JPS5917892A - Phase detector for commutatorless motor - Google Patents

Phase detector for commutatorless motor

Info

Publication number
JPS5917892A
JPS5917892A JP57127285A JP12728582A JPS5917892A JP S5917892 A JPS5917892 A JP S5917892A JP 57127285 A JP57127285 A JP 57127285A JP 12728582 A JP12728582 A JP 12728582A JP S5917892 A JPS5917892 A JP S5917892A
Authority
JP
Japan
Prior art keywords
phase
armature
converter
current value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57127285A
Other languages
Japanese (ja)
Inventor
Kihei Nakajima
中島 喜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57127285A priority Critical patent/JPS5917892A/en
Publication of JPS5917892A publication Critical patent/JPS5917892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To gain stable commutation in a commutatorless motor by calculating the phase variation due to armature reaction from an armature current reference value or an actual armature current value, adding them to a phase deviation to compare continuously in phase. CONSTITUTION:An armature reaction arithmetic circuit 102 calculates the phase variation component of the motor voltage from the current value applied from a current value arithmetic circut 101 which calculates the actual current value by the current reference value I* from a speed controller, not shown. This calculated output and the phase deviation output obtained through a motor voltage detector, a 3-phase/2-phase converter 7, a phase difference calculating circuit 8 and a deviation amplifier 10 are added by an adder 103, and inputted to a V/F converter 11. The analog signal from the converter 11 is converted to the phase theta of digital amount by the counter 12, inputted to an ROM13 and an effective commutation leading angle setter, not shown, and the sinusoidal signal corresponding to the phase theta outputted from the ROM13 is inputted through a D/A converter 9 into the phase difference calculating circuit 8.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、無整流子電動機の誘起電圧位相に基づいて転
流タイミングを定める場合の位相検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a phase detection device for determining commutation timing based on the induced voltage phase of a commutatorless motor.

〔発明の技術的背景〕[Technical background of the invention]

一般に、無整流子電動機は自然転流に基づいた変換器動
作によって回転子を駆動するため、装置の構成が1?4
単となり信頼性も高くなるので、交流可変速電動機とし
て広く実用されている。従来からこの装置では、電動機
電流の通電相を定めるための回転子位置検出手法として
、次の一種類が用いられている。一つは電動機の回転子
と固定子の相対的位置を知るため機械的な位置検出器を
設けて位置を検出する手法であり、他の一つは電7+機
の電機子電圧位相あるいは磁束位相から位置を検出する
手法である。
Generally, commutatorless motors drive the rotor by converter operation based on natural commutation, so the device configuration is 1 to 4.
Because it is simple and highly reliable, it is widely used as an AC variable speed electric motor. Conventionally, in this device, one of the following types of rotor position detection methods has been used to determine the energized phase of the motor current. One is to install a mechanical position detector to detect the relative position of the rotor and stator of the motor, and the other is to detect the position using the armature voltage phase or magnetic flux phase of the electric motor. This method detects the position from

上記の手法はいずれも公知のものであるが、後者は電動
機の駆動特性からみれば、負荷の大きさによる電機子反
作用を自動的に補正して電rfJJJ機力率を負荷状態
にかかわらずほぼ一定にすることができるため、効率、
過負荷耐量、発生トルク脈動の減少など特性上有利な点
が多い。
All of the above methods are publicly known, but the latter automatically corrects the armature reaction due to the load size and maintains the power factor of the electric rfJJJ approximately regardless of the load condition, considering the drive characteristics of the motor. Since it can be kept constant, efficiency,
It has many advantages in terms of characteristics, such as overload tolerance and reduced torque pulsation.

