JPH0323619B2 - - Google Patents

Info

Publication number
JPH0323619B2
JPH0323619B2 JP56196894A JP19689481A JPH0323619B2 JP H0323619 B2 JPH0323619 B2 JP H0323619B2 JP 56196894 A JP56196894 A JP 56196894A JP 19689481 A JP19689481 A JP 19689481A JP H0323619 B2 JPH0323619 B2 JP H0323619B2
Authority
JP
Japan
Prior art keywords
wound
thin plate
amorphous
core
wound core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56196894A
Other languages
Japanese (ja)
Other versions
JPS58100659A (en
Inventor
Yasunobu Ogata
Taku Meguro
Ryozo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56196894A priority Critical patent/JPS58100659A/en
Publication of JPS58100659A publication Critical patent/JPS58100659A/en
Publication of JPH0323619B2 publication Critical patent/JPH0323619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高透磁率合金薄板を巻回してなる励
磁電流特性の良好な巻鉄心とその製造方法に関す
るものである。 磁気移送器、磁気増幅器、直流電流検出器、磁
気変調器などには、例えば、異方性50%Niパー
マロイ、スーパーマロイ、方向性ケイ素鋼などか
ら成る巻鉄心が使用されている。これら従来の巻
鉄心は、励磁電流特性に優れ、また飽和までの急
峻性が大きいことで知られているが、近年より小
さい電流による励磁、飽和電圧の増加、飽和に至
る急峻な−特性が求められている。 また、従来の鉄心のうち、特に50Niパーマロ
イ、スーパーマロイ等のパーマロイ系鉄心は、構
成材料の歪感受性が大きいために、運搬、輸送、
巻線などの作業の際に、機械的歪による磁気特性
の劣化が著しく、巻鉄心としての所要機能、電気
的平衡を損なうなど大きな欠点を有している。加
うるに、これら従来の巻鉄心構成材料を製造する
には、溶解、造塊、熱間圧延、酸洗、冷間圧延な
どの複雑で周到な工程を必要とするため、巻鉄心
の価格を高価なものとしていた。 本発明は、上記従来技術の欠点を解消し、励磁
電流特性、歪感受性、耐衝撃性に優れ、より安価
な巻鉄心とその製造方法を提供することを目的と
する。 上記目的を達成するために本発明は、巻鉄心を
構成する高透磁率合金薄板としてFe−Co−Si−
B系の非晶質合金薄板を用いたことを特徴とする
ものである。 本願発明者らは、式FedCoeTfSigBh(式中Tは
Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、
Ta、Cr、Mo、W、Mn、Ru、Ni、Pd、Cu、
Zn、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy
のうちの1種または2種以上であり、d+e+f
+g+h=100)で示される非晶質合金、特に上
記式において、72≦d+e≦85、0.70≦e/d+
e≦0.99、f≦3、7<g<16、7<h<10、15
≦g+h≦25なる条件を満足する非晶質合金を磁
場中で焼なまし、冷却したものを用いて巻鉄心を
構成すると優れた励磁電流特性が得られることを
見出し、本発明を完成したものである。 本発明において、非晶質形成元素であるSiとB
の総和が15原子%(以下単に%と記す)未満では
非晶質化そのものが困難となり、25%をこえると
磁束密度の低下をきたすので、15〜25%とする。
非晶質形成元素として他の半金属元素、たとえば
C、P、Ge、Bi、Alが知られているが、熱的安
定性および靭性の点でSiとBとの組合せが優れて
いる。C、P、Ge、Bi、Alを含んでいても特に
本発明の効果を大きく損なうことはないが、5%
以下であることが望ましい。 Bの含有量は7%未満では非晶質化が困難であ
り、10%以上では耐環境特性、たとえば耐湿性、
耐アルカリ性が大巾に低下して好ましくない。 Siの含有量は7%未満では熱的安定性が損われ
16%以上ではHcが0.1Oe以上となり好ましくな
い。 FeとCoの総和は72%から85%であり、85%を
こえると非晶質化が困難となり、72%未満では磁
束密度の低下があり好ましくない。 FeはCoとの相互作用により磁場中焼なまし及
び冷却による誘導磁気異方性を発生せしめB−H
曲線の角型性を、改善し、従つて励磁電流特性に
おける飽和までの急峻度を生じる効果を有す。 また、FeとCoの比率を0.70≦Co/Fe+Co≦
0.99に限定した理由は、これ以外の組成では、磁
歪定数λsを実質的に小さくできない為である。
なお、磁歪定数は、非晶質材料の軟磁気特性を支
配する重要な定数であり、これを実質的に零にす
る事は優れた励磁電流特性を得るために極めて重
要である。 また、添加元素としてTで示す各元素を総量で
3%以下含むことが可能である。Ti、Zr、Hf、
V、Nb、Ta、Mo、W、Ni、Pdの一群は添加に
より非晶質形成能を向上させ、Cr、Pdは耐食性、
耐湿性を向上させる。Y、Ce、Pr、Nd、Sm、
Eu、Gd、Tb、Dyの一群は硬さを向上せしめる
とともに結晶化温度を上げ熱的安定性を増大させ
る。Be、Mg、Ca、Sr、Ba、Ruは非晶質形成能
を向上させ、特に他の添加元素と複合されて用い
るとその傾向が強まる。MnはHcを低くする効果
がある。これらの添加元素Tの総量は3%以下で
あることが高い磁束密度を保証する上で必要であ
る。3%をこえるとたとえばB10は急激に低下す
る傾向にあり、好ましくない。 以上の組成範囲の非晶質鉄心材料をトロイダル
鉄心とし10Oe以上の直流ないし交流磁場中で、
250℃から450℃の間の適切な温度で焼なまし、毎
時300℃以下の冷却速度で磁場中冷却することに
より、Hcで0.02Oe以下、B10で8000G、Br/
B10;75%以上の低保磁力、高磁束密度、高角型
比巻鉄心が容易に得られる。磁界の波形は従来直
流が一般的に採用されているが、半波整流及び交
流(商用周波数)でも効果はほとんど減じない。 熱処理温度は組成の変化により最適温度がずれ
るが450℃をこえると脆化が著しくなり、また、
250℃未満では焼なましによる応力緩和が不可能
であり、効果がほとんどない。磁場中冷却速度が
毎時300℃をこえると冷却むらが発生し易く75%
以上のBr/B10が得られない。 以下、実施例に基き詳細に説明する。 第1表は、従来のスーパーマロイと50Niパー
マロイに対する本発明の巻鉄心を構成する非晶質
合金鉄心の直流磁性の例を示す。いずれの組成に
おいても第1表中に示す直流磁場中にて同表中の
熱処理条件により製造した場合である。また、比
較例については最適の熱処理温度を採つた場合で
ある。
The present invention relates to a wound core with good excitation current characteristics, which is formed by winding a thin plate of high magnetic permeability alloy, and a method for manufacturing the same. For magnetic transfer devices, magnetic amplifiers, DC current detectors, magnetic modulators, etc., wound cores made of, for example, anisotropic 50% Ni permalloy, supermalloy, grain-oriented silicon steel, etc. are used. These conventional wound cores are known for their excellent excitation current characteristics and their steepness to saturation, but in recent years, there has been a demand for excitation with smaller currents, increased saturation voltage, and steeper characteristics to saturation. It is being In addition, among conventional iron cores, especially permalloy iron cores such as 50Ni permalloy and supermalloy, the strain sensitivity of the constituent materials is high, so transportation, transportation, etc.
During winding work, the magnetic properties are significantly deteriorated due to mechanical strain, which has major drawbacks such as impairing the required function as a wound core and electrical balance. In addition, manufacturing these conventional wound core materials requires complex and detailed processes such as melting, ingot-forming, hot rolling, pickling, and cold rolling, so the cost of the wound core is low. It was considered expensive. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a wound core that is excellent in excitation current characteristics, strain sensitivity, and impact resistance, and is less expensive, and a method for manufacturing the same. In order to achieve the above object, the present invention has developed Fe-Co-Si-
