JPS5985835A - Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy - Google Patents

Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy

Info

Publication number
JPS5985835A
JPS5985835A JP57195876A JP19587682A JPS5985835A JP S5985835 A JPS5985835 A JP S5985835A JP 57195876 A JP57195876 A JP 57195876A JP 19587682 A JP19587682 A JP 19587682A JP S5985835 A JPS5985835 A JP S5985835A
Authority
JP
Japan
Prior art keywords
amorphous alloy
coercive force
thermal stability
alloy
saturable reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57195876A
Other languages
Japanese (ja)
Other versions
JPH0323614B2 (en
Inventor
Yorio Hirose
広瀬 順夫
Takashi Ishii
石井 喬
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57195876A priority Critical patent/JPS5985835A/en
Publication of JPS5985835A publication Critical patent/JPS5985835A/en
Publication of JPH0323614B2 publication Critical patent/JPH0323614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy having high thermal stability, small coercive force and a high squareness ratio by very rapidly cooling a molten Co- Fe alloy material having a specified composition contg. B and Si in a prescribed ratio as well as Ti, etc. CONSTITUTION:An alloy material having a composition represented by a general formula (Co1-x-yFexMy)100-z(SiaB1-a)z (where M is one or more among Ti, V, Cr, Mn, Ni, Y, Zr, Nb, Mo, Hf, Ta, W and a rare earth metal, 0<=x<=0.1, 0.005<=y<=0.2, 20<=z<=30, and 0.40<=a<=0.55) is melted and rapidly cooled at >=about 10<5> deg.C/sec cooling rate to obtain an amorphous alloy having superior thermal stability, <=about 0.4 Oe small coercive force even at >=about 20kHz, especially about 50kHz high frequency, and >=about 85% high squareness ratio. The amorphous alloy is suitable for use in the manufacture of a saturable reactor for a magnetic amplifier.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は非晶質合金、更に詳しくは、磁気増巾器などの
磁心材料として用いられ、高周波に右ける低保磁力、角
形特性にすぐれるとともに率に熱安定性の浚れた非晶質
合金に関する。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention is an amorphous alloy, more specifically, it is used as a magnetic core material for magnetic amplifiers, etc., and has excellent low coercive force and square shape characteristics at high frequencies. It also relates to highly thermally stable amorphous alloys.

(発明の技術的背景及びその問題点) 電子計算機の周辺機器や一般通信機用の安定化電源とし
ては、近年、磁器増巾器を組込んだスイッチング電源が
広く用いられている。
(Technical Background of the Invention and Problems Therewith) In recent years, switching power supplies incorporating magnetic amplifiers have been widely used as stabilized power supplies for computer peripherals and general communication devices.

この磁気増巾器を構成する主要部は可飽和リアクタであ
り、その鉄心には角形磁化特性にすぐれた磁心材料が必
要とされている。
The main part constituting this magnetic amplifier is a saturable reactor, and its iron core requires a magnetic core material with excellent square magnetization characteristics.

従来は、このような磁心材料としてはpg−NL結晶質
合金から成るセンデルタ(商品名)が使用されてきた。
Conventionally, Sendelta (trade name), which is made of a pg-NL crystalline alloy, has been used as such a magnetic core material.

しかしながら、センデルタは角形磁化特性にはずぐれて
いるものの20 KH2以上の高周波においては保磁力
大きくなってうす電流積が増大して発熱し、使用不能と
なる。そのため、磁気増巾器を組込んだスイッチング’
ilL源のスイッチング周波数は20KHz以下に限ら
れていた。
However, although the center delta is inferior to the square magnetization characteristic, at high frequencies of 20 KH2 or higher, the coercive force becomes large, the thin current product increases, and heat is generated, making it unusable. Therefore, switching 'with built-in magnetic amplifier'
The switching frequency of the IL source was limited to below 20 KHz.