電動機の電機子電圧を検出して電動機電流の通電相を定
めるための位相検出手法には、検出電圧をフィルタによ
って整形する方法、電流瞬時値より電動機のもれインダ
クタンスや抵抗率低下を補正して整形する方法、あるい
は検出電圧をベクトル的な量で扱いλ相正弦波との位相
偏差ができるだけ小さくなるように連続的に位相比較を
行なう方法がある。本発明は、上記のうちで連続的に位
相比較を行なう方法(以下、「連続位相比較方法」とい
う)を用いた位相検出装置に関するものである。
Phase detection methods for detecting the armature voltage of the motor and determining the energized phase of the motor current include a method of shaping the detected voltage with a filter, and a method of correcting the motor's leakage inductance and resistivity drop from the instantaneous current value. There is a method of shaping, or a method of treating the detected voltage as a vector-like quantity and performing continuous phase comparison so that the phase deviation from the λ-phase sine wave is as small as possible. The present invention relates to a phase detection device using the above method of continuously performing phase comparison (hereinafter referred to as "continuous phase comparison method").

第1図を参照して、従来の連続位相比較方法による位相
検出装置の構成および動作を、3相の無整流子電動機を
例に説明する。順変換器/、直流える。また、′厄圧検
出器乙は電機子電圧から3相信号を検出し、これを3相
/、2相変換器7に与える。3相/、2相変換器7は、
この3相信号を90度位相差のλ相信号に変換して位相
差演算回路rに与えろ。位相差演算回路gは、D/A変
換器りによっ−Cディジタル/アナログ変換された正弦
波信号と前記3相/、2相変換器7、から与えられるコ
相信号とを三角公式を用いて比較演算し、位相偏差Δθ
を発してこれを偏差増幅器10に与える。偏差増幅器/
θは、この位相偏差Δθを、内蔵されている比例積分回
路等により増幅して電圧/周波数変換器(以下rV/F
変換器」という)//に与える。
With reference to FIG. 1, the configuration and operation of a phase detection device using a conventional continuous phase comparison method will be described using a three-phase non-commutator motor as an example. Forward converter/DC converter. In addition, the 'unpleasant pressure detector B detects a three-phase signal from the armature voltage and supplies it to the three-phase/two-phase converter 7. The 3-phase/2-phase converter 7 is
Convert this three-phase signal to a λ-phase signal with a 90 degree phase difference and feed it to the phase difference calculation circuit r. The phase difference calculation circuit g uses a triangular formula to convert the sine wave signal converted from -C digital to analog by the D/A converter and the co-phase signal given from the three-phase/two-phase converter 7. Compare and calculate the phase deviation Δθ
is generated and applied to the deviation amplifier 10. Deviation amplifier/
θ is calculated by amplifying this phase deviation Δθ using a built-in proportional-integral circuit, etc., and converting it into a voltage/frequency converter (rV/F
(referred to as "converter")//.

V / F変換器l/から発せられるアナログ量の信号
はカウンタノコによシディジタル量の位相θに変換され
、その位相θは、リードオンリメモリ(以下[oMJと
いう)/3と実効転流進み角β設定回路(以下「β設定
回路」という)/弘とに与えられる。ここで、ROM/
3にはqo度位位差の正弦波信号があらかじめ書き込ま
れており、位相θに対応した正弦波信号が出力される。
The analog quantity signal emitted from the V/F converter l/ is converted into a digital quantity phase θ by a counter saw, and the phase θ is equal to the read-only memory (hereinafter referred to as oMJ) /3 and the effective commutation progress. Angle β setting circuit (hereinafter referred to as "β setting circuit")/Hiroto. Here, ROM/
3 has a sine wave signal with a qo degree difference written in advance, and a sine wave signal corresponding to the phase θ is output.

この正弦波信号はD/A変換器りに与えられディジタル
量の信号に変換される。また、β設定回路/≠に与えら
れた位相θは転流タイミングを定めるための基準となり
、β設定回路/弘から発せられた信号は・ζパルス増幅
回路/!5により増幅されて主回路≠に与えられる。
This sine wave signal is applied to a D/A converter and converted into a digital signal. In addition, the phase θ given to the β setting circuit/≠ becomes a reference for determining the commutation timing, and the signal emitted from the β setting circuit/Hiroshi is ・ζ pulse amplifier circuit/! 5 and applied to the main circuit≠.

