JP2005162462A - Control device of elevator - Google Patents

Control device of elevator Download PDF

Info

Publication number
JP2005162462A
JP2005162462A JP2003407411A JP2003407411A JP2005162462A JP 2005162462 A JP2005162462 A JP 2005162462A JP 2003407411 A JP2003407411 A JP 2003407411A JP 2003407411 A JP2003407411 A JP 2003407411A JP 2005162462 A JP2005162462 A JP 2005162462A
Authority
JP
Japan
Prior art keywords
current
phase
control device
motor
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407411A
Other languages
Japanese (ja)
Inventor
Tetsuya Nishio
哲哉 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003407411A priority Critical patent/JP2005162462A/en
Publication of JP2005162462A publication Critical patent/JP2005162462A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Elevator Control (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of an elevator, obtaining a coefficient of correction of a current conversion gain without fine adjustment of voltage in the case where there is a difference in resistance value between alternating current motor coils or in the case where there is an error between a voltage command and output voltage of an inverter. <P>SOLUTION: This control device of an elevator includes: a speed control device; a current control device 17 for giving a voltage command according to a command value, a speed feedback signal and a current feedback signal; an inverter 4 for driving an AC motor according to a voltage command; a current detector 10 for feedbacking an electric current flowing through the motor; a correction computing device 21 for multiplying the output of the current detector by a coefficient of correction to correct a detection value; and a current sensor gain coefficient calculating device 22 for calculating a coefficient of correction, wherein a car and a balancing weight are elevated. A control electric angular phase of the inverter is fixed to a designated value, and a predetermined torque current command is given to let a predetermined DC current flow between the two phases of the motor, and a coefficient of correction is calculated by the current sensor gain coefficient calculating device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、エレベータの制御装置に関するものである。   The present invention relates to an elevator control device.

一般的な三相交流電動機の制御装置においては、電流検出器およびA/D変換器の変換ゲインにアンバランスがあると、電動機に流れる三相電流の各相間にアンバランスが発生して、電動機のトルクに脈動を引き起こす場合があった。
この問題を解決するために、従来の三相交流電動機の制御装置によれば、三相交流電動機の各相の電流検出値のうち、1相を基準相とし、この基準相および他の1相の巻線にのみ所定の直流が流れるようにし、このときの各電流検出値から、基準相の電流検出ゲインと他の1相の電流検出ゲインの比を求める。また、前記基準相および別の他の1相の導線にのみ所定の直流が流れるようにし、このときの電流検出値から、基準相の電流検出ゲインと別の他の1相の電流検出ゲインの比を求める。電動機の運転時には、求めた変換ゲイン比を用いて電流検出値の補正係数を算出し、この係数を乗じて電流検出ゲインのアンバランスを補正したものがある(例えば、特許文献1参照)。
In a general three-phase AC motor control device, if there is an imbalance in the conversion gains of the current detector and the A / D converter, an imbalance occurs between the phases of the three-phase current flowing through the motor. In some cases, pulsation occurred in the torque.
In order to solve this problem, according to the conventional control device for a three-phase AC motor, one of the current detection values of each phase of the three-phase AC motor is set as a reference phase, and this reference phase and the other one phase A predetermined direct current flows through only the winding of the current, and a ratio of the current detection gain of the reference phase and the current detection gain of the other one phase is obtained from each current detection value at this time. In addition, a predetermined direct current flows only through the reference phase and another other one-phase conductor, and from the current detection value at this time, the current detection gain of the reference phase and another one-phase current detection gain Find the ratio. During operation of an electric motor, a correction coefficient of a current detection value is calculated using the obtained conversion gain ratio, and the current detection gain imbalance is corrected by multiplying this coefficient (for example, see Patent Document 1).

