JPS6075563A - Heat treatment of amorphous magnetic alloy - Google Patents

Heat treatment of amorphous magnetic alloy

Info

Publication number
JPS6075563A
JPS6075563A JP58180391A JP18039183A JPS6075563A JP S6075563 A JPS6075563 A JP S6075563A JP 58180391 A JP58180391 A JP 58180391A JP 18039183 A JP18039183 A JP 18039183A JP S6075563 A JPS6075563 A JP S6075563A
Authority
JP
Japan
Prior art keywords
amorphous magnetic
heat treatment
magnetic alloy
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180391A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Katsuhiko Kawakita
川北 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58180391A priority Critical patent/JPS6075563A/en
Publication of JPS6075563A publication Critical patent/JPS6075563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain easily an amorphous magnetic alloy having an excellent soft magnetic characteristic by repeating plural times the heat treatment wherein the amorphous magnetic alloy is heated to a specified temp. and cooled thereafter. CONSTITUTION:The heat treatment, wherein the amorphous magnetic alloy is heated to a temp. which is the Curie temp. or above and below the crystallization temp. and cooled thereafter, is repeated plural times. A Co-base amorphous magnetic alloy expressed by (Co1-aMa)bN100-b is preferable as the alloy, where M is at least one kind of element selected from Fe, Ni, Mn, Cr, V, Nb, Mo, Ta, W, etc., N is at least one kind of element selected from Si, B, etc., and 0.03<= a<=0.30 and 15<=b<=35. Twice heat treatments are practically sufficient, and the heating temp. of the succeeding heat treatment is regulated below the heating temp. of the preceding heat treatment. By this method, the amorphous magnetic alloy having a high angularity ratio, low coercive force, and high permeability in the high-frequency zone can be easily obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質磁性合金の熱処理方法に関し、更に詳し
くは、高周波域で角形尾大、低保磁力であり、透磁率も
高い非晶質磁性合金を得る方法に関する◎ 〔発明の技術的背景とその問題点〕 従来、スイッチングレギュレータなどの電磁気装置に用
いる磁気増幅器における可飽和リアクシルの磁心材料と
しては、パーマpイ、センデルタ(商品名)などのNi
 −Fe結晶質合金が使用されている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for heat treatment of amorphous magnetic alloys, and more specifically, the present invention relates to a method for heat treatment of amorphous magnetic alloys, and more specifically, the present invention relates to a method for heat treatment of amorphous magnetic alloys. ◎ Regarding the method of obtaining a magnetic alloy [Technical background of the invention and its problems] Conventionally, magnetic core materials for saturable reactors in magnetic amplifiers used in electromagnetic devices such as switching regulators include Perma-Pi, Sendelta (trade name), etc. of Ni
-Fe crystalline alloy is used.

例えばスイッチングレギュレータの可飽和リアクトルの
場合、これら合金は、直流特性では保磁力(He)が小
さく、角形比(Br/Bt : Brは残留磁束密度、
B1は1エルステツドの磁場における磁束密度)は大き
いが、しかし、高周波域では保磁力が大きく、鉄損が大
きいので動作時の温度上昇が大きくなり、そのため、同
一装置内に組込まれている例えばダイオードのような他
の部品の性能劣化を招くという虞れがあった。
For example, in the case of a saturable reactor for a switching regulator, these alloys have a small coercive force (He) in DC characteristics and a squareness ratio (Br/Bt: Br is the residual magnetic flux density,
B1 has a large magnetic flux density (in a magnetic field of 1 oersted), but in the high frequency range, the coercive force is large and the iron loss is large, resulting in a large temperature rise during operation. There was a risk that the performance of other parts, such as

