JPS5985846A - Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy - Google Patents

Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy

Info

Publication number
JPS5985846A
JPS5985846A JP57195875A JP19587582A JPS5985846A JP S5985846 A JPS5985846 A JP S5985846A JP 57195875 A JP57195875 A JP 57195875A JP 19587582 A JP19587582 A JP 19587582A JP S5985846 A JPS5985846 A JP S5985846A
Authority
JP
Japan
Prior art keywords
alloy
transformer
high frequency
amorphous alloy
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57195875A
Other languages
Japanese (ja)
Inventor
Yorio Hirose
広瀬 順夫
Takashi Ishii
石井 喬
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57195875A priority Critical patent/JPS5985846A/en
Publication of JPS5985846A publication Critical patent/JPS5985846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the iron loss in a high frequency region and to improve the thermal stability by adding Fe, Si, B and Ti, V, Mn, Y or Zr in ratios represented by a specified compositional formula. CONSTITUTION:An alloy represented by a formula (Fe1-xMx)zSiyB100-y-z (where M is one or more among Ti, V, Mn, Y, Zr, Mo, Hf, Ta, W and a rare earth metal, x is 0.005-0.1, y is 3-8, z is 80-85, and x+y+z=100) is refined. A high frequency transformer, a choke coil, a noise filter, a step-up transformer and a saturable reactor are obtd. using a core material made of the alloy. They have small iron loss at high frequency and improved thermal stability.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は電磁気装置の磁心に用いて有効な低損失非晶質
合金に関し、更に詳しくは高周波領域で鉄損低下、熱安
定性向上の磁気特性を有しスイッチングレギュレータな
ど高周波用磁心に好適な低損失非晶質合金に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a low-loss amorphous alloy that is effective for use in the magnetic core of electromagnetic devices, and more specifically relates to magnetic properties that reduce iron loss and improve thermal stability in the high frequency region. This invention relates to a low-loss amorphous alloy suitable for high-frequency magnetic cores such as switching regulators.

(発明の技術的背景及びその問題点) 従来から、スイッチングレギュレータナト高同波で使用
する磁心としては、パーマロイフェライトなどの結晶質
材料が用いられている。
(Technical Background of the Invention and Problems thereof) Conventionally, crystalline materials such as permalloy ferrite have been used as magnetic cores used in switching regulators.

しかしながら、パーマロイは比抵抗が小さいので高周波
での鉄損が大きくなる。また、フェライトは高周波での
損失は小さいが、磁束密度もせいぜい5000Gと小さ
く、そのため、大きな動作磁束密度での使用時にあって
は、飽和に近くなりその結果鉄損が増大する。近時、ス
イッチングレギュレータに使用される電源トランスなど
高周波で使用されるトランスにおいては、形状の小型化
が望まれているが、その場合、動作磁束密度の増大が必
要となるため、フェライトの鉄損増大は実用上大きな問
題となる。
However, since permalloy has a low resistivity, iron loss at high frequencies increases. Further, although ferrite has a small loss at high frequencies, its magnetic flux density is as low as 5000G at most, and therefore, when used at a large operating magnetic flux density, it approaches saturation and as a result, iron loss increases. Recently, there has been a desire to reduce the size of transformers used at high frequencies, such as power transformers used in switching regulators, but in this case, the operating magnetic flux density must be increased, so the iron loss of ferrite is reduced. The increase poses a big problem in practice.

一方、結晶構造を持たない非晶質磁性合金は、高透磁率
、低保磁力など優れた軟質磁性特性を示すので最近注目
を集めている。これらの非晶質磁性合金は、p t 、
 Q o 、 N iなどを基本とし、これに非晶質化
元素(メタロイド)としてP、O,B、8i 、AAt
、Ggなどを包含するものである。
On the other hand, amorphous magnetic alloys that do not have a crystalline structure have recently attracted attention because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys have p t ,
Based on Qo, Ni, etc., P, O, B, 8i, AAt are added as amorphous elements (metalloids).
, Gg, etc.

しかしながら、これら非晶質磁性合金の全てが高周波領
域で鉄損が小さいというわけではない。
However, not all of these amorphous magnetic alloys have small iron loss in the high frequency range.

例えば、pm系非晶質合金は、50〜60H2の低周波
領域ではケイ素鋼の約1/4という非常に小さい鉄損を
示すが、10〜50KH2という高周波領域にあっては
著しく大きな鉄損を示し、とてもスイッチングレギュレ
ータ等の高周波領域での使用に適合するものではない。
For example, PM-based amorphous alloys exhibit a very small iron loss of about 1/4 of silicon steel in the low frequency range of 50 to 60 H2, but significantly large iron loss in the high frequency range of 10 to 50 KH2. However, it is not suitable for use in high frequency areas such as switching regulators.

