JPH03253291A - Driving device for motor - Google Patents

Driving device for motor

Info

Publication number
JPH03253291A
JPH03253291A JP2049483A JP4948390A JPH03253291A JP H03253291 A JPH03253291 A JP H03253291A JP 2049483 A JP2049483 A JP 2049483A JP 4948390 A JP4948390 A JP 4948390A JP H03253291 A JPH03253291 A JP H03253291A
Authority
JP
Japan
Prior art keywords
power factor
voltage
value
current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2049483A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nakamura
嘉伸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2049483A priority Critical patent/JPH03253291A/en
Publication of JPH03253291A publication Critical patent/JPH03253291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To conduct a lagging power factor operation in a low speed region of a motor and to make a power factor be 1 substantially when a speed reaches a prescribed region by providing a power factor correcting means which corrects an output signal from a power factor computing means in accordance with a reference value, and a means which calculates an output voltage. CONSTITUTION:A current flowing through a direct-current link unit is detected by a current sensor 31 and inputted to a current detecting means 33 and waveform shaping is conducted therein. In a power factor computing means 34, a difference in the DC current is computed as a power factor. A value thus obtained is inputted to a power factor correcting means 40. A speed command value W* is inputted also thereto and the value of the aforesaid power factor is corrected therein in accordance with a speed. In a voltage frequency computing means 35, the value of the aforesaid power factor is incorporated in a control element for a voltage value determined by the command value W*, and computed, and thus a voltage determined by the command value W* and the power factor is obtained.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、電動機を可変速駆動する電動機駆動装置に係
り、特にその脱調状態を防止する手段を備えた電動機駆
動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a motor drive device that drives an electric motor at variable speed, and in particular to a motor drive device equipped with means for preventing step-out. Regarding.

(従来の技術) この種の従来の駆動装置として、ブラシレスモータを可
変速駆動するものについて説明する。
(Prior Art) As a conventional drive device of this type, one that drives a brushless motor at variable speed will be described.

ブラシレスモータの駆動装置においては、ステータコイ
ルと永久磁石形のロータとの相対的位置をホール素子等
の位置検出素子を用いずにステータコイルに生ずる誘起
電圧を含む端子電圧を利用して検出する方式が採用され
るようになってきている。
In brushless motor drive devices, this method detects the relative position of the stator coil and permanent magnet rotor by using terminal voltage, including the induced voltage generated in the stator coil, without using a position detection element such as a Hall element. are increasingly being adopted.

この従来例を第3図に示す。即ち、1は直流電源、2は
ブラシレスモータ3のステータコイル3U、3V及び3
Wに通電するためのインバータ回路、4,5及び6はス
テータコイル3U、3V及び3Wに生ずる誘起電圧を含
む端子電圧UV、VV及びWVを909移相させるフィ
ルタ回路、7はこれらのフィルタ回路4乃至6の出力信
号から中性点電圧NVを得る検出回路、8.9及び10
は一次遅れ要素たるフィルタ回路4.5及び6の出力信
号と中性点電圧NVとを夫々比較する比較機、11は制
御回路である。第4図は従来例の動作を示すタイムチャ
ートであり、今、これを参照してU相について考えてみ
る。ステータコイル3Uに生ずる端子電圧UV(第4図
(a)参照〉には、インバータ回路2の転流時に対アー
ム還流ダイオードの導通によって生ずるスパイク状の電
圧成分が含まれている。このスパイク状の電圧成分の影
響をなくすために、端子電圧UVをフィルタ回路4によ
って90°位相をシフトさせ、第4図(b)で示すよう
な移相電圧DUVとする。その後、この移相電圧DUV
と第4図(b)に示す中性点電圧NVとを比較器8によ
り比較し、第4図(c)で示すように位置検出信号PS
Uを得る。
This conventional example is shown in FIG. That is, 1 is a DC power supply, 2 is a stator coil 3U, 3V, and 3 of a brushless motor 3.
4, 5, and 6 are filter circuits for phase-shifting the terminal voltages UV, VV, and WV containing induced voltages generated in the stator coils 3U, 3V, and 3W by 909; 7 is a filter circuit for these filter circuits 4; Detection circuit for obtaining neutral point voltage NV from output signals of 8.9 and 10
1 is a comparator that compares the output signals of filter circuits 4.5 and 6, which are first-order delay elements, with the neutral point voltage NV, and 11 is a control circuit. FIG. 4 is a time chart showing the operation of the conventional example, and now, referring to this chart, let us consider the U phase. The terminal voltage UV generated in the stator coil 3U (see FIG. 4(a)) includes a spike-like voltage component that is generated due to conduction of the paired arm freewheeling diode during commutation in the inverter circuit 2. In order to eliminate the influence of the voltage component, the phase of the terminal voltage UV is shifted by 90° by the filter circuit 4 to obtain a phase-shifted voltage DUV as shown in Fig. 4(b).
The comparator 8 compares the neutral point voltage NV shown in FIG. 4(b) and outputs the position detection signal PS as shown in FIG. 4(c).
Get U.