一方、近年においては、スイッチング電源の小型化・@
量化に対する要望と相俟って、スイッチング周波数のよ
り高周波化が求められているが、現在まで高周波におけ
る保磁力が小さく、かつ角形特性及び熱安定性にすぐれ
た磁心材料で満足のいくものは見出されていない。
On the other hand, in recent years, switching power supplies have become smaller and @
Along with the demand for quantification, there is a need for higher switching frequencies, but to date no satisfactory magnetic core material has been found that has a small coercive force at high frequencies and has excellent squareness and thermal stability. Not served.

本発明者らは、上記のような問題点を解消するために鋭
意研究を重ねた結果、BとStを所定の割合でかつ所定
の原子%世含み、更に結晶rヒ温度(T、2″)がキュ
ーり温度(To)よりも大きいという関係を有するCO
系非晶質合金は、20 Kl−I z以上の高周波にお
いて、低保磁力でありしかも角形磁化特性及び熱安定性
にもすぐれるとの事実を見出し本発明を完成するに到っ
た。
As a result of extensive research in order to solve the above-mentioned problems, the present inventors have found that they contain B and St in a predetermined ratio and a predetermined atomic %, and further increase the crystal temperature (T, 2''). ) is larger than the temperature (To)
The present invention was completed based on the discovery that amorphous alloys have a low coercive force and excellent square magnetization characteristics and thermal stability at high frequencies of 20 Kl-Iz or higher.

(発明の目的) 本発明は、20KH2以上の高周波、とりわけ50KH
zにおいてもその保磁力(HC)が0.4エールステツ
ド(Oe)以下と小さく、また、その角形比(B r 
/B l)が85%以上と大きく、かつ、それらの熱安
定性が優れている。
(Object of the invention) The present invention is directed to a high frequency of 20KH2 or more, especially 50KH2.
z, its coercive force (HC) is as small as 0.4 Oersted (Oe) or less, and its squareness ratio (Br
/B l) is as large as 85% or more, and their thermal stability is excellent.

したがって、磁気増巾器の磁心材料として用いるに適し
た非晶質合金の提供を目的とする。
Therefore, it is an object of the present invention to provide an amorphous alloy suitable for use as a magnetic core material for a magnetic amplifier.

(発明の概要) すなわち、本発明の非晶質合金は、次式=(0’+ −
x−y ”x Mい、oo−z(SLalj+−(Z)
2(式中MはTi、V、Or、Mn、Ni 、Y、Zr
(Summary of the invention) That is, the amorphous alloy of the present invention has the following formula = (0'+ -
x-y ”x M, oo-z (SLalj+-(Z)
2 (where M is Ti, V, Or, Mn, Ni, Y, Zr
.

Nh、MO,Hf、Ta、W希土類金属の群から選ばれ
る1種以上の元素であり、x、yz、αはそれぞれ0<
x<;:0.1 、0.005<yくo、2.20<Z
く30.0.40<(tく0.55の関係を満たす数で
ある。)で示される組成であることを特徴とする。
One or more elements selected from the group of Nh, MO, Hf, Ta, and W rare earth metals, and x, yz, and α are each 0<
x<;:0.1, 0.005<ykuo, 2.20<Z
It is characterized by having a composition expressed by the following relationship: 0.40<(t0.55).

本発明の非晶質合金において、SL及びBは非晶質化の
ために必要であるが、その合量2は20くzく30に設
定される。2が30を越えると非晶質rヒが困難となり
、逆(220より少ないと結晶化温度(’T x)がキ
ューり温度(TC)より低くなるため全体として低保磁
力が得られない。この点で好ましくは2は15くzく2
5が実用的である。更に低保磁力及び高角形性を損なわ
ずに優れた熱安定性を得るためには、StとBの割合が
重要であり、SLの割合をαとすると、0.40くαく
0.55の範囲がよい。更に好ましくは0.45くα<
: 0.5 ’3がよい。
In the amorphous alloy of the present invention, SL and B are necessary for amorphization, but their total amount 2 is set to 20 x 30. If 2 exceeds 30, it becomes difficult to form an amorphous material, and vice versa (if it is less than 220, the crystallization temperature (T In this respect, preferably 2 is 15 times 2
5 is practical. Furthermore, in order to obtain excellent thermal stability without impairing low coercive force and high squareness, the ratio of St and B is important, and if the ratio of SL is α, then 0.40 × α × 0.55 A range of is good. More preferably 0.45 α<
: 0.5'3 is good.