また、従来のpg系非晶質合金にあって、低損失を得る
ためには該合金を磁場中で熱処理することが必要であり
、そのため処理工程が複雑化するなどの製造上の煩雑さ
や、その結晶化温度が低いため熱安定性にも欠けるとい
う難点があった。
In addition, with conventional pg-based amorphous alloys, in order to obtain low loss, it is necessary to heat-treat the alloy in a magnetic field, which complicates the processing process, resulting in manufacturing complications. Due to its low crystallization temperature, it also lacks thermal stability.

発明者はF、系非晶質合金に8いて、特に鉄損の改良に
着目して種々研究した結果、メタロイドのなかのSt量
が特に高周波鉄損に大きな影響を及ぼし、さらにこの影
響はメタロイド全量との相乗効果によることを見出した
The inventor has been working on F-based amorphous alloys, and as a result of various studies focusing on improving iron loss, he has found that the amount of St in metalloid has a particularly large effect on high-frequency iron loss, and that this effect is even stronger in metalloid. It was found that this is due to a synergistic effect with the total amount.

(発明の目的) 本発明は、高周波領域において鉄損低下、熱安定性向上
の磁気特性を有する非晶質合金の提供を目的とする。
(Objective of the Invention) An object of the present invention is to provide an amorphous alloy having magnetic properties that reduce iron loss and improve thermal stability in a high frequency region.

(発明の概要) 不発明の非晶質合金は、次式’ (” s −x M、
z)zS’y Bloo−y−z(式中Mは、Ti、V
、MrL、Y。
(Summary of the Invention) The uninvented amorphous alloy has the following formula'(" s −x M,
z) zS'y Bloo-y-z (in the formula, M is Ti, V
, MrL, Y.

Zr、Mo、Hf、Ta、W希土類金属の1種以上を表
わし、x 、 y 、 zはそれぞれ0.005 <x
<0.10 、3<y<s 、 8 Q<;:z<85
 。
Represents one or more rare earth metals such as Zr, Mo, Hf, Ta, and W, and x, y, and z are each 0.005 < x
<0.10, 3<y<s, 8 Q<;:z<85
.

z+y+z=100の関係を満足する数を表わす。)で
示されることを特徴とする。
Represents a number that satisfies the relationship z+y+z=100. ).

本発明非晶質合金において、Mは結晶化温度を向上させ
るのに有効な元素であるが、Xが0.1を越えると飽和
磁化が小さくなり実用的でなくなる。Siは結晶化温度
を向上させるのに有効な元素であるが、本発明の範囲内
を越えると高周波鉄損が増大する。全遷移金属量2は鉄
損と著しい相関があり、2が本発明の範囲内を越えると
高周波鉄損が増大する。
In the amorphous alloy of the present invention, M is an effective element for increasing the crystallization temperature, but if X exceeds 0.1, the saturation magnetization becomes small and it becomes impractical. Although Si is an effective element for increasing the crystallization temperature, if it exceeds the range of the present invention, high frequency core loss increases. The total amount of transition metals 2 has a significant correlation with iron loss, and when 2 exceeds the range of the present invention, high frequency iron loss increases.

本発明の非晶質合金は、上記した各成分を所定の割合い
で混合した後、溶融し、これを常法(例えば溶湯急冷法
)によって非晶質合金化し、これを無磁場中で400〜
500℃の温度域で加熱処理することによって容易に作
製することができる。
The amorphous alloy of the present invention is produced by mixing the above-mentioned components in a predetermined ratio, melting the mixture, forming it into an amorphous alloy by a conventional method (for example, molten metal quenching method), and then melting it into an amorphous alloy in the absence of a magnetic field.
It can be easily produced by heat treatment in a temperature range of 500°C.

(発明の実施例) 以下に本発明を実施例に基づいて説明する。(Example of the invention) The present invention will be explained below based on examples.