このように、位相検出装置/6は、電動機電圧からの検
出位相をROM/Jを経て与えられる正弦波信号と連続
的に比較し、その位相偏差ができるだけ零に近づくよう
に閉ループで動作している。
In this way, the phase detection device/6 continuously compares the detected phase from the motor voltage with the sine wave signal given via the ROM/J, and operates in a closed loop so that the phase deviation is as close to zero as possible. There is.

〔背景技術の問題点〕[Problems with background technology]

このような従来装置において、電動機電流が変化すると
、電機子反作用により端子電圧の基本波位相は回転子の
一点からみて変化する。この変化の速さ、大きさは、電
動機のダンノく巻線や界磁巻線などに関する電動機の電
気的定数に大きく影響する。このため、位相検出装置の
応答が電機子反作用に比較して遅いときは、検出位相は
実際の位相と過渡的に異なることになる。電動機の転流
タイミングはこの検出位相に基づいて定められているが
、検出遅れのために検出位相と実際の位相とが異なると
きは所定の転流余裕角を確保できな因場合を生じ、転流
失敗に至ることもある。また、転流余裕角が大きくなり
、電流に対するトルク特性の線形性がくずれて制御特性
が悪化することにもなる。
In such a conventional device, when the motor current changes, the fundamental wave phase of the terminal voltage changes as seen from one point on the rotor due to armature reaction. The speed and magnitude of this change greatly affect the electrical constants of the motor regarding the windings, field windings, etc. of the motor. Therefore, when the response of the phase detection device is slow compared to the armature reaction, the detected phase will be transiently different from the actual phase. The motor commutation timing is determined based on this detected phase, but if the detected phase differs from the actual phase due to a detection delay, it may not be possible to secure the specified commutation margin angle, and the commutation It may even lead to failure. Furthermore, the commutation margin angle becomes large, the linearity of the torque characteristic with respect to the current breaks down, and the control characteristic deteriorates.

〔発明の目的〕[Purpose of the invention]

本発明は−F記の点に鑑みてなされたもので、電機子電
流が変化したときに、電動機の電機子反作用により発生
する位相変化を補償することのできる無整流子電動機の
位相検出装置を提供することを目的とする。
The present invention has been made in view of the point -F, and provides a phase detection device for a commutatorless motor that can compensate for phase changes caused by armature reaction of the motor when the armature current changes. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

上記の目的を実現するため本発明は、従来の連続位相比
較方法による位相検出装置に電機子反作用演算回路を設
け、電機子に流れるべき電流値、または実際に流れる実
電流値から電機子反作用による位相変化分を演算し、こ
れを位相偏差Δθに加算して連続的に位相比較すること
のできる無整流子電動機の位相検出装置を提供するもの
である。
In order to achieve the above object, the present invention provides an armature reaction calculation circuit in a phase detection device using a conventional continuous phase comparison method, and calculates the current value that should flow through the armature or the actual current value that actually flows through the armature reaction. The present invention provides a phase detection device for a commutatorless motor that can calculate a phase change, add it to a phase deviation Δθ, and perform continuous phase comparison.

〔発明の実施例〕[Embodiments of the invention]

第2図乃至第3図を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to FIGS. 2 and 3.