特開平5−91780号公報JP-A-5-91780

ところで、従来の制御装置においては、例えばV相の電流変換ゲインの補正係数を求める際には、U相およびV相の巻線にのみ所定の直流が流れるように、PWM信号発生器への入力を設定するとされている。しかしながら、U相とV相の巻線の抵抗値に差がある場合、あるいは電圧指令とインバータ装置が出力する電圧との間に誤差がある場合には、大きさが同じで符号が逆の電圧を交流電動機のU相とV相の間に加えても、W相に流れる電流を0とすることが出来ず、W相に流れる電流を0にするには、W相電流を観測しながらPWM信号発生器への電圧指令を微調整する必要があり、作業が複雑になるという問題点があった。   By the way, in the conventional control device, for example, when obtaining the correction coefficient of the V-phase current conversion gain, the input to the PWM signal generator is performed so that a predetermined direct current flows only through the U-phase and V-phase windings. It is supposed to be set. However, if there is a difference in the resistance values of the U-phase and V-phase windings, or if there is an error between the voltage command and the voltage output from the inverter device, the voltage having the same magnitude but the opposite sign Even if is added between the U phase and V phase of the AC motor, the current flowing in the W phase cannot be reduced to 0. To reduce the current flowing in the W phase to 0, PWM is performed while observing the W phase current. There was a problem that the voltage command to the signal generator had to be finely adjusted, and the work was complicated.

この発明は、上記のような問題点を解消するためになされたもので、交流電動機の巻線間で抵抗値に差がある場合、あるいは電圧指令とインバータ装置が出力する電圧との間に誤差がある場合でも、電圧を微調整することなく電流変換ゲインの補正係数を求めることができるエレベータの制御装置を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and there is an error between the voltage command and the voltage output from the inverter device when there is a difference in resistance value between windings of the AC motor. An object of the present invention is to provide an elevator control device that can obtain a correction coefficient of a current conversion gain without finely adjusting a voltage.

この発明に係るエレベータの制御装置は、速度指令値と速度帰還信号からトルク指令値を発生する速度制御装置と、トルク指令値と速度帰還信号と電流帰還信号から電圧指令を発生する電流制御装置と、電圧指令により交流電動機を駆動するインバータと、交流電動機に流れる電流を帰還するための電流検出器と、電流検出器の出力に補正係数を乗じて電流検出値の補正を行う補正演算器と、補正係数を算出するための電流センサゲイン係数計算器とを備え、交流電動機を制御してかご及び釣合いおもリを昇降させるものにおいて、インバータの制御電気角位相を所定値に固定し、所定のトルク電流指令を与えることにより、交流電動機の2相間に所定の直流電流を流し、電流センサゲイン係数計算器で、補正係数を算出するものである。   An elevator control device according to the present invention includes: a speed control device that generates a torque command value from a speed command value and a speed feedback signal; a current control device that generates a voltage command from the torque command value, the speed feedback signal, and a current feedback signal; An inverter that drives the AC motor according to the voltage command, a current detector that feeds back the current flowing through the AC motor, a correction calculator that corrects the detected current value by multiplying the output of the current detector by a correction coefficient, A current sensor gain coefficient calculator for calculating a correction coefficient, and controlling the AC motor to raise and lower the car and the counterweight, the control electrical angle phase of the inverter is fixed to a predetermined value, By giving a torque current command, a predetermined DC current is caused to flow between the two phases of the AC motor, and a correction factor is calculated by a current sensor gain coefficient calculator.

この発明のエレベータの制御装置においては、電流検出器の出力に補正係数を乗じて電流検出値の補正を行う補正演算器と、インバータの制御電気角位相を固定し、所定のトルク電流指令を与え、補正係数の測定、算出を行う電流センサゲイン係数計算器を備え、電流センサゲイン係数計算器がある相の補正係数を求める際に、その相および基準相の電流検出値以外に、その他の相の電流検出値も用いて計算を行うようにしたことで、容易に交流電動機の2相間に直流電流を流すことが可能である。また、電圧を微調整することなく電流変換ゲインの補正係数を求めることができる。   In the elevator control apparatus according to the present invention, the correction arithmetic unit for correcting the detected current value by multiplying the output of the current detector by the correction coefficient, and the control electrical angle phase of the inverter are fixed, and a predetermined torque current command is given. A current sensor gain coefficient calculator that measures and calculates the correction coefficient, and when the current sensor gain coefficient calculator determines the correction coefficient for a phase, in addition to the current detection values for that phase and the reference phase, Since the calculation is also performed using the detected current value, it is possible to easily allow a direct current to flow between the two phases of the AC motor. In addition, the correction coefficient of the current conversion gain can be obtained without finely adjusting the voltage.