組成(”0.95”’0.05)82 St  Blg
 yのyを種々かえた非晶質合金を圧延急冷法で作製し
た。すなわち、2個の高速回転するロールの間に石英管
ノズルから上記組成の溶融合金をアルゴンガス圧(1,
0〜2.0#/m)で噴出させ、得られた薄体を急冷し
て幅2 vrx厚み30μm長さ10771の薄帯試料
を作製した。この試料から長さ100CrrLを切り取
り、これを直径20龍のアルミナ製ボビンに巻回した後
、全体を無磁場中で430℃、10分間熱処理した。こ
れに1次及び2次コイルを施しく巻き数、いずれも70
回)、磁束密度B m= 3KGにおける鉄損(mW/
ω)をワットメータを用いて周波数50KHzに対して
測定した。
Composition ("0.95"'0.05) 82 St Blg
Amorphous alloys with various values of y were produced by rolling and quenching. That is, a molten alloy having the above composition is heated between two high-speed rotating rolls through a quartz tube nozzle under argon gas pressure (1,
0 to 2.0#/m), and the obtained thin body was rapidly cooled to prepare a ribbon sample having a width of 2 vrx, a thickness of 30 μm, and a length of 10771 mm. A length of 100 CrrL was cut from this sample, which was wound around an alumina bobbin with a diameter of 20 mm, and then the whole was heat-treated at 430° C. for 10 minutes in the absence of a magnetic field. The primary and secondary coils are added to this, and the number of turns is 70.
times), magnetic flux density B m = 3KG iron loss (mW/
ω) was measured using a wattmeter at a frequency of 50 KHz.

この結果を第1図に示ず。The results are not shown in FIG.

第1図から明らかなように8i量を表わすyが3〜8の
場合、鉄損が著しく小さくなる。
As is clear from FIG. 1, when y representing the amount of 8i is 3 to 8, the iron loss becomes significantly small.

次に、組成(F’0.94M’0.06)828’6B
+2でなる本発明合金を高周波トランスに用いた。すな
わち、この合金をコア材としてEH11形に組立てて、
周波数50KHz、磁束密度f3m=3KGで作動させ
たところ、コアロスは500m W/cr/Iであった
。これに対し比較のために(F’0.94M’0.06
)825i9B9でなる合金を用いたところコアロスは
900 mW/cr/lであった。
Next, the composition (F'0.94M'0.06) 828'6B
The alloy of the present invention consisting of +2 was used in a high frequency transformer. That is, by assembling this alloy into the EH11 type as a core material,
When operated at a frequency of 50 KHz and a magnetic flux density f3m=3 KG, the core loss was 500 m W/cr/I. For comparison (F'0.94M'0.06
) When an alloy consisting of 825i9B9 was used, the core loss was 900 mW/cr/l.

更にフェライトで構成したもののコアロスは1000 
mW/crdと大きカッタ。
Furthermore, the core loss of something made of ferrite is 1000.
Large cutter with mW/crd.

次に、組成(F’0.94T”0.06)828’6B
12でなる本発明合金をチョークコイルに用いた。すな
わち、この合金をコア材としてEH11形、200μH
のチョークコイルに組立てて、周波数100 KHz、
50Wのスイッチング電源の出力チョークとして作動さ
せたところ、温度上昇は約30℃にとどまった。これに
対し比較のために(F’o、s4’l’o、os)a□
5t9B9でなる合金を用いたところ、温度上昇は約8
0℃と大きいものであった。
Next, the composition (F'0.94T"0.06) 828'6B
The alloy of the present invention consisting of No. 12 was used for a choke coil. That is, using this alloy as a core material, EH11 type, 200μH
Assembled into a choke coil, frequency 100 KHz,
When operated as an output choke for a 50W switching power supply, the temperature rise was only about 30°C. For comparison, (F'o, s4'l'o, os) a□
When using an alloy consisting of 5t9B9, the temperature rise was approximately 8
The temperature was as high as 0°C.

次に、組成(F’0.94W”0.06)82S’6B
12でなる本発明合金をノイズフィルターに用いた。す
なわち、この合金をコア材として外径30mg、内径2
0皿、厚10朋のトロイダルコアに組立てて、スイッチ
ング電源の入力フィルターとして作動させた。なおイン
ダクタンスは2mHである3、その結果従来のフェライ
トで構成したものに比較して、平均的なノイズ減衰債は
約8dB多かった。
Next, the composition (F'0.94W"0.06) 82S'6B
The alloy of the present invention consisting of No. 12 was used in a noise filter. That is, using this alloy as a core material, the outer diameter is 30 mg and the inner diameter is 2.
It was assembled into a toroidal core with a diameter of 10 mm and a thickness of 10 mm, and was operated as an input filter for a switching power supply. Note that the inductance is 2 mH3, resulting in an average noise attenuation rate of about 8 dB more than that of a conventional ferrite structure.