It is characterized by using a B-based amorphous alloy thin plate. The inventors of the present application have determined that the formula Fe d Co e T f Si g B h (where T is
Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Mn, Ru, Ni, Pd, Cu,
Zn, Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy
One or more of the following, d+e+f
+g+h=100), especially in the above formula, 72≦d+e≦85, 0.70≦e/d+
e≦0.99, f≦3, 7<g<16, 7<h<10, 15
The present invention was completed based on the discovery that excellent excitation current characteristics can be obtained by constructing a wound core using an amorphous alloy that satisfies the condition ≦g+h≦25, annealed in a magnetic field and cooled. It is. In the present invention, Si and B, which are amorphous forming elements,
If the total is less than 15 atomic % (hereinafter simply referred to as %), it will be difficult to make it amorphous, and if it exceeds 25%, the magnetic flux density will decrease, so it is set to 15 to 25%.
Although other metalloid elements such as C, P, Ge, Bi, and Al are known as amorphous forming elements, the combination of Si and B is superior in terms of thermal stability and toughness. Even if C, P, Ge, Bi, and Al are included, the effects of the present invention will not be significantly impaired, but 5%
The following is desirable. If the content of B is less than 7%, it is difficult to make it amorphous, and if it is more than 10%, the environmental resistance properties, such as moisture resistance,
This is not preferable because the alkali resistance is greatly reduced. If the Si content is less than 7%, thermal stability will be impaired.
If it is 16% or more, Hc becomes 0.1 Oe or more, which is not preferable. The total amount of Fe and Co is 72% to 85%, and if it exceeds 85%, it becomes difficult to make it amorphous, and if it is less than 72%, the magnetic flux density decreases, which is not preferable. Fe generates induced magnetic anisotropy by annealing and cooling in a magnetic field due to interaction with Co.B-H
This has the effect of improving the squareness of the curve and thus increasing the steepness up to saturation in the excitation current characteristics. Also, the ratio of Fe and Co is 0.70≦Co/Fe+Co≦
The reason why it is limited to 0.99 is that the magnetostriction constant λs cannot be made substantially smaller with any other composition.
Note that the magnetostriction constant is an important constant that governs the soft magnetic properties of an amorphous material, and it is extremely important to make it substantially zero in order to obtain excellent excitation current characteristics. Further, each element indicated by T can be included as an additive element in a total amount of 3% or less. Ti, Zr, Hf,
Addition of a group of V, Nb, Ta, Mo, W, Ni, and Pd improves amorphous formation ability, and Cr and Pd improve corrosion resistance.
Improves moisture resistance. Y, Ce, Pr, Nd, Sm,
A group of Eu, Gd, Tb, and Dy improves hardness, raises crystallization temperature, and increases thermal stability. Be, Mg, Ca, Sr, Ba, and Ru improve the ability to form an amorphous state, and this tendency becomes particularly strong when used in combination with other additive elements. Mn has the effect of lowering Hc. It is necessary that the total amount of these additional elements T be 3% or less in order to guarantee high magnetic flux density. If it exceeds 3%, for example, B 10 tends to decrease rapidly, which is not preferable. An amorphous core material having the above composition range is used as a toroidal core in a DC or AC magnetic field of 10 Oe or more,
By annealing at a suitable temperature between 250°C and 450°C and cooling in a magnetic field at a cooling rate of no more than 300°C per hour, Hc is less than 0.02 Oe, B 10 is less than 8000 G, Br/
B 10 ; A low coercive force of 75% or more, high magnetic flux density, and a high square ratio winding core can be easily obtained. Conventionally, direct current is generally used as the waveform of the magnetic field, but half-wave rectification and alternating current (commercial frequency) also have little effect. The optimal temperature for heat treatment will vary depending on changes in composition, but if it exceeds 450℃, embrittlement will become significant, and
At temperatures below 250°C, stress relaxation by annealing is impossible and has little effect. If the cooling rate in a magnetic field exceeds 300℃/hour, uneven cooling is likely to occur (75%)
Br/B 10 above cannot be obtained. Hereinafter, it will be explained in detail based on examples. Table 1 shows examples of DC magnetism of the amorphous alloy core constituting the wound core of the present invention for conventional supermalloy and 50Ni permalloy. All compositions were manufactured under the heat treatment conditions shown in Table 1 in the DC magnetic field shown in the same table. Moreover, the comparative example is a case where the optimum heat treatment temperature was adopted.