また、高周波域で大電流の断続若しくは反転などの制御
を行なう例えばスイッチング電源の半導体回路において
は、半導体自身の性質や他の回路的要因によって、電流
のオン・オフ時の過渡現象に基づく規格値以上のピーク
電流(スパイク電流)やノ9ルス電流の揺らぎ(リンギ
ング)などが発生し易いという問題がある。これらの現
象は、回路動作の正常化を妨げ、ついには半導体回路を
破壊してしまうという問題を招き、更には、機器全体の
ノイズの最大原因を構成する。このような電流スノ臂イ
クやリンギングを抑制するために、半導体回路に半導体
回路用リアクトルを配置することが行なわれている。七
かしながら、従来から使用されている半導体回路用リア
クトルのコアは、フェライト若しくはパーマロイなどの
磁性合金で構成されていて、その抑制効果は充分ではな
かった。
In addition, in semiconductor circuits such as switching power supplies that control the intermittent or reversal of large currents in the high frequency range, standard values based on transient phenomena when the current is turned on and off are determined by the characteristics of the semiconductor itself and other circuit factors. There is a problem in that the above-mentioned peak current (spike current) and fluctuations in the current (ringing) are likely to occur. These phenomena hinder the normal operation of the circuit, eventually leading to the problem of destroying the semiconductor circuit, and furthermore, constitute the largest cause of noise in the entire device. In order to suppress such current leakage and ringing, a semiconductor circuit reactor is disposed in the semiconductor circuit. However, the cores of conventional reactors for semiconductor circuits are made of magnetic alloys such as ferrite or permalloy, and the suppressing effect thereof has not been sufficient.

すなわち、フェライトコアの場合、角形比(Br/B+
)及び飽和磁束密度(BS)がいずれも小さいので、抑
制効果を高めるためにはコアの形状を大型化することが
必要となり、また、ノ9−マロイコアの場合には保磁力
(He)が大きいので高周波域ではうず電流損が発生し
て発熱するという問題を生ずる。
In other words, in the case of a ferrite core, the squareness ratio (Br/B+
) and saturation magnetic flux density (BS) are both small, so it is necessary to increase the size of the core in order to increase the suppression effect, and in the case of the No9-Malloy core, the coercive force (He) is large. Therefore, in the high frequency range, eddy current loss occurs and heat generation becomes a problem.

このようなことから、最近では、磁心に非晶質磁性合金
を用いたりアクドルが開発され始めている。この非晶質
磁性合金は、多くの場合、低保磁力と高透磁率を有して
いることが知られている。
For this reason, recently, acudles using amorphous magnetic alloys for the magnetic core have begun to be developed. This amorphous magnetic alloy is known to often have low coercive force and high magnetic permeability.

このような非晶質磁性合金は、通常、所定組成比の合金
素材を溶融しこれを10”C/ see以上の冷却速度
で急冷して製造されている(液体急冷法)。
Such amorphous magnetic alloys are usually manufactured by melting an alloy material having a predetermined composition ratio and rapidly cooling it at a cooling rate of 10''C/see or more (liquid quenching method).

しかしながら、このとき、得られた非晶質磁性合金には
歪みが蓄積されるので、そのままでは優れた軟磁気特性
を得ることが困難である。
However, since strain is accumulated in the obtained amorphous magnetic alloy at this time, it is difficult to obtain excellent soft magnetic properties as it is.

そのため、従来は、上記した方法で製造された非晶質磁
性合金を適宜な温度で一度加熱処理する歪取り熱処理が
行なわれている。
Therefore, conventionally, the amorphous magnetic alloy manufactured by the above-described method is subjected to strain relief heat treatment in which the amorphous magnetic alloy is once heated at an appropriate temperature.

一方、最近では、スイッチング電源の小型化、軽量化へ
の要望の高まりとともに、スイッチング周波数の更なる
高周波化がめられている。
On the other hand, in recent years, there has been an increasing demand for smaller and lighter switching power supplies, and there has been a trend towards higher switching frequencies.

しかしながら、上記した従来の方法で製造した非晶質磁
性合金は、更なる高周波化の要請に対し必ずしもそれを
充足する磁気特性を有するものではない。それゆえ、高
周波域における角形比穴、低保磁力、高透磁率という軟
磁気特性において一層優れる非晶質磁性合金の開発は強
く望まれていることである。
However, the amorphous magnetic alloy manufactured by the conventional method described above does not necessarily have magnetic properties that meet the demands for higher frequencies. Therefore, there is a strong desire to develop an amorphous magnetic alloy that has even better soft magnetic properties such as squareness ratio, low coercive force, and high magnetic permeability in the high frequency range.

〔発明の目的〕[Purpose of the invention]

本発明は、既にある非晶質磁性合金に特徴のある、しか
し極めて簡単な熱処理を施こすことにより、その非晶質
磁性合金、を軟磁気特性が一層優れた非晶質磁性合金に
改質する方法の提供を目的とする。
The present invention modifies existing amorphous magnetic alloys into amorphous magnetic alloys with even better soft magnetic properties by subjecting them to a unique but extremely simple heat treatment. The purpose is to provide a method to do so.