他のV及びW相についても同様であり、端子電圧VV及
びWvに基づいて比較器9及び10から第4図(d)及
び(e)で示すように位置検出信号PSV及びPSWを
得る。これらの位置検出信号PSU、PSV及びPSW
は180”通電ノ120@位相の異なる信号となり、こ
れらが制御回路11に与えられることにより、その制御
回路11は6つのドライブ信号を出力してインバータ回
路2のスイッチング素子たるトランジスタのベースに与
えるようになる。
The same applies to the other V and W phases, and position detection signals PSV and PSW are obtained from comparators 9 and 10 as shown in FIGS. 4(d) and (e) based on terminal voltages VV and Wv. These position detection signals PSU, PSV and PSW
are 180" energized and 120@signals with different phases, and when these are given to the control circuit 11, the control circuit 11 outputs six drive signals and applies them to the bases of the transistors that are the switching elements of the inverter circuit 2. become.

しかし、上記構成では端子電圧UV、VV及びWvに含
まれるスパイク状の電圧成分を除去するために90@遅
れ位相特性を有するフィルタ回路4乃至6を設けている
ので、フィルタ回路4乃至6の時定数が大きく、このた
め、急激な加減速に追従できない問題があり、また、低
速領域での位置検出が困難になる問題がある。更に、端
子電圧UV、VV及びWvに含まれるスパイク状の電圧
成分の大きさは、ステータコイル3U、3V及び3Wの
電流即ち負荷の大きさによって変化するので、負荷変動
が大きいとフィルタ回路4乃至6以降の信号波形に位相
誤差を生ずることになり、安定性に問題がある。
However, in the above configuration, filter circuits 4 to 6 having a 90@lag phase characteristic are provided in order to remove spike-like voltage components included in the terminal voltages UV, VV, and Wv. Since the constant is large, there is a problem that it cannot follow rapid acceleration/deceleration, and there is also a problem that position detection in a low speed region is difficult. Furthermore, since the magnitude of the spike-like voltage components included in the terminal voltages UV, VV, and Wv changes depending on the current of the stator coils 3U, 3V, and 3W, that is, the magnitude of the load, if the load fluctuation is large, the filter circuit 4 or This will cause a phase error in the signal waveforms after 6, which poses a stability problem.

そこで、この問題を解決するためには、ステータコイル
の端子電圧を用いずにステータコイルに流れる電流に基
づいて制御する駆動装置が考えられる。
Therefore, in order to solve this problem, a driving device that performs control based on the current flowing through the stator coil without using the terminal voltage of the stator coil may be considered.

その駆動装置について説明する。The drive device will be explained.

