JPH04156292A - Equipment for controlling permanent magnet type motor - Google Patents

Equipment for controlling permanent magnet type motor

Info

Publication number
JPH04156292A
JPH04156292A JP2275376A JP27537690A JPH04156292A JP H04156292 A JPH04156292 A JP H04156292A JP 2275376 A JP2275376 A JP 2275376A JP 27537690 A JP27537690 A JP 27537690A JP H04156292 A JPH04156292 A JP H04156292A
Authority
JP
Japan
Prior art keywords
current
power factor
circuit
frequency
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275376A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nakamura
嘉伸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2275376A priority Critical patent/JPH04156292A/en
Publication of JPH04156292A publication Critical patent/JPH04156292A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove an error of a difference between DC currents, which is caused by the change of the frequency of an applied voltage, by correcting the error of changing quantity of the DC current, which is caused by the discrepancy of the timing of sensing the current, and by making the condition of sensing the current constant, and further, by controlling an inverter so that a computed power factor comes about one. CONSTITUTION:The difference between DC currents at two time points in each frequency comes into A in the case of a waveshape A, and 6 B in the case of a waveshape B. In the case of driving a motor under a fixed condition, when the frequency is changed, errors are generated in the differences A, B between the DC currents. When A and B are changed, the output value of a circuit 36 for computing a power factor comes erroneous and it is brought impossible to drive the motor so that the power factor comes about one. Therefore, the output of the circuit 36 for computing the power factor is made to be inputted to a correction circuit 37. There, the errors are removed, and A and B are so corrected that they come into identical values respectively. Then, the corrected values are inputted to a V/F computing circuit 38, and a control is so performed that the power factor comes about one.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、永久磁石形の回転子を備えた電動機を制御す
る制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a control device for controlling an electric motor having a permanent magnet rotor.

〈従来の技術) 従来の永久磁石形の回転子(ロータ)を備えた電動機と
しては、永久磁石形ブラシレスモータがある。そこで5
ここではその永久磁石形ブラシレスモータを制御する制
御装置について述べる。
(Prior Art) As a conventional electric motor equipped with a permanent magnet type rotor, there is a permanent magnet type brushless motor. So 5
Here, we will discuss the control device that controls the permanent magnet brushless motor.

まず、ブラシレスモータにおいては、固定子巻線と永久
磁石形の回転子との相対的位置をホール素子等の位1検
出素子を用いずに固定子巻線に生ずる誘起電圧を含む端
子電圧を利用して検出する方式が採用されるようになっ
てきている。
First, in brushless motors, the relative position between the stator winding and the permanent magnet rotor is determined by using the terminal voltage, including the induced voltage, generated in the stator winding, without using a 1st-order detection element such as a Hall element. Increasingly, detection methods are being adopted.

この従来例を第3図に示す、即ち、1は直流電源、2は
ブラシレスモータ3の固定予巻1.3 U 。
This conventional example is shown in FIG. 3, where 1 is a DC power source, and 2 is a fixed pre-winding 1.3 U of a brushless motor 3.

3v及び3Wに通電するためのインバータ回路、4.5
及び6は固定子巻線3U、3V及び3Wに生ずる誘起電
圧を含む端子電圧uv、vv、wvを90°移相させる
フィルタ回路、7はこれらのフィルタ回路4乃至6の出
力信号から中性点電圧NVを得る検出回路、8.9及び
10は一次遅れ要素たるフィルタ回路4乃至6の出力信
号と中性点電圧NVとを各々比較する比較器、11は制
御回路である。
Inverter circuit for energizing 3v and 3W, 4.5
and 6 are filter circuits that phase shift the terminal voltages uv, vv, wv including the induced voltages generated in the stator windings 3U, 3V, and 3W by 90°; 7 is a neutral point from the output signals of these filter circuits 4 to 6; A detection circuit for obtaining the voltage NV; 8.9 and 10 are comparators that respectively compare the output signals of the filter circuits 4 to 6, which are first-order delay elements, with the neutral point voltage NV; and 11 is a control circuit.