実施の形態1.
図1はこの発明の実施の形態1におけるエレベータの制御装置の構成を示すブロック回路図である。
図1において、1は三相交流電源、2はコンバータ、3はコンデンサ、4はインバータ、5は交流電動機、10aはU相の巻線に流れる電流を検出する電流検出器、10bはV相の巻線に流れる電流を検出する電流検出器、10cはW相の巻線に流れる電流を検出する電流検出器、11は速度帰還信号を出力するエンコーダ、12は微分器、13aは速度指令値と速度帰還信号を比較演算するフィードバック速度加算器、13b、13cはフィードバック電流加算器、14は電流指令発生器、15aは電流検出器10aにより検出したU相の巻線に流れる電流をデジタル変換するA/D変換器、15bは電流検出器10bにより検出したV相の巻線に流れる電流をデジタル変換するA/D変換器、15cは電流検出器10cにより検出したW相の巻線に流れる電流をデジタル変換するA/D変換器、16は3相2相座標変換器、17a、17bは電流制御器、18は2相3相座標変換器、19はPWM信号発生器、20はゲートドライブ回路、21aは補正係数を乗じて電流検出値の補正を行うV相補正係数、21bは同じく補正係数を乗じて電流検出値の補正を行うW相補正係数、22は外部からの信号である電流センサゲイン係数補正指令により、所定のトルク電流指令及び無効電流の0指令を作成する電流センサゲイン係数計算器、23は外部からの信号である電流センサゲイン係数補正指令により、通常運転時のトルク電流指令と無効電流指令を、上記所定のトルク電流指令と無効電流0指令に切り替えるスイッチである。なお、図中、24はエレベータの巻上機、25はエレベータのかご、26はカウンターウエイトである。
Embodiment 1 FIG.
1 is a block circuit diagram showing a configuration of an elevator control apparatus according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a three-phase AC power source, 2 is a converter, 3 is a capacitor, 4 is an inverter, 5 is an AC motor, 10a is a current detector for detecting a current flowing in a U-phase winding, and 10b is a V-phase. A current detector that detects a current flowing through the winding, 10c is a current detector that detects a current flowing through the W-phase winding, 11 is an encoder that outputs a speed feedback signal, 12 is a differentiator, and 13a is a speed command value. Feedback speed adders for comparing and calculating the speed feedback signal, 13b and 13c are feedback current adders, 14 is a current command generator, and 15a is a digital converter for the current flowing in the U-phase winding detected by the current detector 10a. / D converter, 15b is an A / D converter that digitally converts the current flowing in the V-phase winding detected by the current detector 10b, and 15c is the W detected by the current detector 10c. A / D converter for digitally converting the current flowing in the winding of the coil, 16 is a three-phase two-phase coordinate converter, 17a and 17b are current controllers, 18 is a two-phase three-phase coordinate converter, and 19 is a PWM signal generator , 20 is a gate drive circuit, 21a is a V-phase correction coefficient that multiplies the correction coefficient to correct the current detection value, 21b is a W-phase correction coefficient that similarly multiplies the correction coefficient to correct the current detection value, and 22 is from the outside. A current sensor gain coefficient calculator that creates a predetermined torque current command and a zero command of reactive current according to a current sensor gain coefficient correction command that is a signal of This switch switches the torque current command and the reactive current command during operation to the predetermined torque current command and the reactive current 0 command. In the figure, 24 is an elevator hoisting machine, 25 is an elevator car, and 26 is a counterweight.