先ず、第5図に従って、全体の構成について述べる。2
1は3相の交流電源であり、その3相交流電圧は6個の
ダイオードを3相ブリツジ接続してなる全波整流回路2
2の交流入力端子に与えられるようになっている。この
全波整流回路22の直流出力電圧はこれとともに直流電
源23を構成する平滑用コンデンサ24を介して直流母
線25゜26に与えられるようになっている。27は6
個のスイッチング素子たるトランジスタを3相ブリツジ
接続してなるインバータ回路であり、その入力端子には
直流母線25.26間の直流電圧が与えられるよ1にな
っている。28は3相4極のブラシレスモータであり、
これは、U、V及びW相の固定子巻線29U、29V及
び29Wを有する固定子29と、永久磁石形の回転子3
0とを備えている。そして、固定子巻線29U、29V
及び29Wはスター結線されていて、これらにインバー
タ回路27の出力端子からの交流出力電圧が供給される
ようになっている。31はホールCTからなる電流検出
器であり、これはインバータ回路27の直流側部分たる
直流母線25に設けられている。32は直流増幅回路で
あり、これは電流検出器31とともに電流検出手段33
を構成するものである。そして、電流検出器31により
検出された直流電流信号1dcは、直流増幅回路32を
介して力率演算手段たる力率演算回路34の入力端子に
与えられるようになっている。この力率演算回路34は
、直流電流信号1dcに基づいて力率信号ΔIdc及び
電流変化量ΔIdc−を演算するもので、その力率信号
ΔIdc及び電流変化量ΔIdc−は出力端子から信号
として出力されて電圧周波数(V/F)演算手段たるV
/F演算回路35の入力端子に与えられるようになって
いる。このV/F演算回路35は、力率信号Δ1dC9
電流変化量ΔIdc=及び図示しない設定器から与えら
れる速度指令ω8に基づいて電圧信号V及び周波数信号
Fを演算するもので、これらは出力端子から出力されて
ドライブ回路36の入力端子に与えられるようになって
いる。そして、ドライブ回路36は、電圧信号V及び周
波数信号Fに基づいてPWM制御された6つのドライブ
信号を出力端子から出力してインバータ回路27の6個
のトランジスタのベースに与えるようになっており、こ
れにより、ブラシレスモータ28の回転子30は速度指
令値ω1の示す回転速度で回転されるようになっている
First, the overall configuration will be described according to FIG. 2
1 is a three-phase AC power supply, and the three-phase AC voltage is passed through a full-wave rectifier circuit 2, which is made up of six diodes connected in a three-phase bridge.
It is designed to be applied to the second AC input terminal. The DC output voltage of the full-wave rectifier circuit 22 is applied to the DC buses 25 and 26 via a smoothing capacitor 24 constituting a DC power supply 23. 27 is 6
This is an inverter circuit formed by connecting transistors, which are switching elements, in a three-phase bridge, and its input terminal is set to 1 so that the DC voltage between DC buses 25 and 26 is applied. 28 is a 3-phase 4-pole brushless motor,
This includes a stator 29 having U, V and W phase stator windings 29U, 29V and 29W, and a permanent magnet rotor 3.
0. And stator winding 29U, 29V
and 29W are star-connected, and the AC output voltage from the output terminal of the inverter circuit 27 is supplied to these. Reference numeral 31 denotes a current detector consisting of a Hall CT, which is provided on the DC bus 25, which is the DC side portion of the inverter circuit 27. 32 is a DC amplification circuit, which includes a current detector 31 and a current detection means 33.
It constitutes. The DC current signal 1dc detected by the current detector 31 is applied via a DC amplifier circuit 32 to an input terminal of a power factor calculation circuit 34 serving as power factor calculation means. This power factor calculation circuit 34 calculates a power factor signal ΔIdc and a current change amount ΔIdc− based on a DC current signal 1dc, and the power factor signal ΔIdc and current change amount ΔIdc− are outputted as signals from an output terminal. V is the voltage frequency (V/F) calculation means.
The signal is applied to the input terminal of the /F calculation circuit 35. This V/F calculation circuit 35 has a power factor signal Δ1dC9
The voltage signal V and frequency signal F are calculated based on the current change amount ΔIdc= and the speed command ω8 given from a setting device (not shown), and these are outputted from the output terminal and given to the input terminal of the drive circuit 36. It has become. The drive circuit 36 outputs six drive signals PWM-controlled based on the voltage signal V and the frequency signal F from the output terminal and applies them to the bases of the six transistors of the inverter circuit 27. Thereby, the rotor 30 of the brushless motor 28 is rotated at the rotational speed indicated by the speed command value ω1.