第2図は電機子に流れるべき電流値を演算して、これに
よシミ様子反作用による位相変化分を求める構成の一実
施例で、第1図の従来装置の構成例と同一の要素は同一
の符号で示す。電流値演算回路10/は、図示しない速
度制御回路から与えられる電流基準値■によシ、実際に
流れるべき実電流値を演算するものである。ここで、電
流基準値■9は外部からの人力で設定されて電動機に流
れる電流の大きさを指令するものである。電流値演算回
路10/は、図示しない無整流子電動機装置の電流制御
回路の応答と同程度の応答の一次遅れ回路により構成で
きる。電機子反作用演算回路10.2は、電流値演算回
路10/よシ与えられた電流値により電動機電圧の位相
変化分を演算し、これを加算器103に与える。すなわ
ち、電機子反作用演算回路70.2は、電動機電流に対
して電動機定数によりほぼ一次遅れで生じる電機子反作
用による電圧位相の変化、すなわち負荷角の変化を角周
波数の変化分として出力してこれを加算器103に与え
る回路であシ、例えば−次遅れと微分要素の組み合せに
より回路構成ができる。電機子反作用演算回路102の
出力と偏差増幅器10の出力は、加算器103で加算さ
れてV / F変換器//に与えられる。
Figure 2 shows an example of a configuration that calculates the current value that should flow through the armature and calculates the phase change due to the stain reaction.The same elements as the example of the configuration of the conventional device shown in Figure 1 are the same. Indicated by the symbol. The current value calculation circuit 10/ calculates the actual current value that should actually flow based on the current reference value (2) given from a speed control circuit (not shown). Here, the current reference value 9 is set manually from the outside and instructs the magnitude of the current flowing through the motor. The current value calculation circuit 10/ can be constituted by a first-order lag circuit having a response comparable to that of a current control circuit of a non-illustrated commutatorless motor device. The armature reaction calculation circuit 10.2 calculates the phase change of the motor voltage based on the current value given by the current value calculation circuit 10, and provides this to the adder 103. That is, the armature reaction calculation circuit 70.2 outputs a change in the voltage phase due to the armature reaction that occurs with an approximately first-order lag due to the motor constant with respect to the motor current, that is, a change in the load angle, as a change in the angular frequency. For example, the circuit can be configured by a combination of a -order lag and a differential element. The output of the armature reaction calculation circuit 102 and the output of the deviation amplifier 10 are added by an adder 103 and provided to the V/F converter //.

このようにして、第2図の実施例によれば電流基準値I
から実電流相当分を演算し、それによって電機子反作用
による位相変化分を求め、これを位相検出装置の閉ルー
プに加算して補償することになり、急な負荷変動などの
ために検出位相と実際の電圧位相が大きく異なってしま
うという不都合を防止することができる。
In this way, according to the embodiment of FIG. 2, the current reference value I
The actual current equivalent is calculated from the actual current, the phase change due to armature reaction is calculated, and this is added to the closed loop of the phase detection device to compensate. It is possible to prevent the inconvenience that the voltage phases of the two voltages differ greatly.

第3図は電機子に流れる実電流値から電機子反作用によ
る位相変化分を求める構成の一実施例で、第1図に示す
従来装置の構成例と同一の要素は同一の符号で示す。従
来装置に電機子反作用演算回路102を設け、その出力
を加算器103に与える。
FIG. 3 shows an embodiment of a configuration for determining the phase change due to armature reaction from the actual current value flowing through the armature. Elements that are the same as the configuration example of the conventional device shown in FIG. 1 are designated by the same reference numerals. The conventional device is provided with an armature reaction calculation circuit 102, and its output is provided to an adder 103.

電機子反作用演算回路70.2の出力と偏差増幅器10
の出力は加算器103で加算されてV/F変換器//に
与えられる。ここで、′dL機子機作反作用演算回路7
0に与えられる直流電流細工は、実際に電動機に流れる
電流を直流に換算したものである。
Output of armature reaction calculation circuit 70.2 and deviation amplifier 10
The outputs of are added by adder 103 and given to V/F converter //. Here, 'dL machine reaction calculation circuit 7
The DC current work given to 0 is the current that actually flows through the motor converted into DC.

このようにして、第3図の実施例によると実電流の直流
換算細工から電機子反作用による位相変化分を求め、こ
れを位相検出装置/乙の閉ループに加算して補償するこ
とになり、急な負荷変動などのために検出位相と実際の
位相が大きく異なってしまうという不都合を防止するこ
とができる。
In this way, according to the embodiment shown in Fig. 3, the phase change due to the armature reaction is calculated from the DC conversion of the actual current, and this is added to the closed loop of the phase detection device/B to compensate. It is possible to prevent the inconvenience that the detected phase and the actual phase differ greatly due to load fluctuations or the like.