〔発明の概要〕[Summary of the invention]

本発明方法は、すなわち、非晶質磁性合金に該合金のキ
ューリ温度以上結晶化温度未満の温度で加熱したのち冷
却する熱処理を複数回施すことを特徴とする。
The method of the present invention is characterized in that an amorphous magnetic alloy is subjected to heat treatment multiple times in which the alloy is heated at a temperature higher than or equal to the Curie temperature and lower than the crystallization temperature, and then cooled.

本発明にかかる非晶質磁性合金としては、この分野に適
する非晶質磁性合金であればその種類は問わないが、と
くに後述する飽和磁歪が絶対値で5 X 10−’ 以
下のコバルト基非晶質合金であることが好ましい。コバ
ルト基非晶質磁性合金は、低い飽和磁歪(絶対値で5 
X 10−’以下)を得やすく、飽和磁歪が上記した値
を満足するコバルト基非晶質合金に本発明の方法・が適
用されると、著しくその軟磁気特性が改善されるからで
ある。
The amorphous magnetic alloy according to the present invention may be of any type as long as it is an amorphous magnetic alloy suitable for this field, but in particular cobalt-based non-alloys having a saturation magnetostriction of 5 x 10-' or less in absolute value, which will be described later. Preferably, it is a crystalline alloy. Cobalt-based amorphous magnetic alloys have low saturation magnetostriction (absolute value of 5
This is because when the method of the present invention is applied to a cobalt-based amorphous alloy whose saturation magnetostriction satisfies the above values, the soft magnetic properties are significantly improved.

具体的には、その組成が次式: %式% (式中、MはTi、 V、 Cr、 Mn、 Fe、 
Nl、 Cu、 Y。
Specifically, its composition is expressed by the following formula: % formula % (wherein M is Ti, V, Cr, Mn, Fe,
Nl, Cu, Y.

Zr、Nb+ Mo、Ru+ Rh+ Pd、HL T
a、 W、Re、Os。
Zr, Nb+ Mo, Ru+ Rh+ Pd, HL T
a, W, Re, Os.

Ir+ Pt+希土類元素の群から選ばれる少なくとも
1種の元素を表わし;NはSi+ IL P’+ C+
 Qe、 Alの群から選ばれる少なくとも1種の元素
を表わし;&、bはそれぞれ、0.03≦a≦0.30
. 15≦b≦35 の関係を満足する数を表わす)で
示されるコバルト基非晶質磁性合金である。なお、Mと
してはFe、 Ni、 Mn+ Cr+ v、 Nb、
 Mo+ Ta。
Represents at least one element selected from the group of Ir+ Pt+ rare earth elements; N is Si+ IL P'+ C+
Qe represents at least one element selected from the group of Al; & and b each satisfy 0.03≦a≦0.30
.. It is a cobalt-based amorphous magnetic alloy represented by a number satisfying the relationship: 15≦b≦35. Note that M is Fe, Ni, Mn+ Cr+ v, Nb,
Mo + Ta.

Wが良好な磁気特性を得るうえで好ましく、NはSlと
Bの組合せが、良好な非晶質状態を得るうえで好ましい
。またaは0.05≦a≦0.20の範囲が所望の磁気
特性を得るうえでより好ましく、bは20≦b≦32の
範囲がより良好な非晶質状態を得るうえで好ましい。
W is preferable in order to obtain good magnetic properties, and N is preferably a combination of Sl and B in order to obtain a good amorphous state. Further, a is preferably in the range of 0.05≦a≦0.20 in order to obtain desired magnetic properties, and b is preferably in the range of 20≦b≦32 in order to obtain a better amorphous state.

このコバルト基非晶質磁性合金は、上記した各元素の供
給源を所定量配合し、これを前述した通常の液体急冷法
を適用することにより容易に製造できる。
This cobalt-based amorphous magnetic alloy can be easily produced by blending the above-mentioned sources of each element in predetermined amounts and applying the above-mentioned ordinary liquid quenching method.

