JPS59179751A - Amorphous alloy for saturable reactor - Google Patents

Amorphous alloy for saturable reactor

Info

Publication number
JPS59179751A
JPS59179751A JP58053950A JP5395083A JPS59179751A JP S59179751 A JPS59179751 A JP S59179751A JP 58053950 A JP58053950 A JP 58053950A JP 5395083 A JP5395083 A JP 5395083A JP S59179751 A JPS59179751 A JP S59179751A
Authority
JP
Japan
Prior art keywords
alloy
amorphous alloy
amorphous
saturable reactor
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58053950A
Other languages
Japanese (ja)
Other versions
JPH0549742B2 (en
Inventor
Takao Sawa
孝雄 沢
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58053950A priority Critical patent/JPS59179751A/en
Publication of JPS59179751A publication Critical patent/JPS59179751A/en
Publication of JPH0549742B2 publication Critical patent/JPH0549742B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy having small saturation magnetization and about zero magnetostriction and suitable for use as a material for a saturable reactor by adding a specified element to a Co alloy contg. Si and B as elements for making the alloy amorphous and by very rapidly cooling the resulting alloy from a molten state. CONSTITUTION:A Co alloy having a composition represented by formula (1) is melted by heating, and the molten alloy is very rapidly cooled by a single- or twin-roll method at >=10<5> deg.C/sec cooling rate to manufacture an amorphous sheet of 10-25mum thickness. The sheet has magnetic characteristics such as 5-8.5kG saturation magnetization and <=+ or -5X10<-6> magnetostriction, and it is suitable for use as a material for the saturable reactor of a magnetic amplifier.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は町飽オt1 リアクトルに通ずる非晶質合金に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an amorphous alloy leading to a reactor.

(発明の技術的背景及びその間融点9 電子計算機の周辺機器ヤ一般辿1h機用のム定化電源と
しては、近年、磁器増幅器をホ11込んたスイッチング
電源が広く用いら)している。
(Technical Background of the Invention and Melting Point 9 In recent years, switching power supplies incorporating magnetic amplifiers have been widely used as fixed power supplies for computer peripherals and general equipment).

この磁気増幅器を構成する王少怖へはh」飽オ]11J
アクドルであり、その鉄!シ・には角形磁化特性にすぐ
れ罠磁/b材料が8侠とされている。
To Wang Shaoqi, who composes this magnetic amplifier,
Akudol and its iron! Trap magnet/b materials are considered to have excellent square magnetization characteristics.

従来は、このような磁心拐料としてばFe−Ni結晶質
合金から成る一ヒンデルタ(商品名)が使用きれてき/
こ。
Conventionally, as such a magnetic core material, Hindelta (trade name), which is made of a Fe-Ni crystalline alloy, has been used.
child.

しかしながら、センデルタは角形磁化特性にはすぐれて
いるものの20 K、Hz以上の高周波VCおいては保
磁力大きくなってう1−篭流損が増大して発熱し、使用
不能となる。その7(め、磁気増幅器を組込んだスイッ
チングル5源のスイッチング周波数は20 K)(z以
下に限ら(してい7(−一方、近矩においては、スイッ
チング′屯源の小型化 軽量化に対する要望と相俟って
、スイッチング周波数のより高周波化が求められている
が、現在棟で晶周波における保磁力が小さく、かつ角形
特性及び熱安定性にすぐれ/こ磁心材料で満足のいくも
のは見出されていない。これらの点を改善するものとし
て非晶質磁性合金が注目されている。
However, although the center delta has excellent square magnetization characteristics, in high frequency VC of 20 K, Hz or higher, the coercive force becomes large and the cage current loss increases, generating heat, making it unusable. Part 7 (Meanwhile, the switching frequency of a switching source incorporating a magnetic amplifier is limited to 20 K) (limited to z or less). Along with this demand, higher switching frequencies are required, but currently there is no satisfactory magnetic core material that has a small coercive force at crystal frequencies and has excellent squareness characteristics and thermal stability. Amorphous magnetic alloys are attracting attention as a way to improve these points.