【表】 第1表から明らかなように、本発明の巻鉄心を
構成する非晶質合金鉄心はスーパーマロイと同等
以下の低い保磁力を示しており、Br/B10は50Ni
パーマロイと同等レベルのものがあり総合的に従
来材の長所を兼備した優れた性能をもつており、
良好な励磁電流特性を示すことが明らかである。 第1図は、第1表中の合金No.2(3)、No.16(4)より
成る巻鉄心の50Hzにおける励磁電流特性をスーパ
ーマロイ(1)、50Niパーマロイ(2)との対比で示し
たものである(( )内は図中の符号を示す)。巻
鉄心の鉄心寸法は内径25mmφ、外径35mmφ、高さ
5mm、励磁巻数は1次、2次側とも15ターンであ
る。第1図から明らかなように本発明の巻鉄心は
低い励磁起磁力(励磁電流)が出力電圧の高いレ
ベルまで維持され、またこの間の直線性が良好で
あり、優れた励磁特性を有している。 第2表は、本発明巻鉄心の直流の角形比Br/
B10とBn=2KG、周波数100kHzの鉄損W2100k
を、従来のスーパーマロイ、50Niパーマロイと
比較した例を示したものである。 いずれも各組成のものについて、第2表中に示
す直流磁場中にて同表中の熱処理条件により製造
した場合である。また、比較例については最適の
熱処理温度を採つた場合である。
[Table] As is clear from Table 1, the amorphous alloy core constituting the wound core of the present invention exhibits a low coercive force equivalent to or lower than that of supermalloy, and Br/B 10 is 50Ni.
It has the same level of performance as permalloy, and has excellent performance that combines the advantages of conventional materials.
It is clear that it exhibits good excitation current characteristics. Figure 1 shows the excitation current characteristics at 50Hz of wound cores made of alloys No. 2 (3) and No. 16 (4) in Table 1 in comparison with supermalloy (1) and 50Ni permalloy (2). (The numbers in parentheses indicate the numbers in the figure.) The core dimensions of the wound core are: inner diameter 25mmφ, outer diameter 35mmφ, height 5mm, and the number of excitation turns is 15 turns on both the primary and secondary sides. As is clear from Fig. 1, the wound core of the present invention maintains a low excitation magnetomotive force (excitation current) up to a high level of output voltage, and has good linearity during this period, and has excellent excitation characteristics. There is. Table 2 shows the DC squareness ratio Br/of the wound core of the present invention.
B 10 and B n = 2KG, frequency 100kHz iron loss W 2 / 100k
The figure shows an example of a comparison between conventional supermalloy and 50Ni permalloy. In each case, each composition was manufactured under the heat treatment conditions shown in Table 2 in a DC magnetic field shown in the same table. Moreover, the comparative example is a case where the optimum heat treatment temperature was adopted.