次に、その作用つき第6図をも参照して説明する。Next, an explanation will be given with reference to FIG. 6 showing its effect.

第6図には、インバータ回路27により力率制御を行な
わなかった場合における力率変化に対する電流検出手段
33の直流電流信号1dcの波形を示す。即ち、力率が
遅れた場合には、同図(a)で示すように、出力周波数
の1/6周期(電気角で60’)毎に波形が変化し、そ
の変化は右上りとなる。反対に、力率が進んだ場合には
、同図(C)で示すように、同周期毎に波形が変化し、
その変化は右下りとなる。そして、力率が略1になった
場合には、同図(b)で示すように、はとんど変化のな
い波形となる。そこで、直流電流信号Idcの波形が電
気角で60°毎に繰返し変化することから、その電気角
60°毎の時点(0゜60’   120’   18
0’・・・360’)に着目し、その各時点の直前たる
A点の電流値1aと直後たるB点の電流値1bとの差(
Ib−1a)を検出し、この差が零即ち電流値1a、I
bが等しくなるように制御することで、第6図(b)に
示す如く力率が略1となるようにブラシレスモータ28
を運転させることができる。即ち、固定子巻線の端子電
圧から磁極位置を検出する従来のブラシレスモータの方
式と同等の運転を行なわせることかできるのである。
FIG. 6 shows the waveform of the DC current signal 1dc of the current detection means 33 with respect to power factor changes when power factor control is not performed by the inverter circuit 27. That is, when the power factor is delayed, the waveform changes every 1/6 period (60' in electrical angle) of the output frequency, and the change is upward-sloping, as shown in FIG. On the other hand, when the power factor advances, the waveform changes every cycle, as shown in Figure (C).
The change is downward to the right. When the power factor becomes approximately 1, the waveform becomes almost unchanged, as shown in FIG. 3(b). Therefore, since the waveform of the DC current signal Idc repeatedly changes every 60 degrees of electrical angle, the time point of every 60 degrees of electrical angle (0 degrees 60'120' 18
0'...360'), and calculate the difference (
Ib-1a) is detected, and this difference is zero, that is, the current value 1a, I
By controlling b so that they are equal, the brushless motor 28 is controlled so that the power factor becomes approximately 1 as shown in FIG. 6(b).
can be driven. In other words, it is possible to perform the same operation as the conventional brushless motor method in which the magnetic pole position is detected from the terminal voltage of the stator winding.

(発明が解決しようとする課題) しかし、上記のように構成された電動機駆動装置におい
ても、同期電動機のような電動機を制御する場合、その
電動機特性により、低速領域はど電圧に対して遅れ、進
み領域が狭くなるにもかかわらず、その低速領域でも所
定の電気角で検出するので、例えば負荷が急変した場合
、制御が遅れ、脱調状態が発生することがあり、電動機
を安定に駆動する上で大きな障害となっていた。
(Problem to be Solved by the Invention) However, even in the motor drive device configured as described above, when controlling a motor such as a synchronous motor, the low speed region lags behind the voltage due to the motor characteristics. Even though the advance range is narrower, it is detected at a predetermined electrical angle even in the low speed range, so if the load suddenly changes, for example, control may be delayed and a step-out state may occur, so the motor cannot be driven stably. This was a major obstacle at the top.