なお、電機子反作用演算回路10.2の構成としては、
前記の如く一次遅れ、微分要素の組み合せによるものが
最も簡単であるが、よシ正確な電機子反作用の補償を行
なうためKは電動機の各種定数を考慮に入れた回路構成
とすればよい。すなわち、d軸(磁極の方向)、q軸(
d軸と電気的にりOoの方向)の方向のダンパ定数や界
磁巻線定数を考慮に入れた補償回路とすればよい。
The configuration of the armature reaction calculation circuit 10.2 is as follows:
The simplest method is to use a combination of first-order delay and differential elements as described above, but in order to more accurately compensate for the armature reaction, K may be configured in a circuit that takes into account various constants of the motor. That is, the d-axis (direction of the magnetic pole), the q-axis (
The compensation circuit may take into consideration the damper constant and the field winding constant in the direction of the d-axis and the electrical direction (Oo).

また、上記の説明では電動機の速度が一定の場合につい
て述べてきたが、速度変化に対する位相検出回路の補償
も速度検出信号をV/F変換器//の人力に加算するこ
とで可能になる。
Furthermore, although the above description has been made regarding the case where the speed of the motor is constant, compensation of the phase detection circuit against changes in speed can also be achieved by adding the speed detection signal to the human power of the V/F converter.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、従来の位相検出装置に電機
子反作用演算回路および加Xt器を設けることによって
、速い電流変化があったときに電機子反作用によって生
じる位相変化分を閉ループ補償することができるので、
電機子反作用による位相検出ml差7小さくすることが
可能になり、急激な負荷変動があっても正確な位相検出
にょシ安定した転流を確保できる。また、転流上重要な
転流余裕角も所望の値をとることができ、電動機の効率
、力率を向上させ、速い応答の要求される用途に適用さ
れる無整流子電動機の位相検出装置を実現できる。
As described above, according to the present invention, by providing the armature reaction calculation circuit and the adder Xt in the conventional phase detection device, it is possible to close-loop compensate for the phase change caused by the armature reaction when there is a fast current change. Because it is possible to
It becomes possible to reduce the phase detection ml difference due to armature reaction by 7, and even if there is a sudden load change, accurate phase detection and stable commutation can be ensured. In addition, the commutation margin angle, which is important for commutation, can take a desired value, improving the efficiency and power factor of the motor, and is a phase detection device for commutatorless motors that is applied to applications that require fast response. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成例を示すブロック図、第2図は
本発明の一実施例を示すブロック図、第3図は本発明の
他の一実施例を示すブロック図である。 り・・・ディジタル/アナログ変換器、 /3・・・リ
ードオンリメモリ、  103・・・加算器。 出願人代理人  猪 股   清 第1図 第3図
FIG. 1 is a block diagram showing an example of the configuration of a conventional device, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a block diagram showing another embodiment of the present invention. ri...Digital/analog converter, /3...Read-only memory, 103...Adder. Applicant's agent Kiyoshi Inomata Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 /、電機子電圧から検出された位相と転流タイミングを
定める基準となる位相とを連続的に比較して位相偏差を
連続的に演算し、この位相偏差を前記転流タイミングを
定める基準となる位相に変換いこれによりこの位相偏差
ができるだけ少なくなるように閉ループ制御を行なう無
整流子電動機の位相検出装置において、 電機子反作用による位相変化分を電機子に流れる実電流
値により演算する電機子反作用演算回路と、この位相変
化分を前記位相偏差に加算したのちこれを転流タイミン
グを定める基準となる位相に変換する回路とを備えるこ
とを特徴とする無整流子電動機の位相検出装置。 コ、前記電検子反作用演算回路は、外部からの人力で設
定される電流基準値を換算して得られる電機子に流れる
べき電流値により電機子反作用による位相変化分を演算
するように構成されていることを特徴とする特許請求の
範囲第1項記載の無整流子′KwJ機の位相検出装置。
[Claims] /, the phase detected from the armature voltage and the reference phase for determining the commutation timing are continuously compared to continuously calculate the phase deviation, and this phase deviation is used as the In a phase detection device for a commutatorless motor that performs closed-loop control by converting the phase to a reference phase that determines timing and thereby minimizing this phase deviation as much as possible, the actual current value flowing through the armature is calculated by converting the phase change due to armature reaction. A commutatorless motor, comprising: an armature reaction calculation circuit that calculates the phase deviation; and a circuit that adds this phase change to the phase deviation and then converts it into a phase that becomes a reference for determining commutation timing. Phase detection device. E. The electron reaction calculation circuit is configured to calculate the phase change due to the armature reaction based on the current value that should flow through the armature obtained by converting the current reference value manually set from the outside. A phase detection device for a commutatorless KwJ machine according to claim 1.
JP57127285A 1982-07-21 1982-07-21 Phase detector for commutatorless motor Pending JPS5917892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127285A JPS5917892A (en) 1982-07-21 1982-07-21 Phase detector for commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127285A JPS5917892A (en) 1982-07-21 1982-07-21 Phase detector for commutatorless motor