この発明によるエレベータの制御装置の実施の形態1の具体的な動作について説明する。
ここで、交流電動機の各相に流れる電流のデジタル信号値Xu、Xv、Xwと、電流変換
ゲインKv、Kwの関係について述べる。まず、中性点が外部に接続されていない一般の三
相交流電動機においては、各相の電流Iu、Iv、Iwについて(1)式が成り立つ。
Iu+Iv+Iw=0…(1)
各相の電流値をデジタル変換すると、これまで説明したように検出・変換による誤差が生じるが、例えばU相のデジタル変換ゲインを基準として、これに対するV相、W相の電流変換ゲインの補正係数、すなわちU相に対するV相の電流ゲインの比、U相に対するW相の電流ゲインの比をKv、Kwとすると、デジタル変換後の信号値の間には、(2)式が成り立つ。
Xu+Kv・Xv+Kw・Xw=0…(2)、
上記(2)式より、電流のデジタル変換値、例えばXuが零となるようにKv、Kwを求める。この場合、従来例のように、U相およびV相の巻線にのみ所定の直流が流れるようにする必要はないので、PWM信号発生器19への電圧指令を微調整する必要がなくなる。
図1において、外部からの信号である電流センサゲイン係数補正指令により、電流センサゲイン係数計算器22で所定のトルク電流指令及び無効電流の0指令を作成する。次に、外部からの信号である電流センサゲイン補正係数指令により、通常運転時のトルク電流指令と無効電流指令をスイッチ23により、上記所定のトルク電流指令と無効電流0指令に切り替える。また、通常運転時に使用している回転子電気角を下記要領にて作成したインバータの制御電気角位相に、外部からの信号である電流センサゲイン係数補正指令をトリガとして、スイッチ23により切り替える。この状態において、電流センサゲイン補正係数の算出を電流センサゲイン係数計算器22で実施する。所定のトルク電流指令を与える際のインバータの制御電気角位相は、下記に記述する。
The specific operation of the elevator control apparatus according to the first embodiment of the present invention will be described.
Here, the relationship between the digital signal values Xu, Xv, Xw of the current flowing in each phase of the AC motor and the current conversion gains Kv, Kw will be described. First, in a general three-phase AC motor in which the neutral point is not connected to the outside, the equation (1) is established for the currents Iu, Iv, and Iw of each phase.
Iu + Iv + Iw = 0 (1)
When the current value of each phase is digitally converted, an error due to detection / conversion occurs as described above. For example, with reference to the U-phase digital conversion gain, a correction coefficient for the V-phase and W-phase current conversion gains is used as a reference. That is, assuming that the ratio of the current gain of the V phase to the U phase and the ratio of the current gain of the W phase to the U phase are Kv and Kw, Equation (2) is established between the signal values after digital conversion.
Xu + Kv · Xv + Kw · Xw = 0 (2),
From the above equation (2), Kv and Kw are obtained so that a digital conversion value of current, for example, Xu becomes zero. In this case, unlike the conventional example, there is no need to allow a predetermined direct current to flow only through the U-phase and V-phase windings, so there is no need to finely adjust the voltage command to the PWM signal generator 19.
In FIG. 1, a current sensor gain coefficient calculator 22 generates a predetermined torque current command and a reactive current zero command in accordance with a current sensor gain coefficient correction command which is an external signal. Next, the torque current command and the reactive current command during normal operation are switched to the predetermined torque current command and the reactive current 0 command by the switch 23 in accordance with a current sensor gain correction coefficient command that is an external signal. In addition, the electrical angle of the rotor used during normal operation is switched to the control electrical angle phase of the inverter created in the following manner by the switch 23 using a current sensor gain coefficient correction command, which is an external signal, as a trigger. In this state, the current sensor gain coefficient is calculated by the current sensor gain coefficient calculator 22. The control electrical angle phase of the inverter when giving a predetermined torque current command is described below.

図2に、通常同期モータの制御でよく用いられるd軸電流0制御を行っている場合の、回転子電気角と各相電流の関係を示す。この図2より分かるように、タイミング1付近(電気角60°付近)ではU相とV相に電流が流れてW相にはほとんど電流が流れず、またタイミング2付近(電気角120°付近)ではU相とW相に電流が流れてV相にはほとんど電流が流れなくなることが分かる。これらのタイミングに回転子電気角を固定し、所定のトルク電流指令を与えると、交流電動機の2相に符号が反対の直流電流を流し、残りの1相にはほとんど電流が流れない状態にすることが可能となる。なお上記の説明では、各相電流を検出するタイミングを電気角60°と120°の二つとしたが、同様のタイミングは電気角240°と300°にも現れ、後者のタイミングを用いても効果が同様であることは言うまでも無い。   FIG. 2 shows the relationship between the rotor electrical angle and each phase current when d-axis current zero control, which is often used in the control of a synchronous motor, is performed. As can be seen from FIG. 2, near the timing 1 (electrical angle of 60 °), current flows in the U phase and V phase, and almost no current flows in the W phase, and near the timing 2 (electrical angle of 120 °). Then, it can be seen that current flows in the U phase and the W phase, and almost no current flows in the V phase. When the electrical angle of the rotor is fixed at these timings and a predetermined torque current command is given, a direct current having the opposite sign flows in the two phases of the AC motor, and almost no current flows in the remaining one phase. It becomes possible. In the above description, the timing for detecting each phase current is set to two electrical angles of 60 ° and 120 °. However, the same timing appears at electrical angles of 240 ° and 300 °, and the latter timing is also effective. Needless to say, is the same.