また、pgは得られる合金の高磁束密度化に寄与し、そ
の組成比Xはo <x <o、 tの範囲に設定される
。Xが0.1を越えると、全体の磁歪が大きくなり、か
つ保磁力(HC)も増大するので好ましくない。
Furthermore, pg contributes to increasing the magnetic flux density of the obtained alloy, and its composition ratio X is set in the range of o < x < o, t. If X exceeds 0.1, the overall magnetostriction will increase and the coercive force (HC) will also increase, which is not preferable.

M (T i 、 V 、 Or 、 M n 、 N
 i 、 Y 。
M (T i , V , Or , M n , N
i, Y.

Z r 、 N b 、 M o 、 Hf 、 T 
a 、 W 、 Rg希土類金属の1種又は2種以上)
は、合金の熱的安定性に関与し、その組成比yは0くy
く0.2の範囲に設定される。yが0.2を超えると、
非晶質化が困難となる。なお、MがNLの場合は、yが
0.1を越えると飽和磁化が著しく小さくなり実用的で
なくなる。
Z r , N b , M o , Hf , T
one or more of a, W, Rg rare earth metals)
is involved in the thermal stability of the alloy, and its composition ratio y is 0 and y
It is set within a range of 0.2. When y exceeds 0.2,
It becomes difficult to make it amorphous. Note that when M is NL, if y exceeds 0.1, the saturation magnetization becomes extremely small, making it impractical.

一般に、非晶質合金は、所定組成比の合金素材を尋融状
態から105℃/秒以上の冷却速度で急冷すること(液
体急冷法)によって得られることが知られている。本発
明の非晶質合金も、上記した常法によって容易に製造で
きる。
Generally, it is known that an amorphous alloy can be obtained by rapidly cooling an alloy material having a predetermined composition ratio from a melting state at a cooling rate of 105° C./second or more (liquid quenching method). The amorphous alloy of the present invention can also be easily produced by the conventional method described above.

本発明の非晶質合金は、例えば常用の単「]−ル法によ
って製造された板状の薄体として使用される。この場合
、厚み10μm未満の薄体を製造することは液体急冷法
では実質的に困難であり、また、厚みが25μ7πを超
えると高IM波における保磁力が増大するので、通常、
薄体の厚みを10〜25μm(両端を含む)の範囲に設
定するのが好ましい、。
The amorphous alloy of the present invention is used, for example, as a plate-like thin body produced by the conventional single-hole method. It is practically difficult, and if the thickness exceeds 25μ7π, the coercive force in high IM waves increases, so usually,
It is preferable to set the thickness of the thin body in the range of 10 to 25 μm (including both ends).

(発明の実施例) 以下に本発明を実施例に基づいて説明する。(Example of the invention) The present invention will be explained below based on examples.

(0’0.92F’f1.06Nb0.02)75(S
’0.5110.5)2fiでなる非晶質合金の薄体を
単ロール法で作製した。各薄体の幅は約pぞ厚みは、1
8〜22μmの範囲にあった。
(0'0.92F'f1.06Nb0.02)75(S
A thin body of an amorphous alloy consisting of 0.5110.5)2fi was produced by a single roll method. The width of each thin body is approximately p and the thickness is 1
It was in the range of 8 to 22 μm.

この薄体から長さ1次帝を切り取り、直径20 rrr
mのボビンに巻きつけてトロイダルコアを作製した。つ
ぎに、これを結晶化温度(T−11−)以下、キューり
温度(’pc)以上の適宜な温度で熱処理した後、全体
を水中(25℃)に投入して急冷した。
Cut the first length from this thin body and make a diameter of 20 rrr.
A toroidal core was prepared by winding it around a bobbin of size M. Next, this was heat-treated at an appropriate temperature below the crystallization temperature (T-11-) and above the cure temperature ('pc), and then the whole was put into water (25° C.) and rapidly cooled.