そこで、本発明は、上記問題点を鑑み、電動機の低速領
域では遅れ力率運転を行ない、所定領域まで速度が達し
たときに、力率が略1になるような運転を開始すること
が可能な電動機駆動装置を提供することを目的とする。
Therefore, in view of the above problems, the present invention performs delayed power factor operation in the low speed region of the electric motor, and when the speed reaches a predetermined speed region, it is possible to start operation such that the power factor becomes approximately 1. The purpose of the present invention is to provide an electric motor drive device.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明は、電源から供給さ
れる交流電力を直流に変換するコンバータ手段と、この
コンバータ手段からの直流電力を任意の周波数を有する
交流電力に変換するインバータ手段とを有し、前記イン
バータ手段からの交流電力により電動機を可変速制御す
る電動機駆動装置において、前記インバータ手段の直流
電流を検出する電流検出手段と、この電流検出手段から
の検出信号を基に、力率を演算する力率演算手段と、こ
の力率演算手段からの出力信号を、予め設定された基準
値に応じて補正する力率補正手段と、この力率補正手段
からの出力信号と前記予め設定された基準値とを基に出
力電圧を算出する算出手段とを具備することを特徴とす
る電動機駆動装置を提供する。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a converter means for converting AC power supplied from a power source into DC power, and a converter means for converting AC power supplied from a power source into DC power. An electric motor drive device that includes an inverter means for converting AC power having an arbitrary frequency and controls a motor at variable speed using the AC power from the inverter means, a current detection means for detecting a DC current of the inverter means; A power factor calculation means for calculating the power factor based on the detection signal from the current detection means; and a power factor correction means for correcting the output signal from the power factor calculation means according to a preset reference value. The present invention provides an electric motor driving device characterized in that it comprises a calculation means for calculating an output voltage based on the output signal from the power factor correction means and the preset reference value.

(作用) このように構成された電動機駆動装置によれば、電動機
に印加される電圧の周波数の所定電気角(例えば60m
)毎の直前・直後に流れる直流電流の差を力率として得
、この直流電流差に速度基準に応じた補正値を加算して
電動機への印加電圧と周波数とを制御するので、電動機
の低速領域で例えば負荷が急変した場合でも、脱調を防
止でき、安心な制御が実現できる。
(Function) According to the motor drive device configured in this way, the frequency of the voltage applied to the motor is adjusted by a predetermined electrical angle (for example, 60 m
) is obtained as the power factor, and a correction value according to the speed standard is added to this DC current difference to control the voltage and frequency applied to the motor. Even if, for example, the load suddenly changes in the area, step-out can be prevented and reliable control can be achieved.

(実施例) 以下、本発明の一実施例を図面を用いて説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

なお、従来と同じ構成要件については、同−符号を付し
、その説明は省略する。
In addition, the same reference numerals are attached to the same constituent elements as in the conventional art, and the explanation thereof will be omitted.

第1図に示すように本実施例の電動機駆動装置は同期電
動機を駆動する例である。
As shown in FIG. 1, the motor drive device of this embodiment is an example for driving a synchronous motor.

まず、直流から交流に変換する直流リンク部に流れる電
流を電流センサ31により検出し、電流検出手段33へ
入力され、増幅及びサンプリング及ホールド等により波
形成形を行なう。前述したように、力率の違いにより第
6図に示すような電流波形となるため、力率が略1とな
るような運転をするには直流電流の差(IB−IA)が
零になるように、制御する必要がある。そこで、力率演
算手段回路34では、この電流の差を力率として演算す
る。
First, a current flowing through a DC link section that converts DC to AC is detected by a current sensor 31, and is input to a current detection means 33, where waveform shaping is performed by amplification, sampling, holding, and the like. As mentioned above, the difference in power factor results in a current waveform as shown in Figure 6, so in order to operate with a power factor of approximately 1, the difference in DC current (IB-IA) must be zero. As such, it needs to be controlled. Therefore, the power factor calculation means circuit 34 calculates this current difference as a power factor.

次に、この値は力率補正手段40に入力される。This value is then input to the power factor correction means 40.

ここでは、速度指令値ω7も人力されており、速度に応
じて、前段で演算された力率の値に補正を加える。その
動作について、第2図を用いながら述べる。
Here, the speed command value ω7 is also manually input, and the power factor value calculated in the previous stage is corrected according to the speed. The operation will be described using FIG.

第2図は横軸に出力周波数、縦軸に出力電圧をとった電
圧(V)−周波数(F)特性である。
FIG. 2 shows a voltage (V)-frequency (F) characteristic with the horizontal axis representing the output frequency and the vertical axis representing the output voltage.

点線が力率路1で運転したときの特性で点線より上が遅
れ力率領域、下が進み力率領域であり、又、本実施例で
は、任意の周波数f1を選び、0Hz−flHzまでの
間で、力率に補正を加える。
The dotted line shows the characteristics when operating on power factor path 1, above the dotted line is the lagging power factor region, and below the dotted line is the leading power factor region.In addition, in this example, an arbitrary frequency f1 is selected and the frequency range from 0Hz to flHz is In between, the power factor is corrected.

