producing glass preform for optical fiber
JPS6172645A (en) Manufacture of optical fiber preform
JPH04295018A (en) Production of synthetic quartz glass
JPH0416418B2 (en)
JP2003212560A (en) Method for manufacturing fine glass deposit
JPS63159234A (en) Production of optical fiber preform
JP4185304B2 (en) Method for producing porous preform for optical fiber
JPH0733467A (en) Production of porous glass preform for optical fiber
JPH04240125A (en) Manufacture of optical fiber preform
JPH04228442A (en) Production of optical preform
JPH04228441A (en) Production of optical fiber preform
JPH10120429A (en) Burner for producing fine glass particle
JPS62113731A (en) Production of base material for optical fiber