第4図は従来例の動作を示すタイムチャートであり、今
、これを参照してU相について考えてみる。固定子巻線
3Uに生ずる端子電圧UV(第4図(a)参照)には、
インバータ回路2の転流時に対アーム還流ダイオードの
導通によって生ずるスパイク状の電圧成分が含まれてい
る。このスパイク状の電圧成分の影響をなくすために、
端子電圧UVをフィルタ回路4によって90°位相をシ
フトさせ、第4図(b)で示すような移相電圧DU■と
する。その後、この移相電圧DUVと第4図(b)に示
す中性点電圧NVとを比較器8により比較し、第4図(
C)で示すように位置検出信号PSUを得る。他のV及
びW相についても同様であり、端子電圧VV及びWVに
基づいて比較器9及び10から第4図(d)及び(e)
で示すように位置検出信号PSv及びPSWを得る。こ
れらの位置検出信号PSU、PSV及びpswは180
°通電の120°位相の異なる信号となり、これらが制
御回路11に与えられることにより。
FIG. 4 is a time chart showing the operation of the conventional example, and now, referring to this chart, let us consider the U phase. The terminal voltage UV generated in the stator winding 3U (see Fig. 4(a)) is as follows:
It includes a spike-like voltage component caused by conduction of the pair of arm freewheeling diodes during commutation in the inverter circuit 2. In order to eliminate the influence of this spike-like voltage component,
The phase of the terminal voltage UV is shifted by 90° by the filter circuit 4 to obtain a phase-shifted voltage DU■ as shown in FIG. 4(b). Thereafter, this phase shift voltage DUV and the neutral point voltage NV shown in FIG. 4(b) are compared by the comparator 8,
A position detection signal PSU is obtained as shown in C). The same goes for the other V and W phases, and based on the terminal voltages VV and WV, comparators 9 and 10 convert
The position detection signals PSv and PSW are obtained as shown in FIG. These position detection signals PSU, PSV and psw are 180
The energization signal becomes a signal with a phase difference of 120 degrees, and these signals are given to the control circuit 11.

その制御回路11は6つの転流信号を出力してインバー
タ回路2のスイッチング素子たるトランジスタのベース
に与えられるようになる。
The control circuit 11 outputs six commutation signals to be applied to the bases of transistors serving as switching elements of the inverter circuit 2.

しかしながら、上記ブラシレスモータを制御する装置に
おいては、端子電圧UV、VV及びWvに含まれるスパ
イク状の電圧成分を除去するために90°遅れ位相特性
を有するフィルタ回路4乃至6を設けているので、フィ
ルタ回路4乃至6の時定数が大きく、このため、急激な
加減速に追従できない問題があり、また、低速領域での
位置検出が困難になる問題がある。更に、端子電圧UV
However, in the apparatus for controlling the brushless motor, filter circuits 4 to 6 having a 90° delayed phase characteristic are provided in order to remove spike-like voltage components contained in the terminal voltages UV, VV, and Wv. The time constants of the filter circuits 4 to 6 are large, so there is a problem that rapid acceleration/deceleration cannot be followed, and there is also a problem that position detection in a low speed region is difficult. Furthermore, the terminal voltage UV
.

Vv及びWVに含まれるスパイク状の電圧成分の大きさ
は、固定子巻線3U、3V及び3Wのt流部ち負荷の大
きさによって変化するので、負荷変動が大きいとフィル
タ回路4乃至6以降の信号波形に位相誤差を生ずること
になり、安定性に問題がある。
The magnitude of the spike-like voltage components included in Vv and WV changes depending on the t current of the stator windings 3U, 3V, and 3W and the magnitude of the load, so if the load fluctuation is large, filter circuits 4 to 6 and onwards This results in a phase error in the signal waveform, which poses a stability problem.

従って、低速度運転時には安定にインバータ駆動するこ
とが困難になる。
Therefore, it becomes difficult to stably drive the inverter during low speed operation.

そこで、一般に考えられる方法として、インバータ部の
直流リンクに流れる直流電流を電流検出手段により検出
し、この検出電流を基にブラシレスモータの巻線に通電
するように制御する方法がある。この方法によれば、誘
起電圧を利用していないので、−次遅れフィルタによる
安定性の問題が解決される他、上記電流検出手段がスイ
ッチング素子の過電流保護を目的とするt流検出器とし
ても適用できるので、別途過電流保護用の検出器を設け
る必要がなくなる等積々の効果を奏する。
Therefore, a commonly considered method is to detect the DC current flowing through the DC link of the inverter section using a current detection means, and to control the current to be applied to the windings of the brushless motor based on the detected current. According to this method, since the induced voltage is not used, the stability problem caused by the -order lag filter is solved, and the current detection means can be used as a t-current detector for the purpose of overcurrent protection of switching elements. Since the present invention can also be applied, there are many advantages such as eliminating the need to separately provide a detector for overcurrent protection.