得られたコアに1次及び2次巻線を弛し、外部磁場10
e下で交流磁化測定装置を用いて交流ヒステリシス曲線
を測定し、ここから保磁力1−I 、?及び角形比Br
/Bl (B r :残留磁束密度、B、:10gの磁
場における磁束密度)を求めた。20KHz 、 50
KHz 、 100KHzの高周波における各薄体のH
C、BT/Blの値を第1表に示した。比較のため、従
来用いられているセンデルタの値も併記した。
The primary and secondary windings are loosened on the obtained core, and an external magnetic field of 10
The AC hysteresis curve was measured using an AC magnetization measurement device under e, and from this the coercive force 1-I, ? and squareness ratio Br
/Bl (Br: residual magnetic flux density, B: magnetic flux density in a magnetic field of 10 g) was determined. 20KHz, 50
KHz, H of each thin body at high frequency of 100KHz
The values of C and BT/Bl are shown in Table 1. For comparison, the conventionally used sender delta values are also shown.

以下余白 7− 一8= 表から明らかなように、本発明の非晶質合金はそのHc
は0. 4 0 g以下と小さくかつBr/B,も85
%以上と大きかった。これに反し、センデルタは、B 
r / B Iは大きいけれどもHCも大きく、とりわ
け50KHz以上の高周波では10eの外部磁場の下で
は測定不能となり、高周波における磁心材料としては不
適であった。
Margins below 7-18 = As is clear from the table, the amorphous alloy of the present invention has its Hc
is 0. 40g or less and Br/B, 85
It was large, more than %. On the other hand, Senderta is B
Although r/BI is large, HC is also large, and it becomes unmeasurable under an external magnetic field of 10 e especially at high frequencies of 50 KHz or higher, making it unsuitable as a magnetic core material at high frequencies.

次に(000.92F’0.06N’0.02)75(
S’0.5B0.5)25  05 0 K H zに
おける保磁力(HC)および角形比( B T /B 
l)の130℃でのエージング特性を調べた。その結果
を第1図に示す。第1図から明らかなように、本発明の
ものは熱安定性に優れている。なお、を時間エージング
後のH c ( t )およびBτ/ B 1( t 
)はHe  (  t  )−Hc  (  0  )
  十α lOg.。t 。
Then (000.92F'0.06N'0.02)75(
Coercive force (HC) and squareness ratio (B T /B
The aging characteristics of 1) at 130°C were investigated. The results are shown in FIG. As is clear from FIG. 1, the material of the present invention has excellent thermal stability. Note that H c (t) and Bτ/B 1 (t
) is He (t) − Hc (0)
Tenα lOg. . t.

By/B1(t)=−By/f3+(0)−βl 6 
F 1 0 tと表わされ、α,βが温度安定性の目安
と見なされる。
By/B1(t)=-By/f3+(0)-βl 6
It is expressed as F 1 0 t, and α and β are considered as measures of temperature stability.

これらα,βはいずれも小さい方が望ましい1上記組成
の場合、130℃におけるエージングではα=0.02
5.β=0.005である。
It is desirable that both α and β be smaller 1 In the case of the above composition, α = 0.02 for aging at 130°C
5. β=0.005.

第2表に本発明の各種組成のα、βθ値を示す。また、
(0(’0.90F’0.06NbO,04)77(S
’1ZHI−(Z)23の130℃エージングにおける
α、βのα依存性について調べた。この結果を第2図に
示す。
Table 2 shows α and βθ values of various compositions of the present invention. Also,
(0('0.90F'0.06NbO,04)77(S
The dependence of α and β on α during 130°C aging of '1ZHI-(Z)23 was investigated. The results are shown in FIG.