本発明省らは、上記のような問題点に対して非晶餉合金
を適用すべく鋭意研究を重ね罠結果、飽和磁化が5KO
以上8.5KG以下で@歪がほぼ等の非晶質合金は20
 KHz以上の篩周波に2いて、低保磁力で高角形性を
持ち、特に熱および温度安定性にすぐれ、可飽和リアク
トルに好適であるとの事実を見出し本発明を完成するに
到った。
The Ministry of Invention and others have conducted extensive research to apply amorphous alloys to the above-mentioned problems, and as a result, the saturation magnetization has been reduced to 5KO.
The amorphous alloy with almost equal strain at 8.5KG or less is 20
We have completed the present invention by discovering the fact that it has a sieve frequency of 2 KHz or more, has low coercive force and high squareness, has particularly excellent thermal and temperature stability, and is suitable for saturable reactors.

(発明の目的) 本発明は、20KH2以上の高周波域での使用、とりわ
け59 KHz以上においてもその保磁力(Hc)が0
.4エールステツド(Oe)以下と小さく、また、その
角形比(Br/B1)が85%以上と大きく特にそれら
の熱および温j糺安定性が優れ7ζ町飽和リアクトル用
非晶質仕金の提供を目的とする。
(Object of the invention) The present invention has a coercive force (Hc) of 0 even when used in a high frequency range of 20 KH2 or higher, especially at 59 KHz or higher.
.. We aim to provide amorphous metals for 7ζ town saturated reactors, which are small at less than 4Oe, have a large squareness ratio (Br/B1) of 85% or more, and have particularly excellent thermal and thermal stability. purpose.

(発明の概璧) すなわち、本発明の非晶質合金は、FA和磁化が5べ0
以上8.5KG以下であり、は1磁歪0(磁歪±5 X
 10−’以下)であることを特徴とする。なお、好1
しくは磁歪±i X 10−6以下がよく、磁歪がほぼ
0に近いこi%らの会金乞ノ1.1JJt’:rpオ[
1リアタトル用として好ましい特性をm−fる、このよ
うな合金としては、次式: 、(Co、−)(−、F’
exM、)、。(、−z(”’aB+−a)z(式中へ
(はTi、VrCr、Mn、Ni、Y、Zr、Nb+M
o、Hf。
(Summary of the invention) That is, the amorphous alloy of the present invention has an FA sum magnetization of 5
8.5KG or less, and 1 magnetostriction 0 (magnetostriction ±5
10-' or less). In addition, good 1
Preferably, the magnetostriction ± i
Such an alloy having desirable characteristics m-f for use in 1-reattle is given by the following formula: , (Co,-)(-,F'
exM, ),. (, -z("'aB+-a)z(into the formula (is Ti, VrCr, Mn, Ni, Y, Zr, Nb+M
o, Hf.

Ta、”A’、Re、4;土類元素のFA−力・ら選ば
れる1種以上の元素であり、X + y+ Z + 、
Iはそれぞれ0≦X≦0.10≦y≦0.2.20≦L
≦28.0.40≦a≦0.55の関係を満たす数であ
る。)で示さgる組成である。
Ta, "A', Re, 4; one or more elements selected from the earth elements FA-force, X + y+ Z +,
I is 0≦X≦0.10≦y≦0.2.20≦L, respectively
The number satisfies the relationship: ≦28.0.40≦a≦0.55. ).

本発明の非晶質合金において、SI及びBは非晶質化の
7こめに必要であるが、七〇台童2は20≦2≦28に
設定される、2が28を越えると飽和磁化が5KG以下
となり、温度安定性が悪く、逆に20より少ないと粕晶
什温夾(’i’ x )かキューリ温度(Tc)と同等
あるいは低くなる1こめ低保磁力および高角形比が得ら
れない。ま7(、Feは得られる合金の高磁束密腿化に
寄与し、ま7ζ磁歪を零にする効果があり、での組成比
Xは0≦X≦0.1の範囲に設定される。Xが0.1を
越えると、全体の磁歪が大きくなり、かつ保磁力(Hc
)も増大するので好捷しくない。M(Ti、V、Cr、
Mn、Ni、Y。
In the amorphous alloy of the present invention, SI and B are necessary for the 7th time of amorphization, but the 70-day 2 is set to 20≦2≦28, and when 2 exceeds 28, saturation magnetization occurs. If it is less than 5KG, the temperature stability will be poor, and if it is less than 20, it will be equivalent to or lower than the lees crystal temperature ('i' x ) or the curie temperature (Tc). I can't do it. (7), Fe contributes to high magnetic flux density of the resulting alloy, and has the effect of reducing magnetostriction to zero, and the composition ratio X is set in the range of 0≦X≦0.1. When X exceeds 0.1, the overall magnetostriction increases and the coercive force (Hc
) also increases, which is not a good idea. M(Ti, V, Cr,
Mn, Ni, Y.