この方法を適用した装置としては、第5図に示すような
ものが考えられる。
An example of a device to which this method is applied is the one shown in FIG.

即ち、三相交流電源20を整流器21及びコンデンサ2
2により、直流電力に変換し、この直流電力をインバー
タ回路23により交流電力に変換する主回路構成となっ
ている。また、制御部−では、インバータ回路23の直
流リンクに流れる直流電流を電流検出器24により検出
し、この検出された直rjLt流信号Idcは、′SS
流出出回路25与えられるようになっている。このKl
検出回路25の出力Iは、力率演算回路26へ送られる
。この力率演算回路26は、直流電流信号Idcに基づ
いて力率及び電流変化を算出し、力率信号ΔIdc及び
t流変化量ΔIdc−を出力信号としてV/F演算回路
27に与える。そして、この■/F演算回路27は、力
率信号ΔTdc、@流変化量ΔIdc″及び図示しない
設定器から与えられる速度指令値ω°に基づいて電圧信
号■及び周波数信号Fを演算し、電圧信号V及び周波数
信号Fはドライブ回路28に与えられる。ドライブ回路
28は、電圧信号■及び周波数信号Fに基づいてpwM
IIItllされた6つのドライブ信号u、v、w。
That is, the three-phase AC power supply 20 is connected to the rectifier 21 and the capacitor 2.
2 converts the DC power into DC power, and the inverter circuit 23 converts the DC power into AC power. Further, in the control unit, the current detector 24 detects the DC current flowing through the DC link of the inverter circuit 23, and the detected DC rjLt current signal Idc is expressed as 'SS
An outflow circuit 25 is provided. This Kl
The output I of the detection circuit 25 is sent to the power factor calculation circuit 26. This power factor calculation circuit 26 calculates the power factor and current change based on the DC current signal Idc, and provides the power factor signal ΔIdc and the t-current change amount ΔIdc- to the V/F calculation circuit 27 as output signals. The ■/F calculation circuit 27 calculates the voltage signal ■ and the frequency signal F based on the power factor signal ΔTdc, @flow change amount ΔIdc'' and the speed command value ω° given from a setting device (not shown). The signal V and the frequency signal F are given to the drive circuit 28.The drive circuit 28 generates pwM based on the voltage signal 2 and the frequency signal F.
IIItll six drive signals u, v, w.

X、Y、Zを出力してインバータ回路23の6個のトラ
ンジスタのベースに与えるようになっており、これによ
り、ブラシレスモータ29は速度指令値ω°の示す回転
速度で回転されるようになっている。なお、第6図に、
電流検出回路25の出力波形を示す、即ち、同図(a)
は力率が遅れた場合の出力波形、同図(b)は力率が略
1になった場合の出力波形、同図(C)は力率が進んだ
場合の出力波形を各々示しており、出力周波数の電気角
で60°毎に繰返す波形となっている。従って、この電
気角60°毎の時点(0’ 、60°。
X, Y, and Z are outputted and applied to the bases of the six transistors of the inverter circuit 23, so that the brushless motor 29 is rotated at the rotational speed indicated by the speed command value ω°. ing. Furthermore, in Figure 6,
The output waveform of the current detection circuit 25 is shown, that is, FIG.
shows the output waveform when the power factor lags, (b) shows the output waveform when the power factor becomes approximately 1, and (C) shows the output waveform when the power factor advances. , the waveform is repeated every 60 degrees in electrical angle of the output frequency. Therefore, this time point (0', 60°) every 60° electrical angle.

120°、180’ 、・・・・・・360°)に着目
し、その各時点の直前たるA点の電流値Iaと直後たる
B点の電流値1bとの差(Ib−Ia)を検出し、この
差が零即ち電流値1a、Ibが等しくなるように制御す
ることで、直流電流の変化を力率としてとらえ、第6図
(b)に示すごとく力率が略1となるようにブラシレス
モータ29を運転させることができる。
120°, 180', ...360°), and detect the difference (Ib - Ia) between the current value Ia at point A immediately before each point and the current value 1b at point B immediately after that point. However, by controlling so that this difference is zero, that is, the current values 1a and Ib are equal, changes in the DC current are treated as a power factor, and the power factor becomes approximately 1 as shown in Figure 6 (b). The brushless motor 29 can be operated.