外部から指令値ω3が与えられると、速度に逆比例した
値、例えば 補正量(ΔP)−GI X (fl −f)ここで、Δ
Pは補正量、Glはゲイン、fは指令値ω8で与えられ
る周波数を示す。
When a command value ω3 is given from the outside, a value inversely proportional to the speed, for example, the correction amount (ΔP) - GI X (fl - f), where Δ
P is the correction amount, Gl is the gain, and f is the frequency given by the command value ω8.

ただし、f>flではΔP−0とする。However, when f>fl, ΔP-0 is set.

のように、速度が速いほど、補正量が比例的に少なくな
るような補正の方法を用いる。
A correction method is used in which the faster the speed, the smaller the correction amount is proportionally.

前段の力率演算手段34では、遅れ力率の場合、Ib−
Iaは負の値となり、電圧を下げる方向へ制御相しなけ
ればならない。逆に進み力率の場合、Ib−Iaは、正
の値となり電圧を上げる方向へ制御しなければならない
。従って、力率補正手段40では、前述の補正量ΔPを
このIb−1aに加えることにより、例えばIb−1a
−0即ち力率が略1ではΔP分だけ正の値となるため、
電圧を上げる方向、即ち力率路1では、ΔP分だけ正の
値となるため電圧を上げる方向、すなわち力率路1のポ
イントから遅れ力率へと移行する。そして、遅れ力率で
は、Ib−Iaの負の値にΔPが加わるため、負の値が
小さくなり電圧の下げる度合いが小さくなり、ΔPだけ
、そのまま遅れ力率領域に残ることになる。また、進み
力率では、Ib−1aの正の値にΔPが加わるため、電
圧の上げる度合いが大きくなり、遅れ力率領域へ移行す
る。
In the case of a lagging power factor, the power factor calculation means 34 at the front stage calculates Ib-
Ia has a negative value, and the control phase must be in the direction of lowering the voltage. Conversely, in the case of a leading power factor, Ib-Ia takes a positive value and must be controlled in the direction of increasing the voltage. Therefore, in the power factor correction means 40, by adding the above-mentioned correction amount ΔP to this Ib-1a, for example, Ib-1a
-0, that is, when the power factor is approximately 1, the value is positive by ΔP, so
In the direction of increasing the voltage, that is, in the power factor path 1, the value becomes positive by ΔP, so that the voltage shifts from the point in the direction of increasing the voltage, that is, in the power factor path 1 to a lagging power factor. In the lagging power factor, ΔP is added to the negative value of Ib-Ia, so the negative value becomes smaller and the degree of voltage reduction becomes smaller, and ΔP remains in the lagging power factor region as it is. Furthermore, in the leading power factor, ΔP is added to the positive value of Ib-1a, so the degree of voltage increase increases, and the transition to the lagging power factor region occurs.

なお、前述したように、低速はど補正量が多くなるため
、低速はど遅れ力率へと移行する度合いが増す。
Note that, as described above, since the amount of low speed side correction increases, the degree of transition to the low speed side lag power factor increases.

また、この力率補正手段40では、出力周波数がQ−f
、Hzまでの範囲で、力率に補正が加えられ、V/F演
算手段35へ出力される。V/F演算手段35では、指
令値ω1により決まる電圧値に、前述の力率の値が制御
要素に組み込まれ、演算され、指令値ω1と力率によっ
て決定された電圧が得られる。
Further, in this power factor correction means 40, the output frequency is Q-f
, Hz, the power factor is corrected and output to the V/F calculation means 35. In the V/F calculating means 35, the above-mentioned power factor value is incorporated into the control element into the voltage value determined by the command value ω1, and is calculated, thereby obtaining the voltage determined by the command value ω1 and the power factor.

そして、指令値ω5と決定された電圧の値でドライブ回
路36を制御し、モータ28を駆動する。
Then, the drive circuit 36 is controlled by the voltage value determined as the command value ω5, and the motor 28 is driven.

