JPH04185296A - Dc brushless motor controller - Google Patents

Dc brushless motor controller

Info

Publication number
JPH04185296A
JPH04185296A JP2315434A JP31543490A JPH04185296A JP H04185296 A JPH04185296 A JP H04185296A JP 2315434 A JP2315434 A JP 2315434A JP 31543490 A JP31543490 A JP 31543490A JP H04185296 A JPH04185296 A JP H04185296A
Authority
JP
Japan
Prior art keywords
commutation
timing
rotor
advance angle
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2315434A
Other languages
Japanese (ja)
Inventor
Norio Ito
伊東 紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2315434A priority Critical patent/JPH04185296A/en
Publication of JPH04185296A publication Critical patent/JPH04185296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To commutate currents applied to stator windings always at the most appropriate position by a method wherein a varying means which varies the timing of position detection signals in accordance with the revolution of a rotor and the currents of the stator windings is provided. CONSTITUTION:A three-phase logic circuit 1 generates commutation position signals for the respective windings 7, 8 and 9 of a stator in accordance with the respective position signals of a rotor given by Hall sensors 10, 11 and 12. The commutation position signals are inputted to a lead angle adjusting circuit 2 and, after the commutation timing its adjusted, the powers of the commutation position signals are amplified by a power drive circuit 5 to drive the stator windings. Two factors with which the lead angle adjusting circuit 2 adjusts the timing are stator winding current information obtained by motor current detectors 4, 5 and 6 and rotor revolution information obtained by the Hall sensors. The required data processing is performed in the lead angle adjusting circuit 2. With this constitution, even if a motor revolution is varied and a load torque is varied, the most appropriate commutation timing can be always obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流ブラシレスモータの固定子巻線への転流タ
イミングを最適化するための制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for optimizing the timing of commutation to the stator windings of a DC brushless motor.

〔従来の技術〕[Conventional technology]

永久磁石で構成される回転子の位置検出信号は一般的に
はホールセンサ等の位置検出装置を用いて作られ、所定
の固定子巻線の転流タイミング得ていた。ところで、固
定子巻線への転流タイミングは巻線のインダクタンスに
よる電流の遅れや固定子巻線に電流が流れることによっ
て生ずる電機子反作用による合成磁界の偏り等の影響に
て、調整する必要があった。そこで従来は回転子の位置
検出装置の機械的位置調整をしたり、位置検出装置の出
力信号を電気的に調整することによって最適位置に合わ
せ込んでいた。
A position detection signal for a rotor composed of permanent magnets is generally generated using a position detection device such as a Hall sensor to obtain a predetermined commutation timing of the stator winding. By the way, the timing of commutation to the stator windings needs to be adjusted due to the effects of current delays due to the inductance of the windings and bias in the composite magnetic field due to armature reaction caused by current flowing through the stator windings. there were. Conventionally, the optimum position has been achieved by mechanically adjusting the position of the rotor's position detecting device or electrically adjusting the output signal of the position detecting device.

〔発明が解法しようとする課題〕[Problem that the invention attempts to solve]

しかし、回転子の回転速度を可変速で使用したり、モー
タの負荷が可変型で固定子巻線電流が変化する場合、最
適位置に合わせ込まれたはずの位置検出装置の出力信号
も最適位置ではなくなってしまい、結果としてモータ効
率の悪化や起動不良等の問題点を有していた。
However, if the rotor rotation speed is variable, or if the motor load is variable and the stator winding current changes, the output signal of the position detection device that should have been adjusted to the optimal position may also be adjusted to the optimal position. As a result, there were problems such as deterioration of motor efficiency and startup failure.

本発明はこのような従来技術の問題点を解法するもので
、その目的とするところは回転子の回転速度が可変速で
あっても、固定子巻線電流が変化しても常に最適位置に
て同定子巻線の転流を行なう制御装置を提供するもので
ある。
The present invention solves these problems in the prior art, and its purpose is to always maintain the optimum position even if the rotor rotational speed is variable or the stator winding current changes. The present invention provides a control device that performs commutation of an identifer winding.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の直流ブラシレスモータの制御装置は固定子巻線
への転流位置を回転子の位置検出信号に基づいて制御す
る直流ブラシレスモータ制御装置において、前記回転子
の回転速度と前記固定子巻線の電流に応じて前記位置検
出信号のタイミングを可変する可変手段を備えたことを
特徴とする。
A DC brushless motor control device according to the present invention is a DC brushless motor control device that controls a commutation position to a stator winding based on a rotor position detection signal, the rotational speed of the rotor and the stator winding. The present invention is characterized by comprising variable means for varying the timing of the position detection signal in accordance with the current.