〈発明が解決しようとする課題) しかし、上記の方法においても、印加している電圧の周
波数に関係なく、電気角60°毎の直前と直後との直流
電流の差が零または任官の値になるように制御している
ので、マイコン等を用いた離散系で構成した場合、マイ
コンの電流検出時間や制御応答時間等の制約を受け、第
2図に示すように、印加している電圧の周波数によって
検出タイミングにずれが生じ、同一条件で電流が検出で
きず、直流電流の差に誤差が生じて力率を略1に運転す
ることができない問題が生じる。
(Problem to be Solved by the Invention) However, even in the above method, the difference in DC current between immediately before and after every 60 degrees of electrical angle is zero or the appointed value, regardless of the frequency of the applied voltage. Therefore, when configured with a discrete system using a microcomputer, there are constraints such as the current detection time and control response time of the microcomputer, and as shown in Figure 2, the applied voltage There is a problem in that the detection timing shifts depending on the frequency, current cannot be detected under the same conditions, and an error occurs in the difference in DC current, making it impossible to operate with a power factor of approximately 1.

そこで、本発明は、上記問題点を鑑み、印加している電
圧の周波数によって生じる直流電流の差の誤差を除去す
る永久磁石形電動機の制御装置を提供することをその目
的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a control device for a permanent magnet motor that eliminates the error in the difference in direct current caused by the frequency of the applied voltage.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明は、インバータ回路
の直流電流の変化量を検出する電流検出手段と、この電
流検出手段の検出信号を基に、力率を演算する第1の演
算手段と、この第1の演算手段の出力信号を基に、前記
電流検出手段による電流検出タイミングのずれに起因す
る前記直流電流の変化量の誤差を補正する補正手段と、
少なくともこの補正手段の出力信号及び前記第1の演算
手段の出力信号とを基に、永久磁石形電動機の制御量を
演算する第2の演算手段と、この第2の演算手段を基に
、インバータ回路を制御するインバータ制御手段とを具
備したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides current detection means for detecting the amount of change in direct current of an inverter circuit, and a detection signal of the current detection means. Based on the first calculation means for calculating the power factor, and based on the output signal of the first calculation means, the error in the amount of change in the DC current due to the deviation in the current detection timing by the current detection means is calculated. a correction means for correcting;
a second calculation means for calculating the control amount of the permanent magnet motor based on at least the output signal of the correction means and the output signal of the first calculation means; The present invention is characterized by comprising an inverter control means for controlling the circuit.

(作 用) このように構成された本発明の永久磁石形電動機の制四
装!によれば、インバータ回路の直流側の$渣の変化量
を検出し、この検出した直riL電流の変化量を基に力
率を演算する際、電流検出タイミングのずれに起因する
直流電流の変化量の誤差を補正し、trX検出の条件を
一定にして、演算した力率が略1となるようにインバー
タを制御するので、印加している電圧の周波数に関係な
く、常に力率が略1となるように永久磁石形電動機を制
御できる。
(Function) The permanent magnet type electric motor of the present invention configured as described above has four functions! According to , when detecting the amount of change in the $ residue on the DC side of an inverter circuit and calculating the power factor based on the amount of change in the detected direct current, changes in the DC current due to a shift in current detection timing are detected. The inverter is controlled so that the calculated power factor is approximately 1 by correcting the quantity error and keeping the conditions for trX detection constant, so the power factor is always approximately 1 regardless of the frequency of the applied voltage. A permanent magnet motor can be controlled so that

(実施例) 以下、本発明の実施例を図面を用いて詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、第1図に従って、全体の構成について述べる。First, the overall configuration will be described with reference to FIG.