次に、組成(F’0.94W0.06)82St6B1
2でなる本発明合金を昇圧トランスに用いた。すなわち
この合金をコア材として外径307I+IIl、内径2
0+m、厚さ10鉗のトロイダルコアに組立てて、MO
型カートリッジの昇圧トランスとして作動させた。その
結果20 Hz入力時の第3高調波歪は約0.5%と小
さいものであった。これに対し比較のために従来のPC
Cパーツ0合金を用いたところ、上記と同じ歪は約2%
と本発明のものよりかなり大きいものでめった。
Next, the composition (F'0.94W0.06) 82St6B1
The alloy of the present invention consisting of No. 2 was used in a step-up transformer. That is, using this alloy as a core material, the outer diameter is 307I+IIl and the inner diameter is 2.
Assemble into a toroidal core of 0+m, thickness 10,
It was operated as a step-up transformer for a type cartridge. As a result, the third harmonic distortion at 20 Hz input was as small as about 0.5%. For comparison, conventional PC
When C part 0 alloy is used, the same strain as above is about 2%.
However, it was considerably larger than the one of the present invention.

次に、組成(F’0.94T”0.06)828’6B
+ 2でなる本発明合金を町吻和リアクトルに用いた。
Next, the composition (F'0.94T"0.06) 828'6B
The alloy of the present invention consisting of +2 was used in a Machinasawa reactor.

ずなわち、この合金をコア材として外径30市、内5−
20 tnvt、厚さ10朋のトロイダルコアに組立て
て、周波数50 KHZ、100Wのスイッチング電源
の可飽和リアクトルとして作動させた。その結果、全負
荷時のコアの温度上昇は約20℃であった。これに対し
比較のために50 N i −F eでなる角形ヒステ
リシス合金を用いたところ、コアの温度上昇は約60℃
と大きいものであった。
In other words, using this alloy as a core material, the outer diameter is 30 mm and the inner diameter is 5 mm.
It was assembled into a toroidal core of 20 tnvt and 10 mm thick and operated as a saturable reactor of a switching power supply with a frequency of 50 KHz and 100 W. As a result, the temperature rise in the core under full load was about 20°C. On the other hand, when a prismatic hysteresis alloy of 50 N i -F e was used for comparison, the temperature rise in the core was approximately 60°C.
It was a big thing.

(発明の効果) 以上、本発明の非晶質合金は、高周波での鉄損が格段に
優れており、しかも鉄を主体にした材料であるため低価
格であり、各種の用途に用いる際小形化が可能となるた
め、工業上有益なものである。
(Effects of the Invention) As described above, the amorphous alloy of the present invention has significantly superior iron loss at high frequencies, and since it is a material mainly made of iron, it is inexpensive and compact when used in various applications. It is industrially useful because it allows for

金の50kHz、3kGにおける鉄損のSi依存性を示
すグラフである。
It is a graph showing the Si dependence of iron loss of gold at 50 kHz and 3 kG.

代理人弁理士  則 近 患 佑(ばか1名)第11図Representative Patent Attorney Noriyuki Chika (1 idiot) Figure 11

Claims (1)