〔実施例〕〔Example〕

第1図に本発明の1実施例である直流ブラシレスモータ
の制御装置のブロック図を示す。同図において直流ブラ
シレスモータ13には3相バイポーラモータを使用して
おり、回転子の位置検出装置としてはホールセンサ10
,11.12を使用している。ホールセンサから得られ
た回転子の位置信号は3相ロジック回路1を通り固定子
巻線7゜8.9の各巻線への転流位置信号を作り出す。
FIG. 1 shows a block diagram of a control device for a DC brushless motor, which is an embodiment of the present invention. In the figure, a three-phase bipolar motor is used as the DC brushless motor 13, and a Hall sensor 10 is used as the rotor position detection device.
, 11.12 are used. The rotor position signal obtained from the Hall sensor passes through a three-phase logic circuit 1 to produce a commutated position signal to each winding of the stator winding 7°8.9.

転流位置信号は進角調整回路2に入力され転流タイミン
グが調整された後、パワードライブ回路3にて電力増幅
され固定子巻線を駆動する。進角調整回路2では以下の
様な処理が行われる。進角調整回路2においてタイミン
グを調整する因子はモータ電流検出器4. 5. 6に
て得られる固定子巻線電流情報Miとホールセンサから
得られる回転子の回転速度情報りの2つである。進角調
整回路2では以下の演算が行なわれる。進角Laiに対
する前記固定子巻線電流情報Miは(1)式にて示され
る。
The commutation position signal is input to the advance angle adjustment circuit 2 to adjust the commutation timing, and then power is amplified by the power drive circuit 3 to drive the stator winding. The advance angle adjustment circuit 2 performs the following processing. The factor that adjusts the timing in the advance angle adjustment circuit 2 is the motor current detector 4. 5. These are the stator winding current information Mi obtained in step 6 and the rotor rotational speed information obtained from the Hall sensor. The following calculations are performed in the advance angle adjustment circuit 2. The stator winding current information Mi with respect to the advance angle Lai is expressed by equation (1).

La1=Ki*Mi                
       (1)但しKiは比例係数 進角Lawに対する前記回転速度情報りは(2)式にて
示される。
La1=Ki*Mi
(1) However, Ki is a proportional coefficient.The rotational speed information with respect to the advance angle Law is expressed by equation (2).

Law=Kw*Mw                
        (2)但しKwは比例係数 また、全進角Laは進角Laiと進角Lawの和となる
Law=Kw*Mw
(2) However, Kw is a proportional coefficient, and the total advance angle La is the sum of advance angle Lai and advance angle Law.

第2図には前記進角調整回路の具体的な回路ズを示す。FIG. 2 shows specific circuits of the advance angle adjustment circuit.

また、第3図には第2図の1相分の動作を説明するため
の波形図を示す。モータ電流検出器より得られた固定子
巻線電流情報Miと速度検出器より得られた回転速度情
報Mwは前記(1)、(2)式にて示されたように、各
々Ki、Kwの比例係数を持つ乗算器14.15を通っ
た後、加算器16にて加算され、全進角値Laとなる。
Further, FIG. 3 shows a waveform diagram for explaining the operation for one phase in FIG. 2. As shown in equations (1) and (2) above, the stator winding current information Mi obtained from the motor current detector and the rotational speed information Mw obtained from the speed detector are Ki and Kw, respectively. After passing through multipliers 14 and 15 having proportional coefficients, the signals are added in an adder 16 to obtain the total advance angle value La.

一方、ホールセンサから得られた3相位置信号101.
102.103は鋸歯状波発生回路17.18.19を
通り鋸歯状波104,105,106となり比較器20
,21.22にて前述の全進角Laと比較され107゜
108.109となり、フリップフロップ23゜24.
25を通る事によって全進角値Laに応じた遅延量が新
たな3相位置信号113,114,115に与えられる
。第3図にて分かるように回転速度が低く固定子巻線電
流が少ないA区間では比較器20,21.22の比較レ
ベルが低く、即ち進角が少ないために3相位置信号の遅
延量は少なく、回転速度が高く固定子巻線電流が多いB
区間では比較レベル110が高いために3相位置信号の
遅延量は大きい。ここで加算器16より得られる全進角
Laの上限値、及び下限値は破線111゜112にて示
される。第4図には進角調整回路の別の実施例を示す。
On the other hand, the three-phase position signal 101. obtained from the Hall sensor.
102 and 103 pass through sawtooth wave generation circuits 17, 18, and 19 and become sawtooth waves 104, 105, and 106, and comparator 20
, 21.22, the total advance angle La is compared with the above-mentioned total advance angle La to be 107°108.109, and the flip-flop is 23°24.
25, a delay amount corresponding to the total advance value La is given to the new three-phase position signals 113, 114, and 115. As can be seen in Fig. 3, in section A where the rotation speed is low and the stator winding current is small, the comparison level of comparators 20, 21, and 22 is low, that is, the advance angle is small, so the delay amount of the three-phase position signal is B with low rotation speed and high stator winding current
In the section, since the comparison level 110 is high, the delay amount of the three-phase position signal is large. Here, the upper limit value and lower limit value of the total advance angle La obtained from the adder 16 are indicated by broken lines 111° and 112. FIG. 4 shows another embodiment of the advance angle adjustment circuit.