Publications (1)

Publication Number Publication Date
JPS5917892A true JPS5917892A (en) 1984-01-30

Family

ID=14956186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127285A Pending JPS5917892A (en) 1982-07-21 1982-07-21 Phase detector for commutatorless motor

Country Status (1)

Country Link
JP (1) JPS5917892A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
US10429449B2 (en) 2011-11-10 2019-10-01 Midtronics, Inc. Battery pack tester
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11650259B2 (en) 2010-06-03 2023-05-16 Midtronics, Inc. Battery pack maintenance for electric vehicle
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139079U (en) * 1980-03-21 1981-10-21
JPS5653157B2 (en) * 1974-05-21 1981-12-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653157B2 (en) * 1974-05-21 1981-12-17
JPS56139079U (en) * 1980-03-21 1981-10-21

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11650259B2 (en) 2010-06-03 2023-05-16 Midtronics, Inc. Battery pack maintenance for electric vehicle
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
US10429449B2 (en) 2011-11-10 2019-10-01 Midtronics, Inc. Battery pack tester
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11548404B2 (en) 2012-06-28 2023-01-10 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US11926224B2 (en) 2012-06-28 2024-03-12 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters

Similar Documents

Publication Publication Date Title
JPS5917892A (en) Phase detector for commutatorless motor
JP3668870B2 (en) Synchronous motor drive system
JPS6152179A (en) Power source for driving motor
JP3843391B2 (en) Synchronous motor drive
Habetler et al. Direct torque control of induction machines over a wide speed range
JPH06165561A (en) Controller for synchronous motor
TW201830845A (en) Closed loop flux weakening for permanent magnet synchronous motors
JP3796556B2 (en) Method and apparatus for controlling magnet-embedded synchronous motor
WO2020100497A1 (en) Motor control device
JPH11275900A (en) Controller of synchronous motor
JP3209853B2 (en) Control device for synchronous motor
JP4211110B2 (en) Position sensorless motor control device
Abe et al. Evaluation of a high performance induction motor drive using direct torque control
JP3933348B2 (en) Control device for embedded magnet type synchronous motor
JP4005510B2 (en) Synchronous motor drive system
JP3576509B2 (en) Motor control device
JP3124019B2 (en) Induction motor control device
JPH03253291A (en) Driving device for motor
JP7013847B2 (en) Motor control device
JPH0530774A (en) Controller for synchronous motor
JPH0634614B2 (en) AC motor controller
JP6433411B2 (en) Synchronous motor drive device
JP2662669B2 (en) Rotary drive
JP2005162462A (en) Control device of elevator
JPH04185296A (en) Dc brushless motor controller