Zr、Nb、Mo、Hf、Ta、W+Re、希土類元素
の1種又は2種以上)は、合金の熱的安定性に関与しそ
の組成比yは飽オ[I磁化が5KC,以北8.5べG以
下になるように0≦y≦0.2の範囲に設定σれる。
One or more of Zr, Nb, Mo, Hf, Ta, W+Re, and rare earth elements) are involved in the thermal stability of the alloy, and their composition ratio y is saturated [I magnetization is 5KC, north of 8. σ is set in the range of 0≦y≦0.2 so that the value is 5beG or less.

本発明の非晶質合金は、所定組成比の合金素材を溶融状
態〃為ら105°0/秒以上の冷却速度で急冷すること
(液体急冷法)によって得らnる。
The amorphous alloy of the present invention is obtained by rapidly cooling an alloy material having a predetermined composition ratio from a molten state at a cooling rate of 105°0/sec or more (liquid quenching method).

本発明の非晶質合金は、例えば単ロール法によって製造
されノζ板状の薄体として使用される。この場合、厚み
10μ筋未満の薄体な製造することは液体急冷法では実
質的に困難であり、また、厚みが25μ筋を超えると高
周波における保磁力が増大するので、通常、薄体の厚み
を10〜25μ処(両端を含む)の範囲に設定すゐのが
好ましい。
The amorphous alloy of the present invention is produced, for example, by a single roll method and used as a plate-like thin body. In this case, it is virtually difficult to manufacture a thin body with a thickness of less than 10μ by the liquid quenching method, and if the thickness exceeds 25μ, the coercive force at high frequencies increases, so the thickness of the thin body is usually It is preferable to set it in the range of 10 to 25μ (inclusive).

本発明の非晶質合金を得るには、音帯(*すればコアに
成形したもの)を、所定の温度で熱処理した後、油、冷
(例えば水中投入)することが望ましい。1だ、更に磁
場中で熱処理することも効果がある。
In order to obtain the amorphous alloy of the present invention, it is preferable to heat-treat the acoustic band (formed into a core) at a predetermined temperature and then cool it in oil (for example, by putting it in water). 1. Furthermore, heat treatment in a magnetic field is also effective.

(発明の実施例) (Coo、eo FeO,06Cro、ot ))l−
(Si O,5Boll)+oo−)(なる組成式にお
いて、X−79,77,75,72の非晶質合金の薄帯
を単ロール法で作製し7=(、@薄帯の幅および板厚は
それぞれ5Tu+、20μ筋である。
(Embodiments of the invention) (Coo, eo FeO, 06Cro, ot )) l-
(SiO,5Boll)+oo-) (In the composition formula, a ribbon of amorphous alloy of X-79, 77, 75, 72 was produced by a single roll method, and The thickness is 5Tu+ and 20μ, respectively.

こγしらの薄帯から18〕138 X 12 Mx 5
 #lJのトロイダル状コアを成形し、10以上の最適
な温度で熱処理し7C後、水中急冷しlこ。なお、X−
79の試料はTxとTc  がはeγ等し〃)つ7Cの
で、TC近傍で熱処理し罠。こnらの試料の飽和磁化4
πMS(曲線A)、保磁力He(曲線B)、および角形
比B r / B+ (曲線C)のX依存性を第1図に
示す1、これよりX−79すなわち飽λ【1婢化が8.
5KC以上の非晶質合金はBr/H,が小烙く、Hcが
太きくなることが判る。この試料に関しては磁場中熱処
理をすることにより、Br/B+ は約97%になるが
、Heが増加し0.80eはどとなることがある。
From this thin ribbon 18] 138 x 12 Mx 5
A toroidal core of #1J is molded, heat treated at an optimal temperature of 10 or more, and after 7C, quenched in water. In addition, X-
Sample No. 79 has Tx and Tc (eγ) equal to 7C, so it is heat treated near TC. Saturation magnetization of these samples 4
Figure 1 shows the X dependence of πMS (curve A), coercive force He (curve B), and squareness ratio B r / B+ (curve C). 8.
It can be seen that for amorphous alloys of 5KC or higher, the Br/H ratio is low and the Hc ratio is large. When this sample is heat-treated in a magnetic field, Br/B+ becomes approximately 97%, but He may increase to 0.80e.