三相交流電源30からの交流電力を直流電力に変換する
整流器31と、この整流器31からの直流電力を平滑化
するコンデンサ32と、このコンデンサ32からの平滑
化された直流電力を任!の周波数を有する交流電力に変
換するインバータ回路33とからなる主回路を構成して
いる。また、制御部は、インバータ回路33の直流リン
クに流れる直流電流を検出するt流出出品34と、この
検出された直流電流信号1dcを増幅及びサンプリング
及ホールド等の処理をするt流出出回路35と、このt
流出出回路35からの出力Iに基づいて力率及び電流変
化を算出し、力率信号ΔIdC及び電流変化量ΔIdc
−を出力する力率演算回路36と、この力率演算回路3
6がらの力率信号ΔIdc及びta変化量ΔIdc−と
図示しない設定器から与えられる速度指令値ω°に基づ
いて力率演算回路36からの出力の誤差を除去する補正
回路37と、この補正回路37からの出力を基に、電圧
信号V及び周波数信号Fを演算する■/F演算回路38
と、この電圧信号■及び周波数信号Fに基づいてPWM
IIImされた6つのドライブ信号U、V、W、X、Y
、Zを生成するドライブ回路39とから構成されている
A rectifier 31 converts the AC power from the three-phase AC power supply 30 into DC power, a capacitor 32 smoothes the DC power from the rectifier 31, and the smoothed DC power from the capacitor 32 is in charge! The main circuit includes an inverter circuit 33 that converts AC power to AC power having a frequency of . The control unit also includes a t-outflow circuit 34 that detects the DC current flowing in the DC link of the inverter circuit 33, and a t-outflow circuit 35 that processes the detected DC current signal 1dc by amplifying, sampling, holding, etc. , this t
The power factor and current change are calculated based on the output I from the outflow circuit 35, and the power factor signal ΔIdC and the current change amount ΔIdc are calculated.
A power factor calculation circuit 36 that outputs − and this power factor calculation circuit 3
a correction circuit 37 that removes an error in the output from the power factor calculation circuit 36 based on the power factor signal ΔIdc and the amount of change in ta ΔIdc- from 6 and the speed command value ω° given from a setting device not shown; ■/F calculation circuit 38 that calculates the voltage signal V and frequency signal F based on the output from 37
Based on this voltage signal ■ and frequency signal F, PWM
6 drive signals U, V, W, X, Y
, and a drive circuit 39 that generates Z.

次に、第2図に示した電流波形を用いて、本実施例の主
たる作用について説明すると、第2図の波形Aは、同図
波形Bよりも印加している電圧の周波数が低いときの直
流電流波形である。各々波形AのT1における電流値を
A I 、 T 2における電流値をA2、波形BのT
、における電流値をB1、T、における電流値をB、と
すると、各周波数における直流電流の差は、波形Aの場
合、A。
Next, the main effect of this embodiment will be explained using the current waveform shown in FIG. 2. Waveform A in FIG. It is a direct current waveform. The current value at T1 of waveform A is A I , the current value at T2 is A2 , and T of waveform B
, the current value at T is B1, and the current value at T is B, then the difference in DC current at each frequency is A in the case of waveform A.

−AI  (=ΔAとする)、波形Bの場合、Bx−B
、(=ΔBとする)となる。
-AI (=ΔA), for waveform B, Bx-B
, (=ΔB).

同一条件でモータを運転しているときに、周波数が興な
る場合、直流電流の差ΔA、ΔBに誤差が生じることに
なる。ΔAとΔBとが異なると、力率演算回路36の出
力が、誤差を含んだ値となり、力率が略1となるように
運転できなくなる。
If the frequency increases when the motor is operated under the same conditions, an error will occur in the DC current differences ΔA and ΔB. If ΔA and ΔB are different, the output of the power factor arithmetic circuit 36 will be a value containing an error, making it impossible to operate with a power factor of approximately 1.

従って、力率演算回路36の出力は、補正回路37に入
力され、そこで上記誤差を除去し、ΔAとΔBとが同一
値となるよう補正され、この補正値がV/F演算回路3
8へ入力され、力率が略1となるような制御を行なう。
Therefore, the output of the power factor calculation circuit 36 is input to the correction circuit 37, where the above-mentioned error is removed and correction is made so that ΔA and ΔB become the same value.
8 and performs control such that the power factor becomes approximately 1.

更に、補正回路37の動作について詳述する。Furthermore, the operation of the correction circuit 37 will be explained in detail.

力率演算回路36の出力と図示しない設定器から与えら
れる速度指令値ω°とを入力信号とし、下式(1)のよ
うな任意の関数で上記誤差を除去する。
Using the output of the power factor calculation circuit 36 and the speed command value ω° given from a setting device (not shown) as input signals, the above error is removed by an arbitrary function such as the following equation (1).