実施の形態2.
この発明の実施の形態2におけるエレベータの制御装置の具体的な動作について説明する。図3はこの発明の実施の形態2におけるエレベータの制御装置において、電流変換ゲインの補正係数を求める際の電流センサゲイン係数計算器の動作を示すフローチャートである。
まず、第1ステップS101において、初期値設定にて繰り返し計算のカウンタnを0に設定すると共に、計算過程の補正係数Kvw(n)の初期値Kvw(0)を1に設定する。この発明は繰り返し計算によりKv、Kwを算出するため上記設定が必要となる。
次に、第2ステップS102において、実施の形態1と同じ要領で、U相およびV相の巻線に概ね所定の直流電流を流す。このとき、W相にはほとんど電流が流れない。
次に、第3ステップS103において、U相、V相、W相の各巻線に流れる電流を、電流検出器10a、10b、10cにより検出してA/D変換器15a、15b、15cによりデジタル変換し、そのデジタル信号値をそれぞれXu1(U相)、Xv1(V相)、Xw1(W相)とする。前回の計算によって算出したKvw(n)を上記(2)式に反映し、Kw(n)を変化させてXw1=0のときのKv(n)を算出する。ただし、一回目の計算では、前回値が存在しないので、Kvw(0)=1を使用する。
次に、第4ステップS104において、実施の形態1と同じ要領で、V相およびW相の巻線に概ね所定の直流電流を流す。このとき、U相にはほとんど電流が流れない。
次に、第5ステップS105において、第3ステップS103で求めたKw(n)を反映し、Kv(n)を変化させXu2=0となるKv(n)を算出する。
次に、第6ステップS106において、実施の形態1と同じ要領で、U相およびW相の巻線に概ね所定の直流電流を流す。このとき、V相にはほとんど電流が流れない。
次に、第7ステップS107において、第5ステップS105で求めたKv(n)を反映し、Kvw(n)を変化させXv3=0となるKvw(n)を算出する。
次に、第8ステップS108において、前回と今回の計算での補正係数の差Kv(n)−Kv(n−1)、Kw(n)−Kw(n−1)を計算し、その差が所定の許容値eより大きければ再度計算を実施し、許容値e以下であれば計算を終了させる。最後に、ステップS109にて、計算が終わった補正係数Kv(n)、Kw(n)を最終的な補正係数Kv、Kwとして保存する。
Embodiment 2. FIG.
A specific operation of the elevator control apparatus according to Embodiment 2 of the present invention will be described. FIG. 3 is a flowchart showing the operation of the current sensor gain coefficient calculator when obtaining the current conversion gain correction coefficient in the elevator control apparatus according to Embodiment 2 of the present invention.
First, in the first step S101, the counter n for repeated calculation is set to 0 in the initial value setting, and the initial value Kvw (0) of the correction coefficient Kvw (n) in the calculation process is set to 1. Since the present invention calculates Kv and Kw by repeated calculation, the above setting is required.
Next, in the second step S102, a predetermined direct current is passed through the U-phase and V-phase windings in the same manner as in the first embodiment. At this time, almost no current flows in the W phase.
Next, in the third step S103, the currents flowing through the U-phase, V-phase, and W-phase windings are detected by the current detectors 10a, 10b, and 10c, and converted into digital signals by the A / D converters 15a, 15b, and 15c. The digital signal values are Xu1 (U phase), Xv1 (V phase), and Xw1 (W phase), respectively. Kvw (n) calculated by the previous calculation is reflected in the above equation (2), and Kw (n) is changed to calculate Kv (n) when Xw1 = 0. However, in the first calculation, since the previous value does not exist, Kvw (0) = 1 is used.
Next, in the fourth step S104, a predetermined direct current is passed through the V-phase and W-phase windings in the same manner as in the first embodiment. At this time, almost no current flows in the U phase.
Next, in the fifth step S105, Kv (n) is calculated by reflecting Kw (n) obtained in the third step S103 and changing Kv (n) so that Xu2 = 0.
Next, in a sixth step S106, a predetermined direct current is passed through the U-phase and W-phase windings in the same manner as in the first embodiment. At this time, almost no current flows in the V phase.
Next, in the seventh step S107, Kvw (n) that satisfies Xv3 = 0 is calculated by reflecting Kv (n) obtained in the fifth step S105 and changing Kvw (n).
Next, in the eighth step S108, differences Kv (n) −Kv (n−1) and Kw (n) −Kw (n−1) between correction coefficients in the previous and current calculations are calculated, and the difference is calculated. If it is larger than the predetermined allowable value e, the calculation is performed again. Finally, in step S109, the corrected correction coefficients Kv (n) and Kw (n) are stored as final correction coefficients Kv and Kw.