【表】【table】

【表】 第2表から明らかなように、本発明による巻鉄
心は従来の50%Niパーマロイと角形比は同等で
あるが高周波における鉄損は著しく小さく、スー
パーマロイより角形比が高く鉄損も小さい。この
ため、従来の巻鉄心より発熱が小さく制御性も同
等以上である。 第3表は、従来のアモルフアス巻鉄心と本発明
のアモルフアス巻鉄心を、温度80℃、湿度95%の
恒温槽に入れて加速試験を行ない、120時間後の
鉄損の変化率ΔWを比較した表である。 ここで、 ΔW=(W120 2100k−W0 2100k)/W0 2100k ただし、 W120 2100k:120時間後のBn=2KG、f=100k
Hzの鉄損 W0 2100k:Bn=2KG、f=100kHzの初期の鉄
損 なお、いずれも各組成のものについて、第3表
中に示す交流磁場中にて同表中の熱処理条件によ
り製造した場合である。また、比較例については
最適の熱処理温度を採つた場合である。
[Table] As is clear from Table 2, the wound core according to the present invention has the same squareness ratio as the conventional 50% Ni permalloy, but the iron loss at high frequencies is significantly smaller, and it has a higher squareness ratio than supermalloy, resulting in less iron loss. small. Therefore, the heat generation is smaller than that of the conventional wound core, and the controllability is also equal to or better than that of the conventional wound core. Table 3 shows a comparison of the rate of change in iron loss ΔW after 120 hours when a conventional amorphous amorphous core and an amorphous amorphous core according to the present invention were placed in a constant temperature chamber at a temperature of 80°C and a humidity of 95%. It is a table. Here, ΔW = (W 120 2 / 100 k - W 0 2 / 100 k) / W 0 2 / 100 k However, W 120 2 / 100 k: B n = 2KG after 120 hours, f = 100k
Iron loss in Hz W 0 2 / 100 k: Initial iron loss at B n = 2 KG, f = 100 kHz In addition, for each composition, the heat treatment shown in Table 3 in the alternating current magnetic field shown in the same table was applied. This is a case of manufacturing under certain conditions. Moreover, the comparative example is a case where the optimum heat treatment temperature was adopted.