本発明方法にあっては、この非晶質磁性合金に後述する
熱処理を施こす。このと色、全ての熱処理前後において
、非晶質磁性合金の組成が変化するということはない。
In the method of the present invention, this amorphous magnetic alloy is subjected to heat treatment as described below. In this case, the composition of the amorphous magnetic alloy does not change before and after any heat treatment.

本発明の熱処理とは、非晶質磁性合金を所定の温度に加
熱しついでそれを該所定温度より低い温度にまで冷却す
る処理をいい、これを1回の熱処理という。本発明にあ
っては、この熱処理を複数回に亘り行なうことを特徴と
する。この複数回熱処理は、連続的(すなわち段階的に
冷却する)に行なってもよいし、加熱後一旦水中で急冷
したのち最初の加熱温度より低い温度で再び加熱してか
ら急冷するという不連続な操作の反復であってもよい。
The heat treatment of the present invention refers to a process in which an amorphous magnetic alloy is heated to a predetermined temperature and then cooled to a temperature lower than the predetermined temperature, and this is referred to as one heat treatment. The present invention is characterized in that this heat treatment is performed multiple times. This multiple heat treatment may be carried out continuously (that is, cooled in stages), or discontinuously by quenching in water after heating, heating again at a temperature lower than the initial heating temperature, and then quenching. It may be a repetition of operations.

加熱温度は、その非晶質磁性合金のキューり温度以上結
晶化温度未満の温度範囲における適宜な温度である。温
度がキューり温度より高い場合は誘導磁気異方性を生ず
ることがなく、また結晶化温度までの範囲で合金が非晶
質化する。
The heating temperature is an appropriate temperature in the temperature range from the cue temperature to the crystallization temperature of the amorphous magnetic alloy. If the temperature is higher than the cue temperature, induced magnetic anisotropy will not occur, and the alloy will become amorphous in the range up to the crystallization temperature.

この場合、最初の熱処理時の温度は結晶化温度より30
〜100℃程低い温度であることが好ましい。また、熱
処理時間は格別限定されないが、最初の熱処理時間は比
較的短時間、次段以降の熱処理時間は比較的長時間であ
ることが好ましい。
In this case, the temperature during the first heat treatment is 30° below the crystallization temperature.
The temperature is preferably as low as ~100°C. Although the heat treatment time is not particularly limited, it is preferable that the first heat treatment time be relatively short and the subsequent heat treatment times be relatively long.

熱処理の回数は2回以上何回であってもよいが、3回目
以降はその効果が特に顕著に大きくなるわけではないの
で、実用的には2回行なえば充分である。
The number of times of heat treatment may be two or more times, but since the effect does not become particularly significant after the third time, it is practically sufficient to perform the heat treatment twice.

この熱処理時には、後段にいく程、熱処理の温度を前段
の熱処理時の温度よりも低くすることが、磁気特性の向
上にとっては好ましい。
During this heat treatment, it is preferable for the temperature of the heat treatment to be lower in the later stages than the temperature during the heat treatment in the earlier stage, in order to improve the magnetic properties.

〔発明の実施例〕[Embodiments of the invention]

実施例1 組成’ (COo、oo F’e0.06 Nk’0.
04)7118112 B+3のコバルト基非晶質磁性
合金の薄帯を液体急冷法で製造し、これを巻回して外径
18mq内径12關、高さ511のトロイダルコアとし
た。この合金のキューリ温度は約280℃、結晶化温度
は約550℃である。
Example 1 Composition' (COo,oo F'e0.06 Nk'0.
04) A thin strip of a cobalt-based amorphous magnetic alloy of 7118112 B+3 was manufactured by a liquid quenching method, and wound to form a toroidal core having an outer diameter of 18 mq, an inner diameter of 12 mq, and a height of 511 m. This alloy has a Curie temperature of about 280°C and a crystallization temperature of about 550°C.

このコアを電気炉中で460℃、20分間熱処理したの
ち水中に投入して急冷した。更に、このコアを330℃
で2.5時間熱処理したのち再び水中に投入して急冷し
た。
This core was heat-treated at 460° C. for 20 minutes in an electric furnace and then put into water to be rapidly cooled. Furthermore, this core is heated to 330℃
After being heat-treated for 2.5 hours, it was again put into water and quenched.

各熱処理後のコアにつき、50KH2における角形比、
保磁力、I KHzにおける透磁率を測定し、その結果
を一括して第1表に示した。
For each core after heat treatment, squareness ratio at 50KH2,
The coercive force and magnetic permeability at I KHz were measured, and the results are summarized in Table 1.