このときの特性を第2図の実線で示し、0〜f1Hzで
は遅れ力率運転となる。
The characteristics at this time are shown by the solid line in FIG. 2, and in the range of 0 to f1Hz, the power factor operation is delayed.

尚、本実施例においては、力率補正手段40の補正の方
法で任意の周波数をf、の1カ所としたが、これに限ら
ず補正範囲を何等分かに分けても良い。また、それぞれ
の範囲で補正の定数や補正式を変えても良い。(速度:
と逆比例した式に限らず種々の変形が可能である。)さ
らに、速度だけに、力率が関係するようにしたが、これ
に限らず速度以外のパラメータで力率の補正を加えても
何ら問題はない。さらに、Ib−IaにΔPを加えるだ
けでなく (Ib−Ia)に速度等に比例したゲインを
乗算して、制御性の向上をはかっても良い。
In the present embodiment, the correction method of the power factor correction means 40 sets the arbitrary frequency to one point f, but the correction range is not limited to this, and the correction range may be divided into several parts. Further, the correction constant and correction formula may be changed in each range. (speed:
Various modifications are possible, not limited to the formula inversely proportional to . )Furthermore, although the power factor is made to be related only to the speed, there is no problem in adding correction to the power factor using parameters other than the speed. Furthermore, in addition to adding ΔP to Ib-Ia, (Ib-Ia) may be multiplied by a gain proportional to speed, etc., to improve controllability.

[発明の効果コ 以上述べたように、本発明によれば、力率補正手段によ
りインバータ手段直流電流の検出から得られる力率に、
任意の速度領域で任意の補正量を加算するようにしたの
で、力率が異なる運転かでき、負荷が急変しても、税調
を防止ができる。
[Effects of the Invention] As described above, according to the present invention, the power factor obtained from the detection of the DC current of the inverter means by the power factor correction means,
Since an arbitrary correction amount is added in an arbitrary speed range, operation with different power factors can be performed, and even if the load suddenly changes, tax adjustment can be prevented.

従って、電動機を安定に駆動させることができるという
優れた効果を奏する。
Therefore, an excellent effect is achieved in that the electric motor can be driven stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す概要構成図、第2図
は第1図に示した実施例の電圧(V)−周波数(F)特
性を示すグラフ、第3図及び第5図は従来の電動機駆動
装置の概要構成図、第4図は、第3図に示した装置の各
部の信号波形図、第6図は、第5図に示した装置の力率
が異なる状態での直流電流信号の波形図である。 1・・・3相交流電源、 2・・・全波整流回路(コンバータ手段)、7・・・イ
ンバータ回路(インバータ手段)、1・・・電流検出回
路、 32・・・直流増幅回路、3・・・電流検出手段
、 34・・・力率演算手段、5・・V/F演算手段(
算出手段)、 0・・・力率補正手段 第2図
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a graph showing voltage (V)-frequency (F) characteristics of the embodiment shown in FIG. 1, and FIGS. The figure shows a schematic configuration diagram of a conventional electric motor drive device, FIG. 4 is a signal waveform diagram of each part of the device shown in FIG. 3, and FIG. 6 shows the device shown in FIG. 5 with different power factors. FIG. 3 is a waveform diagram of a direct current signal of FIG. DESCRIPTION OF SYMBOLS 1... Three-phase AC power supply, 2... Full-wave rectifier circuit (converter means), 7... Inverter circuit (inverter means), 1... Current detection circuit, 32... DC amplifier circuit, 3 ... current detection means, 34 ... power factor calculation means, 5 ... V/F calculation means (
Calculation means), 0...Power factor correction means Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 電源から供給される交流電力を直流に変換するコンバー
タ手段と、このコンバータ手段からの直流電力を任意の
周波数を有する交流電力に変換するインバータ手段とを
有し、前記インバータ手段からの交流電力により電動機
を可変速制御する電動機駆動装置において、前記インバ
ータ手段の直流電流を検出する電流検出手段と、この電
流検出手段からの検出信号を基に、力率を演算する力率
演算手段と、この力率演算手段からの出力信号を、予め
設定された基準値に応じて補正する力率補正手段と、こ
の力率補正手段からの出力信号と前記予め設定された基
準値とを基に出力電圧を算出する算出手段とを具備する
ことを特徴とする電動機駆動装置。
It has converter means for converting AC power supplied from a power source into DC power, and inverter means for converting the DC power from the converter means into AC power having an arbitrary frequency, and the AC power from the inverter means can be used to drive a motor. In an electric motor drive device for variable speed control of the inverter, a current detecting means for detecting the direct current of the inverter means, a power factor calculating means for calculating a power factor based on a detection signal from the current detecting means, and a power factor calculating means for calculating a power factor based on a detection signal from the current detecting means; power factor correction means for correcting the output signal from the calculation means according to a preset reference value; and calculating an output voltage based on the output signal from the power factor correction means and the preset reference value. An electric motor drive device characterized by comprising calculation means for calculating.
JP2049483A 1990-03-02 1990-03-02 Driving device for motor Pending JPH03253291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049483A JPH03253291A (en) 1990-03-02 1990-03-02 Driving device for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049483A JPH03253291A (en) 1990-03-02 1990-03-02 Driving device for motor