【表】 第3表から明らかなように、本発明の巻鉄心は
従来のアモルフアス巻鉄心と比較し、温度の高い
環境下においても特性の変化が小さく優れている
ものである。 上記実施例から明らかな如く、本発明の巻鉄心
の励磁特性は極めて優れており、磁気増巾器、磁
気移相器、直流電流検出器、磁気変調器などの制
御用巻鉄心として優れたものである。また、鉄心
素材の非晶質合金が本来的に持つている強度と靭
性から本発明の巻鉄心は応力感受性が低く、耐衝
撃性に優れた信頼性の高いものである。
[Table] As is clear from Table 3, the wound core of the present invention is superior to the conventional amorphous wound core in that the characteristics change less even under high temperature environments. As is clear from the above examples, the wound core of the present invention has extremely excellent excitation characteristics, and is excellent as a control wound core for magnetic amplifiers, magnetic phase shifters, DC current detectors, magnetic modulators, etc. It is. Furthermore, because of the strength and toughness inherent in the amorphous alloy of the core material, the wound core of the present invention has low stress sensitivity, excellent impact resistance, and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は50Hzにおける本発明の巻鉄心と従来の
巻鉄心の励磁電流特性を示した図である。
FIG. 1 is a diagram showing the excitation current characteristics of the wound core of the present invention and the conventional wound core at 50 Hz.

Claims (1)

【特許請求の範囲】 1 高透磁率合金薄板を巻回して形成される巻鉄
心において、前記合金薄板として、組成式Fed
CoeSigBh(式中、d+e+g+h=100、72≦d
+e≦85、0.70≦e/(d+e)≦0.99、7<g
<16、7<h<10、15≦g+h≦25)で示される
Fe−Co−Si−B系非晶質合金薄板を用いたこと
を特徴とする巻鉄心。 2 高透磁率合金薄板を巻回して形成される巻鉄
心において、前記合金薄板として、組成式Fed
CoeTfSigBh(式中、TはBe、Mg、Ca、Sr、Ba、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、
Mn、Ru、Ni、Pd、Cu、Zn、Y、Ce、Pr、Nd、
Sm、Eu、Gd、Tb、Dyのうちの1種または2種
以上、d+e+f+g+h=100、72≦d+e≦
85、0.70≦e/(d+e)≦0.99、f≦3、7<
g<16、7<h<10、15≦g+h≦25)で示され
るFe−Co−Si−B系非晶質合金薄板を用いたこ
とを特徴とする巻鉄心。 3 組成式FedCoeSigBh(式中、d+e+g+h
=100、72≦d+e≦85、0.70≦e/(d+e)≦
0.99、7<g<16、7<h<10、15≦g+h≦
25)で示されるFe−Co−Si−B系非晶質合金を
10エルステツド以上の直流または交流磁場中にて
250℃から450℃の間で焼なましを行ない、毎時
300℃以下の冷却速度にて磁場中冷却を施すこと
により高透磁率合金薄板となし、この薄板を巻回
して形成することを特徴とする巻鉄心の製造方
法。 4 組成式FedCoeTfSigBh(式中、TはBe、Mg、
Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、Ta、Cr、
Mo、W、Mn、Ru、Ni、Pd、Cu、Zn、Y、Ce、
Pr、Nd、Sm、Eu、Gd、Tb、Dyのうちの1種
または2種以上、d+e+f+g+h=100、72
≦d+e≦85、0.70≦e/(d+e)≦0.99、f
≦3、7<g<16、7<h<10、15≦g+h≦
25)で示されるFe−Co−Si−B系非晶質合金を
10エルステツド以上の直流または交流磁場中にて
250℃から450℃の間で焼なましを行ない、毎時
300℃以下の冷却速度にて磁場中冷却を施すこと
により高透磁率合金薄板となし、この薄板を巻回
して形成することを特徴とする巻鉄心の製造方
法。
[Claims] 1. In a wound core formed by winding a high magnetic permeability alloy thin plate, the alloy thin plate has a composition formula Fe d
Co e Si g B h (where d+e+g+h=100, 72≦d
+e≦85, 0.70≦e/(d+e)≦0.99, 7<g
<16, 7<h<10, 15≦g+h≦25)
A wound core characterized by using a Fe-Co-Si-B amorphous alloy thin plate. 2. In a wound core formed by winding a high magnetic permeability alloy thin plate, the alloy thin plate has a composition formula Fe d
Co e T f Si g B h (where T is Be, Mg, Ca, Sr, Ba,
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W,
Mn, Ru, Ni, Pd, Cu, Zn, Y, Ce, Pr, Nd,
One or more of Sm, Eu, Gd, Tb, Dy, d+e+f+g+h=100, 72≦d+e≦
85, 0.70≦e/(d+e)≦0.99, f≦3, 7<
A wound core characterized in that it uses an Fe-Co-Si-B amorphous alloy thin plate having the following relationships: g<16, 7<h<10, 15≦g+h≦25). 3 Composition formula Fe d Co e Si g B h (in the formula, d+e+g+h
=100, 72≦d+e≦85, 0.70≦e/(d+e)≦
0.99, 7<g<16, 7<h<10, 15≦g+h≦
25) Fe-Co-Si-B amorphous alloy
In a DC or AC magnetic field of 10 oersted or more
Annealed between 250℃ and 450℃, hourly
A method for manufacturing a wound iron core, characterized in that a thin alloy plate with high magnetic permeability is formed by cooling in a magnetic field at a cooling rate of 300°C or less, and the thin plate is wound. 4 Composition formula Fe d Co e T f Si g B h (where T is Be, Mg,
Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr,
Mo, W, Mn, Ru, Ni, Pd, Cu, Zn, Y, Ce,
One or more of Pr, Nd, Sm, Eu, Gd, Tb, Dy, d+e+f+g+h=100, 72
≦d+e≦85, 0.70≦e/(d+e)≦0.99, f
≦3, 7<g<16, 7<h<10, 15≦g+h≦
25) Fe-Co-Si-B amorphous alloy shown in
In a DC or AC magnetic field of 10 oersted or more
Annealed between 250℃ and 450℃, hourly
A method for manufacturing a wound iron core, characterized in that a thin alloy plate with high magnetic permeability is formed by cooling in a magnetic field at a cooling rate of 300°C or less, and the thin plate is wound.
JP56196894A 1981-12-09 1981-12-09 Wound iron core Granted JPS58100659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196894A JPS58100659A (en) 1981-12-09 1981-12-09 Wound iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196894A JPS58100659A (en) 1981-12-09 1981-12-09 Wound iron core