以下余白 組成が(Ooo、5aFso、osN’o、o4N’o
、o2)ysBtz、SL+2.sで厚み約16μmの
非晶質合金の薄体を作製し、外径18m、内径12mm
、厚み5朋のトロイダルコアを作製した。これを430
℃(10500℃、T、r380℃)で熱処理した後、
水中に投入して急冷した。
The following margin composition is (Ooo, 5aFso, osN'o, o4N'o
, o2)ysBtz, SL+2. A thin body of amorphous alloy with a thickness of about 16 μm was made using S, and the outer diameter was 18 m and the inner diameter was 12 mm.
A toroidal core with a thickness of 5 mm was prepared. This is 430
After heat treatment at ℃ (10500℃, T, r380℃),
It was poured into water and rapidly cooled.

得られたコアを、可飽和リアクトルとして12V 、4
Aのスイッチング電源を製造した。
The obtained core was used as a saturable reactor at 12V, 4
A switching power supply was manufactured.

これを120℃で1000 Hエージングテストを行な
った後、全負荷におけるコアの温度(’C)を調べた。
After conducting a 1000H aging test at 120°C, the core temperature ('C) at full load was investigated.

なお・比較のため・ (Coo、88F’Q、06N’
0.04NhG、Q2)75S t 1681sを用い
た場合の結果も併記した。
For comparison, (Coo, 88F'Q, 06N'
The results using 0.04NhG, Q2) 75S t 1681s are also shown.

第3表 第3表から明らかなように、本発明の非晶質合金による
可飽和リアクトルは、コアの1000時間後の温度上昇
の変化が初期値に比べて格段に小さいものであった。
As is clear from Table 3, in the saturable reactor made of the amorphous alloy of the present invention, the change in temperature rise of the core after 1000 hours was much smaller than the initial value.

以上の説明で明らかなように、本発明の非晶質合金は、
高周波における保磁力が0.40g以下と小さく、かつ
角形比も85%以上と大きいうえに熱安定性に優れてお
り、磁気増巾器なとの磁心に用いて有用であり、その工
業的価値は極めて大である。
As is clear from the above explanation, the amorphous alloy of the present invention is
It has a small coercive force of 0.40 g or less at high frequencies, a large squareness ratio of 85% or more, and excellent thermal stability, making it useful for magnetic cores such as magnetic amplifiers, and its industrial value. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(0’o、zF’o、oaN’o、oz)7s
(Sjo、5Bo5)2sの50KH2における保磁力
(HC)および角形比(BT/Bt)の130℃でのエ
ージング特性を示す図である。 第2図は(0’o9oF”o、oaNbo、o4)yy
(SLaB+−7Z)23の130℃エージングにおけ
るα、βのα依存性を示す図である1、
Figure 1 shows (0'o, zF'o, oaN'o, oz) 7s
(Sjo, 5Bo5) 2s is a diagram showing the aging characteristics of coercive force (HC) and squareness ratio (BT/Bt) at 130° C. at 50KH2. Figure 2 is (0'o9oF”o, oaNbo, o4)yy
(SLaB+-7Z) 23 is a diagram showing the α dependence of α and β in 130°C aging 1,

Claims (1)