Publications (1)

Publication Number Publication Date
JPH03253291A true JPH03253291A (en) 1991-11-12

Family

ID=12832406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049483A Pending JPH03253291A (en) 1990-03-02 1990-03-02 Driving device for motor

Country Status (1)

Country Link
JP (1) JPH03253291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003797A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Motor apparatus capable of obtaining high efficiency and motor control method
JP2000130058A (en) * 1998-10-29 2000-05-09 Shinsei Seiki Co Ltd Control device for motor-driven shutter
EP1292007A2 (en) * 2001-09-04 2003-03-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling a synchronous motor
DE10153920B4 (en) * 2001-11-02 2004-09-09 Leopold Kostal Gmbh & Co Kg Method for operating a control device
CZ301173B6 (en) * 1998-01-30 2009-11-25 Control method of three-phase machine without a mechanical rotary sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003797A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Motor apparatus capable of obtaining high efficiency and motor control method
CZ301173B6 (en) * 1998-01-30 2009-11-25 Control method of three-phase machine without a mechanical rotary sensor
JP2000130058A (en) * 1998-10-29 2000-05-09 Shinsei Seiki Co Ltd Control device for motor-driven shutter
EP1292007A2 (en) * 2001-09-04 2003-03-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling a synchronous motor
EP1292007A3 (en) * 2001-09-04 2005-03-16 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling a synchronous motor
DE10153920B4 (en) * 2001-11-02 2004-09-09 Leopold Kostal Gmbh & Co Kg Method for operating a control device

Similar Documents

Publication Publication Date Title
KR940006168B1 (en) Device for controlling an ac motor
JP4988329B2 (en) Beatless control device for permanent magnet motor
KR102285041B1 (en) Inverter control unit and motor drive system
JP3984775B2 (en) Inverter device
KR960005691B1 (en) Power converter apparatus
JP2003061386A (en) Synchronous motor drive system
JP2009142116A (en) Position sensorless controller of permanent magnetic motor
US8928265B2 (en) Sensorless field-oriented control (FOC) without current sampling for motors
JP4583257B2 (en) AC rotating machine control device
JPH1023756A (en) Voltage inverter device and method for controlling it
JP3333442B2 (en) Drive device for brushless motor
JP2002233180A (en) Power converter
JP3547117B2 (en) Torque detection device and drive control device for AC motor
JPH03253291A (en) Driving device for motor
JP2000262088A (en) Driver for synchronous motor
JPH04364384A (en) Resistance estimation starting system for induction motor
JPH1080180A (en) Control method and equipment of synchronous motor
JPH05103498A (en) Controller for motor
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP2001078494A (en) Method of correcting dc offset of ac motor driver
JP2018121421A (en) Control apparatus of synchronous motor
JP3206866B2 (en) Inverter dead time compensation method
JP6520799B2 (en) Control device of rotating electric machine
JP2004120854A (en) Controller for motor
JPH04156292A (en) Equipment for controlling permanent magnet type motor