モータ電流検出器と速度検出器より得られた各情報20
1,202はA/D変換器2’6.27に入力されディ
ジタル信号203゜204となりCPU28に入力され
る。3相ロジック回路29より得られる3相位置信号2
05゜206.207は直接CPO28に入力される。
Each piece of information obtained from the motor current detector and speed detector 20
1,202 is input to the A/D converter 2'6.27, and becomes a digital signal 203.degree.204, which is input to the CPU28. 3-phase position signal 2 obtained from 3-phase logic circuit 29
05°206.207 is directly input to the CPO28.

CPU28内では前記(1)、(2)式の演算が行なわ
れ208.209,210を出力する。本発明の直流ブ
ラシレスモータ制御装置は全てのモータにその効果が期
待できるが、磁石の飛散を防ぐために磁石の外周に鉄片
を設けた構造では本発明の効果が最も期待できる。本発
明の応用分野としては進角の微小調整が必要な小型モー
タ、超高速回転形モータ、磁石飛散防止用鉄片を配する
モータ、更には進角調整をしてモータを常に最高効率点
で使用する電気自動車用モータ等である。また本発明で
は各種情報をもとに自動的に進角制御を行なう例を示し
たが、機械的な位置調整を不要にする為に進角調整回路
を外部より制御する事も可能である。
In the CPU 28, calculations of equations (1) and (2) are performed and outputs 208, 209, and 210. Although the direct current brushless motor control device of the present invention can be expected to be effective for all types of motors, the effects of the present invention can be expected to be most effective in a structure in which an iron piece is provided around the outer periphery of the magnet to prevent the magnet from scattering. Fields of application of the present invention include small motors that require fine adjustment of the advance angle, ultra-high speed rotating motors, motors equipped with iron pieces to prevent magnets from scattering, and motors that are always operated at their highest efficiency by adjusting the advance angle. electric vehicle motors, etc. Further, in the present invention, an example has been shown in which advance angle control is automatically performed based on various information, but it is also possible to control the advance angle adjustment circuit from outside in order to eliminate the need for mechanical position adjustment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば回転数、電流の二系統の情報をもとに進
角制鄭を行なっている為に、モータ回転数を可変速にて
使用したり、負荷トルクが可変しても常に、最適転流タ
イミングが得られモータ効率を最高点で使用することが
可能となった。また、起動特性においても、進角調整に
より常に安定した起動性が得られ信頼性を大きく向上す
ることができた。
According to the present invention, since advance angle control is performed based on information from two systems: rotation speed and current, even if the motor rotation speed is used at variable speed or the load torque is varied, the advance angle is always controlled. The optimum commutation timing has been obtained, making it possible to use the motor at its highest efficiency. Furthermore, in terms of starting characteristics, by adjusting the advance angle, stable starting performance was always obtained, and reliability was greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例である直流ブラシレスモータ
制御装置のブロック図。 第2図は第1図記載の進角調整回路の具体的な回路図。 第3図は第2図の動作を説明する為の波形図。 第4図は進角調整回路の他の実施例を示すブロック図。 1−−−−−−−−−−−  3相ロジック回路2−−
−−−−−−−−一    進角調整回路3−−−−−
−−−−−− パワードライブ回路4、 5. 6−−
−−−−−  モータ電流検出器7、 8. 9−−−
−−−一     固定子巻線10、 11. 12−
−−−    ホールセンサ13−−−−−−−−−一
直流ブラシレスモータ以上 出願人 セイコーエプソン株式会社
FIG. 1 is a block diagram of a DC brushless motor control device that is an embodiment of the present invention. FIG. 2 is a specific circuit diagram of the advance angle adjustment circuit shown in FIG. 1. FIG. 3 is a waveform diagram for explaining the operation of FIG. 2. FIG. 4 is a block diagram showing another embodiment of the advance angle adjustment circuit. 1--------3-phase logic circuit 2--
−−−−−−−−1 Advance angle adjustment circuit 3−−−−−
-------- Power drive circuit 4, 5. 6--
------ Motor current detector 7, 8. 9---
---1 Stator winding 10, 11. 12-
−−− Hall sensor 13−−−−−−−−−−1 DC brushless motor or more Applicant Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims]  固定子巻線への転流位置を回転子の位置検出信号に基
づいて制御する直流ブラシレスモータ制御装置において
、前記回転子の回転速度と前記固定子巻線の電流に応じ
て前記位置検出信号のタイミングを可変する可変手段を
備えたことを特徴とする直流ブラシレスモータ制御装置
In a DC brushless motor control device that controls a commutation position to a stator winding based on a rotor position detection signal, the position detection signal is controlled according to the rotational speed of the rotor and the current in the stator winding. A direct current brushless motor control device characterized by comprising variable means for varying timing.
JP2315434A 1990-11-20 1990-11-20 Dc brushless motor controller Pending JPH04185296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315434A JPH04185296A (en) 1990-11-20 1990-11-20 Dc brushless motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315434A JPH04185296A (en) 1990-11-20 1990-11-20 Dc brushless motor controller