なお、電流検出器を使用する際には、例えば、特許第2687062号「電動機の制御装置」に示されるように、使用に先立って時間的に減衰する交流電流を流して、電流検出器内の磁気回路のヒステリシスを除去する消磁動作を行うこと、さらに消磁動作後の電流0の状態での検出出力を記憶し、この値を電流検出のオフセット値として、実際の測定時の検出値から減じたものを電流検出値とすることが一般的である。これらの動作については、上記のこの発明の実施の形態には記載していないが、これらの動作を電流検出ゲインの補正係数の測定を行う前に実施することにより、この発明においても、電流検出および電流検出ゲインの補正係数の精度を向上できることは言うまでもない。さらに、電流検出値を適切なローパスフィルタを介して処理することにより、ノイズの影響を少なくできることはもちろんである。   When using the current detector, for example, as shown in Japanese Patent No. 2687062 “Control Device for Electric Motor”, an alternating current that decays in time before use is passed, The demagnetizing operation for removing the hysteresis of the magnetic circuit is performed, and the detection output in the state of current 0 after the degaussing operation is stored, and this value is subtracted from the detection value at the time of actual measurement as an offset value for current detection. It is common to use a current detection value. These operations are not described in the above-described embodiment of the present invention. However, by performing these operations before measuring the correction coefficient of the current detection gain, the current detection is performed also in the present invention. Needless to say, the accuracy of the correction coefficient of the current detection gain can be improved. Furthermore, it is a matter of course that the influence of noise can be reduced by processing the current detection value through an appropriate low-pass filter.

この発明の実施の形態1におけるエレベータの制御装置の構成を示すブロック回路図である。It is a block circuit diagram which shows the structure of the control apparatus of the elevator in Embodiment 1 of this invention. 通常同期モータの制御でよく用いられるd軸電流0制御を行っている場合の、回転子電気角と各相電流の関係を示す図である。It is a figure which shows the relationship between a rotor electrical angle and each phase electric current in the case of performing d-axis current zero control often used by control of a normal synchronous motor. この発明の実施の形態2におけるエレベータの制御装置において、電流変換ゲインの補正係数を求める際の電流センサゲイン係数計算器の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the current sensor gain coefficient calculator at the time of calculating | requiring the correction coefficient of current conversion gain in the elevator control apparatus in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 三相交流電源
2 コンバータ
3 コンデンサ
4 インバータ
5 交流電動機
10 電流検出器
11 エンコーダ
12 微分器
13a フィードバック速度加算器
13b、13c フィードバック電流加算器
14 電流指令発生器
15 A/D変換器
16 3相2相座標変換器
17a、17b 電流制御器
18 2相3相座標変換器
19 PWM信号発生器、
20 ゲートドライブ回路
21a V相補正係数
21b W相補正係数
22 電流センサゲイン係数計算器
23 スイッチ
24 エレベータ巻上機
25 エレベータかご
26 カウンターウエイト
DESCRIPTION OF SYMBOLS 1 Three-phase alternating current power supply 2 Converter 3 Capacitor 4 Inverter 5 AC motor 10 Current detector 11 Encoder 12 Differentiator 13a Feedback speed adder 13b, 13c Feedback current adder 14 Current command generator 15 A / D converter 16 3 phase 2 Phase coordinate converters 17a, 17b Current controller 18 2-phase 3-phase coordinate converter 19 PWM signal generator,
20 Gate drive circuit 21a V phase correction coefficient 21b W phase correction coefficient 22 Current sensor gain coefficient calculator 23 Switch 24 Elevator hoist 25 Elevator car 26 Counterweight

Claims (2)