PFouy =F (Ill、IA、PF、 ω” )
・・・・・・(1) (但し、PFOUT:補正回路37の出力、F:任意の
関数、PF:力率演算回路36の出力。
PFouy = F (Ill, IA, PF, ω”)
......(1) (However, PFOUT: Output of the correction circuit 37, F: Any function, PF: Output of the power factor calculation circuit 36.

■A:を気負60゛直前の電流値、1.を気力60°直
後の電流値、ω0:速度指令値)例えば、第2図の場合
、波形A、BともT、〜T2の間の変化が、直線的に変
化していると考えれば、波形Aの周波数指令値をωa、
波形Bの周波数指令値をωbとすると、波形Bの電流差
(ΔB゛とする)は、下式(2)で算出できる。
■A: The current value just before the negative 60゜, 1. (current value immediately after 60 degrees of force, ω0: speed command value) For example, in the case of Fig. 2, if we consider that the changes between T and T2 for both waveforms A and B are linear, the waveform The frequency command value of A is ωa,
Assuming that the frequency command value of waveform B is ωb, the current difference (denoted as ΔB′) of waveform B can be calculated using the following equation (2).

ΔB−=ΔBX(ωa/ωb) ・・・・・・(2)こ
れにより、ΔA=ΔB“となり、印加している電圧の周
波数に無関係に直流電流の差を力率として考えることが
できる。
ΔB−=ΔBX(ωa/ωb) (2) As a result, ΔA=ΔB”, and the difference in DC current can be considered as a power factor regardless of the frequency of the applied voltage.

なお、計算が複霧な場合、テーブルを作成しておき、印
加している電圧の周波数に対して、任意の値を力率演算
回路36の出力に加算してもよい。
Note that if the calculation is complex, a table may be created and an arbitrary value may be added to the output of the power factor calculation circuit 36 for the frequency of the applied voltage.

従って、補正回路37では、電気角60”毎の電流値、
力率演算回路36の出力、図示しない設定器から与えら
れる速度指令値ω0の3者に関係した関数Fを用いて、
印加している電圧の周波数に無関係な力率を演算し、V
/F演夏回路38へ出力する。そして、V/F演算回路
38では、その力率を基に、力率が略1となるようにl
II御が実行される。
Therefore, in the correction circuit 37, the current value for every 60" electrical angle,
Using a function F related to the output of the power factor calculation circuit 36 and the speed command value ω0 given from a setting device (not shown),
Calculate the power factor independent of the frequency of the applied voltage, and calculate V
/F is output to the summer circuit 38. Based on the power factor, the V/F calculation circuit 38 calculates l so that the power factor becomes approximately 1.
II control is executed.

なお、上記実施例においては、ハードウェア或いはソフ
トウェアのいずれでも実現可能である。
Note that the above embodiments can be implemented using either hardware or software.

[発明の効果] 以上述べたように、本発明によれば、補正手段により電
流検出の誤差を補正するようにしたので、印加している
電圧の周波数に関係なく、常に力率が略1となるように
永久磁石層電動機を制御することができる。
[Effects of the Invention] As described above, according to the present invention, since the error in current detection is corrected by the correction means, the power factor is always approximately 1 regardless of the frequency of the applied voltage. The permanent magnet layer motor can be controlled so that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す全体構成図、第2図
は、印加している電圧の周波数による電流検出の誤差を
示す直流電流波形図、第3図は、従来の永久磁石層電動
機の制御装!を全体構成図、第4図は、第3図に示した
永久磁石層電動機の制御装置の動作を示すタイムチャー
ト、第5図は、従来の永久磁石層電動機の制御装置を全
体構成図、第6図は、第5図に示した永久磁石層電動機
の制御装置の動作を示すタイムチャートである。 33・・・・・・インバータ回路、34・・・・・・電
流出出品。 35・・・・・電流検出回路、36・・・・力率演算回
路。 37・・・・・・補正回路、38・・・・V/F演算回
路。 39・・・・・・ドライブ回路。 40・・・・・・ブラシレスモータ
Fig. 1 is an overall configuration diagram showing one embodiment of the present invention, Fig. 2 is a DC current waveform diagram showing errors in current detection depending on the frequency of the applied voltage, and Fig. 3 is a conventional permanent magnet. Control system for layer motor! 4 is a time chart showing the operation of the control device for the permanent magnet layer motor shown in FIG. 3. FIG. 5 is an overall configuration diagram of the conventional control device for the permanent magnet layer motor. FIG. 6 is a time chart showing the operation of the control device for the permanent magnet layer motor shown in FIG. 33... Inverter circuit, 34... Current exhibition. 35... Current detection circuit, 36... Power factor calculation circuit. 37... Correction circuit, 38... V/F calculation circuit. 39... Drive circuit. 40...Brushless motor