【特許請求の範囲】 +!1  (0°1−x−y F’x My)too−
zc8’a B+−a)zM=Ti、V、Or、Mn、
Ni、Y、Zr、Nh。 MO,Hf、Ta、W希土類金属の1種以上 0<x<0.1 0.005<9<0.2 20くzく30 0.4.0<:α<;:0.55 から成ることを特徴とした高熱安定性、低保磁力、高角
形非晶質合金。 +2+  15くz<:25である特許請求の範囲第1
項に記載の高熱安定性、低保磁力、高角形性非晶質合金
。 +31 0.45 <α<;:0.53である特許請求
の範囲第1項に記載の高熱安定性、低保磁力、高角形性
非晶質合金。 +41  (00+ −x−y P’x My)1oo
−z(S’aB+−12)ZM=Ti、V、Or、Mn
、Ni、Y、Zr、Nh。 Mo、Hf、Ta、W 希土類金属018以上 +1<−T<0.1 0.005<31<0.2 20くzく30 0.40<α<0.55 から成ることを特徴とした高熱安定性、低保磁力、高角
形非晶質合金でなるトロイダル状可飽和リアクトル。 (5)  非晶質合金リボンを巻回してトロイダル状と
した特許請求の範囲第4項に記載の可飽和リアクトル。
[Claims] +! 1 (0°1-x-y F'x My) too-
zc8'a B+-a) zM=Ti, V, Or, Mn,
Ni, Y, Zr, Nh. Consists of one or more rare earth metals such as MO, Hf, Ta, W rare earth metals 0<x<0.1 0.005<9<0.2 20kuzku30 0.4.0<:α<;:0.55 An amorphous alloy with high thermal stability, low coercive force, and high square shape. Claim 1 in which +2+15x<:25
High thermal stability, low coercive force, high angularity amorphous alloy as described in Section 1. The high thermal stability, low coercive force, high angularity amorphous alloy according to claim 1, wherein: +31 0.45 <α<;: 0.53. +41 (00+ -x-y P'x My)1oo
-z(S'aB+-12)ZM=Ti, V, Or, Mn
, Ni, Y, Zr, Nh. Mo, Hf, Ta, W rare earth metals 018 or more +1<-T<0.1 0.005<31<0.2 20kuzku30 0.40<α<0.55 A toroidal saturable reactor made of a stable, low coercivity, high angular amorphous alloy. (5) The saturable reactor according to claim 4, in which an amorphous alloy ribbon is wound to form a toroidal shape.
JP57195876A 1982-11-10 1982-11-10 Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy Granted JPS5985835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195876A JPS5985835A (en) 1982-11-10 1982-11-10 Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195876A JPS5985835A (en) 1982-11-10 1982-11-10 Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy

Publications (2)

Publication Number Publication Date
JPS5985835A true JPS5985835A (en) 1984-05-17
JPH0323614B2 JPH0323614B2 (en) 1991-03-29

Family

ID=16348452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195876A Granted JPS5985835A (en) 1982-11-10 1982-11-10 Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy

Country Status (1)

Country Link
JP (1) JPS5985835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625399B2 (en) * 1986-11-03 1994-04-06 アライド・コーポレーション Glassy alloy with almost zero magnetostriction for high frequency use
CN110983112A (en) * 2019-12-30 2020-04-10 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS53103924A (en) * 1977-02-24 1978-09-09 Tdk Corp Amorphous magnetic alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS53103924A (en) * 1977-02-24 1978-09-09 Tdk Corp Amorphous magnetic alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625399B2 (en) * 1986-11-03 1994-04-06 アライド・コーポレーション Glassy alloy with almost zero magnetostriction for high frequency use
CN110983112A (en) * 2019-12-30 2020-04-10 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof
CN110983112B (en) * 2019-12-30 2021-11-02 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof

Also Published As

Publication number Publication date
JPH0323614B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JPS5933183B2 (en) Low loss amorphous alloy
JPH0219179B2 (en)
JPH0525946B2 (en)
JPS6328483B2 (en)
JP2894561B2 (en) Soft magnetic alloy
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH0338334B2 (en)
JPS5985835A (en) Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy
JPH0549742B2 (en)
JPS6070157A (en) Amorphous alloy and its manufacture
JPH0257683B2 (en)
JP3251126B2 (en) Fe-based soft magnetic alloy
JP2693453B2 (en) Winding core
JPS61225803A (en) Magnet core and manufacture thereof
JPS5833804A (en) Magnetic material
JP2506267B2 (en) High frequency magnetic core manufacturing method
JPH04211103A (en) Magnetic amplifier
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JPS5985846A (en) Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy
JP2831761B2 (en) Amorphous alloy ribbon and core for saturable reactor using it
JPS60181237A (en) Manufacture of amorphous magnetic alloy having small iron loss
JPS6122023B2 (en)
JPS6358901B2 (en)
JPH05117821A (en) Amorphous alloy for high-frequency magnetic core and core