速度指令値と速度帰還信号からトルク指令値を発生する速度制御装置と、
トルク指令値と速度帰還信号と電流帰還信号から電圧指令を発生する電流制御装置と、
前記電圧指令により交流電動機を駆動するインバータと、
交流電動機に流れる電流を帰還するための電流検出器と、
前記電流検出器の出力に補正係数を乗じて電流検出値の補正を行う補正演算器と、
補正係数を算出するための電流センサゲイン係数計算器とを備え、
交流電動機を制御してかご及び釣合いおもリを昇降させるエレベータ制御装置において、
前記インバータの制御電気角位相を所定値に固定し、所定のトルク電流指令を与えることにより、交流電動機の2相間に所定の直流電流を流し、前記電流センサゲイン係数計算器で、補正係数を算出することを特徴とするエレベータの制御装置。
A speed control device that generates a torque command value from the speed command value and the speed feedback signal;
A current control device that generates a voltage command from a torque command value, a speed feedback signal, and a current feedback signal;
An inverter that drives an AC motor according to the voltage command;
A current detector for returning the current flowing through the AC motor;
A correction calculator for correcting the detected current value by multiplying the output of the current detector by a correction coefficient;
A current sensor gain coefficient calculator for calculating a correction coefficient,
In the elevator control device that controls the AC motor to raise and lower the car and the counterweight,
The control electrical angle phase of the inverter is fixed to a predetermined value, and a predetermined torque current command is given to cause a predetermined DC current to flow between the two phases of the AC motor, and the current sensor gain coefficient calculator calculates the correction coefficient. An elevator control device.
交流電動機に電流が流れたときに、補正係数値を変化させ、電流のデジタル変換値の内の一相の電流が零となる補正係数を算出することを特徴とする請求項1記載のエレベータの制御装置。   2. The elevator coefficient according to claim 1, wherein when a current flows through the AC motor, the correction coefficient value is changed, and a correction coefficient is calculated so that one-phase current among the digital conversion values of the current becomes zero. Control device.
JP2003407411A 2003-12-05 2003-12-05 Control device of elevator Pending JP2005162462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407411A JP2005162462A (en) 2003-12-05 2003-12-05 Control device of elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407411A JP2005162462A (en) 2003-12-05 2003-12-05 Control device of elevator

Publications (1)

Publication Number Publication Date
JP2005162462A true JP2005162462A (en) 2005-06-23

Family

ID=34729466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407411A Pending JP2005162462A (en) 2003-12-05 2003-12-05 Control device of elevator

Country Status (1)

Country Link
JP (1) JP2005162462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044681A (en) * 2006-08-10 2008-02-28 Toshiba Elevator Co Ltd Control device of elevator
DE112008002464T5 (en) 2008-01-28 2010-07-15 Aisin AW Co., Ltd., Anjo Electric motor control device and drive unit
CN104540760A (en) * 2012-08-24 2015-04-22 三菱电机株式会社 Elevator power conversion device
JP2017057056A (en) * 2015-09-16 2017-03-23 東芝エレベータ株式会社 Elevator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044681A (en) * 2006-08-10 2008-02-28 Toshiba Elevator Co Ltd Control device of elevator
DE112008002464T5 (en) 2008-01-28 2010-07-15 Aisin AW Co., Ltd., Anjo Electric motor control device and drive unit
US7960927B2 (en) 2008-01-28 2011-06-14 Aisin Aw Co., Ltd. Electric motor control device and drive unit
CN104540760A (en) * 2012-08-24 2015-04-22 三菱电机株式会社 Elevator power conversion device
JP2017057056A (en) * 2015-09-16 2017-03-23 東芝エレベータ株式会社 Elevator
CN106542391A (en) * 2015-09-16 2017-03-29 东芝电梯株式会社 Elevator

Similar Documents

Publication Publication Date Title
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP4395313B2 (en) Motor drive control device and electric power steering device
JP4357967B2 (en) Control device for synchronous reluctance motor
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
KR101684706B1 (en) Compensation Apparatus and Method for output current distortion of inverter
JP2006288076A (en) Control unit
JP2003134898A (en) Sensorless controller and control method for synchronous generator
JP2008312360A (en) Power conversion device and module
JPS6152179A (en) Power source for driving motor
JP2001309697A (en) Electric motor control device
JP2010105763A (en) Power converter and elevator using the same
JP4529113B2 (en) Voltage source inverter and control method thereof
CN113574792B (en) Control device of permanent magnet synchronous machine
JP3773794B2 (en) Power converter
JP2005162462A (en) Control device of elevator
JP4619712B2 (en) AC motor control device
KR100549253B1 (en) Control apparatus of a.c.motor
JP2009284598A (en) Controller for alternating-current motors
JP2013172550A (en) Motor controller and three-phase voltage command generating method of motor
JP4708444B2 (en) AC motor control device
JP4671521B2 (en) Electric motor control device
JP4051601B2 (en) Variable speed control device for electric motor
JP3576509B2 (en) Motor control device
JP4411742B2 (en) Motor control device
JP4549724B2 (en) Elevator control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222