Publications (1)

Publication Number Publication Date
JPH04185296A true JPH04185296A (en) 1992-07-02

Family

ID=18065329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315434A Pending JPH04185296A (en) 1990-11-20 1990-11-20 Dc brushless motor controller

Country Status (1)

Country Link
JP (1) JPH04185296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346711A1 (en) * 2003-10-08 2005-05-25 Minebea Co., Ltd. Method for commutating a brushless DC motor
JP2007118823A (en) * 2005-10-28 2007-05-17 Nsk Ltd Electric power steering control device
CN110247588A (en) * 2019-05-31 2019-09-17 惠州市蓝微电子有限公司 A kind of mono pulse control method and system of hall electric machine
CN114204856A (en) * 2021-12-16 2022-03-18 西安拓尔微电子有限责任公司 Method and device for determining rotor position in brushless motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346711A1 (en) * 2003-10-08 2005-05-25 Minebea Co., Ltd. Method for commutating a brushless DC motor
JP2007118823A (en) * 2005-10-28 2007-05-17 Nsk Ltd Electric power steering control device
CN110247588A (en) * 2019-05-31 2019-09-17 惠州市蓝微电子有限公司 A kind of mono pulse control method and system of hall electric machine
CN110247588B (en) * 2019-05-31 2022-02-22 惠州市蓝微电子有限公司 Single-pulse control method and system of Hall motor
CN114204856A (en) * 2021-12-16 2022-03-18 西安拓尔微电子有限责任公司 Method and device for determining rotor position in brushless motor
CN114204856B (en) * 2021-12-16 2023-08-11 拓尔微电子股份有限公司 Method and device for determining rotor position in brushless motor

Similar Documents

Publication Publication Date Title
US6339308B2 (en) Vector control method for synchronous reluctance motor
US5701065A (en) Method and apparatus for controlling synchronous motor
US6646407B2 (en) Electric motor control having DC-DC converter and method of using same
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
JPS627396A (en) Method and apparatus for operation at fixed horse power
Sundeep et al. Robust position sensorless technique for a PMBLDC motor
EP2678937A2 (en) Method and system for controlling an electric motor with variable switching frequency at variable operating speeds
US6433503B1 (en) Synchronous motors and control circuits therefor
JPH06165561A (en) Controller for synchronous motor
Petkar et al. A novel duty-controlled DTC of a surface PMSM drive with reduced torque and flux ripples
JPH11299297A (en) Controller for permanent magnet synchronous motor
US6566829B1 (en) Method and apparatus for torque control of a machine
JP3353586B2 (en) Drive device for brushless DC motor
JPH08266099A (en) Controller for permanent-magnet synchronous motor
JPH04185296A (en) Dc brushless motor controller
JP3656944B2 (en) Control method of synchronous motor
JP2004320847A (en) Method of controlling stepping motor, and stepping motor controller
Zhang et al. Double vector based model predictive torque control for SPMSM drives with improved steady-state performance
JP3691269B2 (en) Motor control device
Colby Classification of inverter driven permanent magnet synchronous motors
JP4572026B2 (en) Driving device and driving method of brushless DC motor
Wu et al. Sensorless based model predictive current control with PM flux-linkage immunity for permanent magnet synchronous machines
JPH1080180A (en) Control method and equipment of synchronous motor
JP2000358400A (en) Control device of synchronous electric motor
US6408130B1 (en) Electric drive system with an electronically commuted DC motor in order to reduce torque irregularities