更に、これらの試料の角形比の温度安定性を第2図に示
す。図よりX−77,75は150″C筐で尚角形比を
維持しており、可飽和リアクトルとして適用できる。ま
7ζX−73についても130℃までは充分な角形比を
有している。一方X=71では70°Cで角形比は90
%となシ、これ以上の温度で急激に低下する。可飽和リ
アクトルは、例えばスイッチングレギュレーターなどに
組み込む場合120℃程の猿境湖朋を考慮する必要があ
り飽和磁化が5Kg以下の非晶質合金は可飽和リアクト
ル用としては適用が難かしい。
Furthermore, the temperature stability of the squareness ratio of these samples is shown in FIG. As shown in the figure, X-77 and 75 maintain a square shape ratio with a 150"C case, and can be applied as saturable reactors. Also, 7ζX-73 also has a sufficient squareness ratio up to 130 degrees Celsius.On the other hand, At X=71, the squareness ratio is 90 at 70°C.
%, it drops rapidly at temperatures higher than this. When a saturable reactor is incorporated into a switching regulator, for example, it is necessary to take into account the temperature of about 120°C, and it is difficult to use an amorphous alloy with a saturation magnetization of 5 kg or less as a saturable reactor.

(発明の効果) 以上述べたように飽和磁化が51(G以上s、sKo以
下で磁歪がほぼ0の非晶質合金は、温度安定性がよく、
更に低保磁力、高角形比を有しており、可飽和リアクト
ルに適している。
(Effects of the invention) As described above, an amorphous alloy with a saturation magnetization of 51 (G or higher and sK or lower and a magnetostriction of almost 0) has good temperature stability,
Furthermore, it has a low coercive force and a high squareness ratio, making it suitable for saturable reactors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、非晶質合金の飽和磁化、保磁力、角形比を示
すグラフ、第2図は角形比の温度安定性を示すグラフで
ある。 代理人弁理士 則 近 廠 佑 (は〃・1名)第1 
FIG. 1 is a graph showing the saturation magnetization, coercive force, and squareness ratio of an amorphous alloy, and FIG. 2 is a graph showing the temperature stability of the squareness ratio. Representative Patent Attorney Noriyuki Chikagi (1 person) 1st
figure

Claims (1)

【特許請求の範囲】 (1)飽和磁化が5べG以」二g、 5にG以下であっ
て、磁歪±5X10 ’以下である可飽和リアクトル用
非晶質合金。 (2)  非晶質合金は、次式で示さlしる組成を有す
る特許請求の範囲第1項に記載の可縮オ[11ノフ′ク
トル用非晶質合金1゜ (CCJ−y−y F e xMy )l oo−z(
Si a B+−a)ZM−Ti 、V、Cr、Mn、
Ni、Y、Zr、Nb、Mo+I(f 、 Ta 、W
、 Re 、希土知元素のいずれ〃11柚以上 O≦X≦0.1 0≦y≦0,2 20≦2≦28 0.40≦a≦0.55
[Scope of Claims] (1) An amorphous alloy for a saturable reactor, which has a saturation magnetization of 5 g or more, 5 g or less, and a magnetostriction of ±5 x 10' or less. (2) The amorphous alloy is the amorphous alloy 1° (CCJ-y-y Fe x My ) l oo-z(
Sia B+-a) ZM-Ti, V, Cr, Mn,
Ni, Y, Zr, Nb, Mo+I (f, Ta, W
, Re, any of the rare Tochi elements 11 or more O≦X≦0.1 0≦y≦0,2 20≦2≦28 0.40≦a≦0.55
JP58053950A 1983-03-31 1983-03-31 Amorphous alloy for saturable reactor Granted JPS59179751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053950A JPS59179751A (en) 1983-03-31 1983-03-31 Amorphous alloy for saturable reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053950A JPS59179751A (en) 1983-03-31 1983-03-31 Amorphous alloy for saturable reactor