【特許請求の範囲】 lll  (F’t −x Mx)z  S’  Bt
oo −y−zM=Ti、■*MnrY+”lrrMo
、Hf*Ta。 W希土類金属の1種以上 0.005くxく0.10 3<yく8 80くzく85 x十y+z=i o 。 から成ることを特徴とした低損失非晶質合金。 (21(F’+−xMr)z  S’yB1oo −y
−zM=Ti、V、Mn、Y、Zr、MO,Hf、Ta
。 W希土類金属、の1種以上 0、 OOs<x<o、 10 3くyく8 80くzく85 、zニー1−y−1−z=100 から成る低損失非晶質合金をコア材として用いた高周波
トランス。 (at  (Fgl−x M、T)Z  S’  Bt
oo−y−zM=Ti、V、Mn、Y、’lr、Mo、
Hf、Ta。 W希土類金属の1種以上 0.005<2<0.10 3 <y < 8 80くzく85 x+y+z=1o。 から成る低損失非晶質合金をコア材として用いたチョー
クコイル。 (41(Fgl z M、)zSzy B100 y 
zM=Ti、V、Ma、Y、Zr、MO,Hf、Ta。 W希土類金属の1種以上 0、005<Z<0.10 3 <y < 8 80くzく85 x+y+z−100 から成る低損失非晶質合金をコア材として用いたノイズ
フィルター。 +51  (F’t x Mjc)z  8Ly B1
00 y zM=Ti、V、Mn、Y、Zr、Mo、H
f、Ta。 W希土類金属の1種以上 0.005(Z−<0.10 3くyく8 80くzく85 x+3++2=1 o 。 から成る低損失非晶質合金をコア材として用いた昇圧ト
ランス。 16)  (F’l−x M、y)z  S’y Bt
oo −y−zM=Ti、V、Mn、Y、Zr、Mo、
Hf’、Ta。 W希土類金属の1種以上 0、005<:r<:0.10 3 < y <8 80くzく85 r−+−y+2=100 から成る低損失非晶質合金をコア材として用いた可飽和
リアクトル。
[Claims] lll (F't -x Mx)z S' Bt
oo −y−zM=Ti, ■*MnrY+”lrrMo
, Hf*Ta. W One or more rare earth metals 0.005 x x 0.10 3 < y x 8 80 x 85 x 10 y + z = i o. A low-loss amorphous alloy characterized by consisting of. (21(F'+-xMr)z S'yB1oo -y
-zM=Ti, V, Mn, Y, Zr, MO, Hf, Ta
. The core material is a low-loss amorphous alloy consisting of one or more of W rare earth metals, OOs<x<o, 10 3kuyku8 80kuzku85, High frequency transformer used as (at (Fgl-x M, T)Z S' Bt
oo-y-zM=Ti, V, Mn, Y, 'lr, Mo,
Hf, Ta. W One or more rare earth metals 0.005<2<0.10 3 <y < 8 80 x 85 x+y+z=1o. A choke coil that uses a low-loss amorphous alloy as the core material. (41(Fgl z M,)zSzy B100 y
zM=Ti, V, Ma, Y, Zr, MO, Hf, Ta. A noise filter using a low-loss amorphous alloy consisting of one or more W rare earth metals as a core material. +51 (F't x Mjc)z 8Ly B1
00 y zM=Ti, V, Mn, Y, Zr, Mo, H
f, Ta. A step-up transformer using a low-loss amorphous alloy as a core material consisting of one or more W rare earth metals 0.005 (Z-<0.10 3x8 80x85 x+3++2=1o. 16 ) (F'l-x M,y)z S'y Bt
oo-y-zM=Ti, V, Mn, Y, Zr, Mo,
Hf', Ta. A low-loss amorphous alloy consisting of one or more W rare earth metals 0, 005 saturation reactor.
JP57195875A 1982-11-10 1982-11-10 Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy Pending JPS5985846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195875A JPS5985846A (en) 1982-11-10 1982-11-10 Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195875A JPS5985846A (en) 1982-11-10 1982-11-10 Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy

Publications (1)

Publication Number Publication Date
JPS5985846A true JPS5985846A (en) 1984-05-17

Family

ID=16348435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195875A Pending JPS5985846A (en) 1982-11-10 1982-11-10 Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy

Country Status (1)

Country Link
JP (1) JPS5985846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226602A (en) * 1986-03-28 1987-10-05 Hitachi Metals Ltd High space factor low loss amorphous magnetic core
CN1062611C (en) * 1998-07-15 2001-02-28 山东大学 Fe-Zr-B-blended nm-crystal huge magnetic impedance thin band material and its preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226602A (en) * 1986-03-28 1987-10-05 Hitachi Metals Ltd High space factor low loss amorphous magnetic core
CN1062611C (en) * 1998-07-15 2001-02-28 山东大学 Fe-Zr-B-blended nm-crystal huge magnetic impedance thin band material and its preparation method

Similar Documents

Publication Publication Date Title
EP0042525B1 (en) Amorphous magnetic alloy
JPS6034620B2 (en) Amorphous alloy with extremely low iron loss and good thermal stability
JPH08188858A (en) Glass alloy having permimber characteristic
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH0338334B2 (en)
JPS5985846A (en) Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy
US5114503A (en) Magnetic core
JPH0480523B2 (en)
JPS59150415A (en) Choke coil
JPS5833804A (en) Magnetic material
JPS59150404A (en) Electromagnetic device
JPH0257683B2 (en)
JPH0323614B2 (en)
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JPS6075563A (en) Heat treatment of amorphous magnetic alloy
JPS61295601A (en) Amorphous core for common mode choke
JPS6012423B2 (en) Manufacturing method of low coercive force and high angularity amorphous alloy
JPS5845355A (en) Amorphous alloy with small loss
JPS62167852A (en) Low loss fe-base amorphous alloy
KR870000039B1 (en) Low-loss amorphous alloy
JPH0461065B2 (en)
JPH068491B2 (en) High saturation magnetic flux density Low loss amorphous alloy
JPH03249151A (en) Superfine crystalline magnetic alloy and its manufacture
JPS60181237A (en) Manufacture of amorphous magnetic alloy having small iron loss
JPH01287251A (en) Fe-ni-based magnetic alloy having excellent high frequency characteristics