Claims (1)

【特許請求の範囲】[Claims]  直流電源からの出力を任意の周波数を有する交流電力
に変換するインバータ手段と、このインバータ手段の直
流電流の変化量を検出する電流検出手段と、この電流検
出手段の検出信号を基に、力率を演算する第1の演算手
段と、この第1の演算手段の出力信号を基に、前記電流
検出手段による電流検出タイミングのずれに起因する前
記直流電流の変化量の誤差を補正する補正手段と、少な
くともこの補正手段の出力信号及び前記第1の演算手段
の出力信号とを基に、永久磁石形電動機の制御量を演算
する第2の演算手段と、この第2の演算手段を基に、イ
ンバータ手段を制御するインバータ制御手段とを具備し
たことを特徴とする永久磁石形電動機の制御装置。
An inverter means that converts the output from a DC power supply into AC power having an arbitrary frequency, a current detection means that detects the amount of change in the DC current of this inverter means, and a power factor is determined based on the detection signal of this current detection means. and a correction means for correcting an error in the amount of change in the direct current caused by a difference in current detection timing by the current detection means, based on the output signal of the first calculation means. , a second calculation means for calculating the control amount of the permanent magnet electric motor based on at least the output signal of the correction means and the output signal of the first calculation means, and based on the second calculation means, 1. A control device for a permanent magnet motor, comprising: inverter control means for controlling an inverter means.
JP2275376A 1990-10-16 1990-10-16 Equipment for controlling permanent magnet type motor Pending JPH04156292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275376A JPH04156292A (en) 1990-10-16 1990-10-16 Equipment for controlling permanent magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275376A JPH04156292A (en) 1990-10-16 1990-10-16 Equipment for controlling permanent magnet type motor

Publications (1)

Publication Number Publication Date
JPH04156292A true JPH04156292A (en) 1992-05-28

Family

ID=17554623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275376A Pending JPH04156292A (en) 1990-10-16 1990-10-16 Equipment for controlling permanent magnet type motor

Country Status (1)

Country Link
JP (1) JPH04156292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003797A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Motor apparatus capable of obtaining high efficiency and motor control method
EP1777530A1 (en) * 2005-10-19 2007-04-25 ABB Oy Method and arrangement for measuring inverter output currents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003797A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Motor apparatus capable of obtaining high efficiency and motor control method
EP1777530A1 (en) * 2005-10-19 2007-04-25 ABB Oy Method and arrangement for measuring inverter output currents
US7508688B2 (en) 2005-10-19 2009-03-24 Abb Oy Method and arrangement for measuring output phase currents of a voltage source inverter under a load

Similar Documents

Publication Publication Date Title
EP0629038B1 (en) AC motor control
US4767976A (en) Control system for PWM inverter
JP3257566B2 (en) PG-less vector control device for induction motor
KR960005691B1 (en) Power converter apparatus
JPH09172791A (en) Failure detection device for a.c. motor control circuit
CN111656669B (en) Control device
JP5351390B2 (en) Power converter
JP2005065439A (en) Control method for voltage-type inverter
JPH05260792A (en) Current controller for multiwinding ac motor
JP2002233180A (en) Power converter
JPH07170799A (en) Method and apparatus for controlling a.c. motor and correcting method for motor current
JPH05103498A (en) Controller for motor
JPH04156292A (en) Equipment for controlling permanent magnet type motor
JPH03253291A (en) Driving device for motor
JPH1080180A (en) Control method and equipment of synchronous motor
JP3173022B2 (en) Control device for brushless DC motor
JP3206866B2 (en) Inverter dead time compensation method
JP3247252B2 (en) Control device for power converter
JP2004320853A (en) Power converter
JP2644750B2 (en) Control method of voltage source inverter
JP6520799B2 (en) Control device of rotating electric machine
JPH03207296A (en) Driver for brushless motor
JP2003259698A (en) Method for correcting gain in three-phase current detector
CN110999069A (en) AC rotating machine control device and electric power steering control device
JPH07245979A (en) Speed controller for a.c. motor