Publications (2)

Publication Number Publication Date
JPS59179751A true JPS59179751A (en) 1984-10-12
JPH0549742B2 JPH0549742B2 (en) 1993-07-27

Family

ID=12956995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053950A Granted JPS59179751A (en) 1983-03-31 1983-03-31 Amorphous alloy for saturable reactor

Country Status (1)

Country Link
JP (1) JPS59179751A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170446A (en) * 1986-01-08 1987-07-27 アライド・コ−ポレ−シヨン Vitreous alloy having perminvar characteristics
JPH0294605A (en) * 1988-09-30 1990-04-05 Hitachi Metals Ltd Excitation circuit including magnetic pulse compression circuit
JPH02119576A (en) * 1987-12-25 1990-05-07 Mitsui Petrochem Ind Ltd Pulse power unit
US5114503A (en) * 1984-05-22 1992-05-19 Hitachi Metals, Inc. Magnetic core
JPH0848153A (en) * 1993-07-05 1996-02-20 Kawaguchi Yachiko Driving of ff integral with transmission differential gear by car battery motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347321A (en) * 1976-10-12 1978-04-27 Res Inst Iron Steel Tohoku Univ Magnetic head material
JPS5472715A (en) * 1977-11-24 1979-06-11 Toshiba Corp High permeability amorphous alloy
JPS55138049A (en) * 1979-04-11 1980-10-28 Takeshi Masumoto Amorphous alloy including iron group element and zirconium
JPS5831072A (en) * 1981-08-18 1983-02-23 Toshiba Corp Manufacture of amorphous alloy with low coercive force and high squareness
JPH0323614A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347321A (en) * 1976-10-12 1978-04-27 Res Inst Iron Steel Tohoku Univ Magnetic head material
JPS5472715A (en) * 1977-11-24 1979-06-11 Toshiba Corp High permeability amorphous alloy
JPS55138049A (en) * 1979-04-11 1980-10-28 Takeshi Masumoto Amorphous alloy including iron group element and zirconium
JPS5831072A (en) * 1981-08-18 1983-02-23 Toshiba Corp Manufacture of amorphous alloy with low coercive force and high squareness
JPH0323614A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114503A (en) * 1984-05-22 1992-05-19 Hitachi Metals, Inc. Magnetic core
JPS62170446A (en) * 1986-01-08 1987-07-27 アライド・コ−ポレ−シヨン Vitreous alloy having perminvar characteristics
JPH08188858A (en) * 1986-01-08 1996-07-23 Allied Signal Inc Glass alloy having permimber characteristic
JP2552274B2 (en) * 1986-01-08 1996-11-06 アライド・コ−ポレ−シヨン Glassy alloy with perminer characteristics
JPH02119576A (en) * 1987-12-25 1990-05-07 Mitsui Petrochem Ind Ltd Pulse power unit
JPH0294605A (en) * 1988-09-30 1990-04-05 Hitachi Metals Ltd Excitation circuit including magnetic pulse compression circuit
JPH0848153A (en) * 1993-07-05 1996-02-20 Kawaguchi Yachiko Driving of ff integral with transmission differential gear by car battery motor

Also Published As

Publication number Publication date
JPH0549742B2 (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US4152144A (en) Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JPH0219179B2 (en)
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
JP2008231534A5 (en)
JP2894561B2 (en) Soft magnetic alloy
JPS6362579B2 (en)
JP2907271B2 (en) Vitreous alloy with perminbar properties
JPS59179751A (en) Amorphous alloy for saturable reactor
KR920007579B1 (en) Soft magnetic materials
JP2823203B2 (en) Fe-based soft magnetic alloy
JPS6070157A (en) Amorphous alloy and its manufacture
JPH02213421A (en) Production of soft-magnetic steel stock
JP2823204B2 (en) Soft magnetic alloy
JPH0257683B2 (en)
JPS60181237A (en) Manufacture of amorphous magnetic alloy having small iron loss
JPS6229105A (en) Co radical amorphous wound magnetic core
JP2713980B2 (en) Fe-based soft magnetic alloy
JPS5985835A (en) Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JPH0151540B2 (en)
JPS63161142A (en) Magnetic material
JPH0499819A (en) Production of mild magnetic steel products