第 1 表 実施例2〜7 第2表に示した各種のコバルト基非晶質磁性合金を第2
表に示した条件で2回熱処理し、処理後のI KHzに
おける透磁率を測定した。その結果を第2表に一括して
示した。
Table 1 Examples 2 to 7 Various cobalt-based amorphous magnetic alloys shown in Table 2 were
It was heat treated twice under the conditions shown in the table, and the magnetic permeability at I KHz after the treatment was measured. The results are summarized in Table 2.

実施例8 組成: (Coolga F’e0.06 Cro、o
e)7e SLs Bo (キューリ温度300℃、結
晶化温度540℃、磁歪的lXl0−’)の合金A1組
成’ (coo、79 F2O,15Cro、oe )
7881、、B、、 (キューり温度約380℃、結晶
化温度約540℃、磁歪的7X10−6)の合金Bから
実施例1と同様のトロイダルコアを2個製造した。
Example 8 Composition: (Coolga F'e0.06 Cro, o
e) Alloy A1 composition of 7e SLs Bo (Curie temperature 300°C, crystallization temperature 540°C, magnetostrictive lXl0-') (coo, 79 F2O, 15Cro, oe)
Two toroidal cores similar to those in Example 1 were manufactured from alloy B of 7881, B, (curing temperature about 380°C, crystallization temperature about 540°C, magnetostrictive 7X10-6).

2個のコアにつき、第3表に示した条件で2回熱処理を
施こし、各処理後のI KHzにおける透磁率を測定し
た。その結果を第3表に一括して示した。
The two cores were heat treated twice under the conditions shown in Table 3, and the magnetic permeability at I KHz after each treatment was measured. The results are summarized in Table 3.

第 3 表 このように磁歪の小さいものは、本発明の処理後、透磁
率の絶対値が大きくかつ改善効果の割合も大きくなるこ
とが判明した。
Table 3 It has been found that the absolute value of magnetic permeability is large and the rate of improvement is also large after the treatment of the present invention in the case of materials with small magnetostriction as shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明方法を適用すれば
、高周波域における角形尾大、低保磁力、高透磁率の非
晶質磁性合金を容易に得ることがでキ、可飽和リアクト
ル、半導体回路用リアクトル、昇圧トランスなどの磁心
材料として有用な特性を得ることが可能となるので、そ
の工業的価値は大である。
As is clear from the above explanation, by applying the method of the present invention, it is possible to easily obtain an amorphous magnetic alloy with a large square tail, low coercive force, and high magnetic permeability in a high frequency range. Since it is possible to obtain properties useful as a magnetic core material for semiconductor circuit reactors, step-up transformers, etc., its industrial value is great.

Claims (1)