Publications (2)

Publication Number Publication Date
JPS58100659A JPS58100659A (en) 1983-06-15
JPH0323619B2 true JPH0323619B2 (en) 1991-03-29

Family

ID=16365412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196894A Granted JPS58100659A (en) 1981-12-09 1981-12-09 Wound iron core

Country Status (1)

Country Link
JP (1) JPS58100659A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208432B (en) * 2016-07-30 2018-06-05 珠海宏鑫泽科技有限公司 A kind of driving motor
CN108597795B (en) * 2018-04-13 2020-11-06 河南宝泉电力设备制造有限公司 Amorphous dry-type transformer
CN111575610B (en) * 2020-06-29 2021-09-21 华麟津磁(天津)科技有限公司 SmFeB amorphous soft magnetic alloy material and preparation method thereof

Also Published As

Publication number Publication date
JPS58100659A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
EP0086485B1 (en) Wound iron core
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
JP2552274B2 (en) Glassy alloy with perminer characteristics
US4558297A (en) Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same
KR950014314B1 (en) Iron-base soft magnetic alloy
JPH0123926B2 (en)
JPS6332244B2 (en)
JPH0338334B2 (en)
JPH0323619B2 (en)
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH06200357A (en) Amorphous alloy
US2147791A (en) Magnetic material having low hysteresis losses
JPS59147415A (en) Wound core
US4938267A (en) Glassy metal alloys with perminvar characteristics
JPH0257683B2 (en)
JPS58155704A (en) Wound iron core
JPS5919304A (en) Wound core
JP2835127B2 (en) Magnetic core and manufacturing method thereof
JPS6012423B2 (en) Manufacturing method of low coercive force and high angularity amorphous alloy
JPS6019125B2 (en) Wound core material
JPH055164A (en) Iron base soft magnetic alloy
JPS62167840A (en) Magnetic material and its manufacture