【特許請求の範囲】 1、非晶質磁性合金に、該合金のキューり温度以上結晶
化温度未満の温度で加熱したのち冷却する熱処理を複数
回施すことを特徴とする非晶質磁性合金の熱処理方法。 2、該非晶質磁性合金が、コバルト基非晶質磁性合金で
ある特許請求の範囲第1項記載の非晶質磁性合金の熱処
理方法。 3/該コバルト基非晶質磁性合金が次式】%式%) (式中、MはTL V+ Cr、 yin、 Fe+ 
NL Cu。 Y、 Zr、 Nb+ Mo、 Rut Rh+ Pd
、 Hf、 Ta、 W、 Re。 Os、 lr、 Pt、希土類元素の群から選ばれる少
なくとも1種の元素を表わし;NはSt、 B。 P、 C,Ge、 Al 0群から選ばれる少なくとも
1種の元素を表わし;a、bはそれぞれ、0.03≦a
≦0.30. 15≦b≦35の関係を満足する数を表
わす) で示される組成の合金である特許請求の範囲第2項記載
の非晶質磁性合金の熱処理方法。 4、該熱処理が2回である特許請求の範囲第1項〜第3
項のいずれかに記載の非晶質磁性合金の熱処理方法。 5、後段の熱処理における加熱温度が前段の熱処理にお
ける加熱温度よりも低い特許請求の範囲第1項〜第4項
のいずれかに記載の非晶質磁性合金の熱処理方法。
[Claims] 1. An amorphous magnetic alloy characterized by subjecting the amorphous magnetic alloy to heat treatment multiple times in which the alloy is heated at a temperature higher than the cue temperature and lower than the crystallization temperature and then cooled. Heat treatment method. 2. The method of heat treating an amorphous magnetic alloy according to claim 1, wherein the amorphous magnetic alloy is a cobalt-based amorphous magnetic alloy. 3/The cobalt-based amorphous magnetic alloy has the following formula]% formula%) (wherein M is TL V+ Cr, yin, Fe+
NL Cu. Y, Zr, Nb+ Mo, Rut Rh+ Pd
, Hf, Ta, W, Re. Represents at least one element selected from the group of Os, lr, Pt, and rare earth elements; N is St, B. P, C, Ge, Al Represents at least one element selected from the 0 group; a and b are each 0.03≦a
≦0.30. 3. The method for heat treating an amorphous magnetic alloy according to claim 2, which is an alloy having a composition represented by the following formula (representing a number satisfying the relationship: 15≦b≦35). 4. Claims 1 to 3 in which the heat treatment is performed twice
A method for heat treatment of an amorphous magnetic alloy according to any one of paragraphs. 5. The method of heat treating an amorphous magnetic alloy according to any one of claims 1 to 4, wherein the heating temperature in the subsequent heat treatment is lower than the heating temperature in the previous heat treatment.
JP58180391A 1983-09-30 1983-09-30 Heat treatment of amorphous magnetic alloy Pending JPS6075563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180391A JPS6075563A (en) 1983-09-30 1983-09-30 Heat treatment of amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180391A JPS6075563A (en) 1983-09-30 1983-09-30 Heat treatment of amorphous magnetic alloy

Publications (1)

Publication Number Publication Date
JPS6075563A true JPS6075563A (en) 1985-04-27

Family

ID=16082413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180391A Pending JPS6075563A (en) 1983-09-30 1983-09-30 Heat treatment of amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPS6075563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120454A (en) * 1985-11-20 1987-06-01 Canon Electronics Inc Amorphous alloy
JPS63171823A (en) * 1987-01-09 1988-07-15 Alps Electric Co Ltd Heat treatment of amorphous magnetic material
CN106868429A (en) * 2015-12-10 2017-06-20 南京理工大学 A kind of cobalt base amorphous alloy with supercooling liquid phase region wide
JP2021150622A (en) * 2020-03-23 2021-09-27 Tdk株式会社 Soft magnetic alloy powder, magnetic core, magnetic part, and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120454A (en) * 1985-11-20 1987-06-01 Canon Electronics Inc Amorphous alloy
JPS63171823A (en) * 1987-01-09 1988-07-15 Alps Electric Co Ltd Heat treatment of amorphous magnetic material
CN106868429A (en) * 2015-12-10 2017-06-20 南京理工大学 A kind of cobalt base amorphous alloy with supercooling liquid phase region wide
JP2021150622A (en) * 2020-03-23 2021-09-27 Tdk株式会社 Soft magnetic alloy powder, magnetic core, magnetic part, and electronic equipment

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JPH03146615A (en) Production of fe-base soft-magnetic alloy
JP2894561B2 (en) Soft magnetic alloy
JPH08188858A (en) Glass alloy having permimber characteristic
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPS6075563A (en) Heat treatment of amorphous magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
US4769091A (en) Magnetic core
JP2778697B2 (en) Fe-based soft magnetic alloy
US5114503A (en) Magnetic core
JPS6070157A (en) Amorphous alloy and its manufacture
JPH0257683B2 (en)
JPS5833804A (en) Magnetic material
JPS61261451A (en) Magnetic material and its production
JP2513645B2 (en) Amorphous magnetic core excellent in effective pulse magnetic permeability and manufacturing method thereof
JPS6059708A (en) Magnetic core
JP2713980B2 (en) Fe-based soft magnetic alloy
JPH01290746A (en) Soft-magnetic alloy
JP2859286B2 (en) Manufacturing method of ultra-microcrystalline magnetic alloy
JP2633813B2 (en) Manufacturing method of reactor for switching circuit
JPS61292301A (en) Winding magnetic core
JPS6229105A (en) Co radical amorphous wound magnetic core
JPH0323619B2 (en)
JPS5985846A (en) Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy
JPH01180944A (en) Amorphous magnetic alloy for choking coil and its production