JP3796556B2 - Method and apparatus for controlling magnet-embedded synchronous motor - Google Patents

Method and apparatus for controlling magnet-embedded synchronous motor Download PDF

Info

Publication number
JP3796556B2
JP3796556B2 JP14398897A JP14398897A JP3796556B2 JP 3796556 B2 JP3796556 B2 JP 3796556B2 JP 14398897 A JP14398897 A JP 14398897A JP 14398897 A JP14398897 A JP 14398897A JP 3796556 B2 JP3796556 B2 JP 3796556B2
Authority
JP
Japan
Prior art keywords
axis current
command
current command
motor
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14398897A
Other languages
Japanese (ja)
Other versions
JPH10337100A (en
Inventor
利明 出光
尚武 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP14398897A priority Critical patent/JP3796556B2/en
Publication of JPH10337100A publication Critical patent/JPH10337100A/en
Application granted granted Critical
Publication of JP3796556B2 publication Critical patent/JP3796556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、回転子内部に永久磁石が埋め込まれた構造(例えば、実開平4−28745号公報、実開平3−97354号公報参照)を有する同期電動機である磁石埋込型同期電動機の速度とトルクの制御に関し、特に軽負荷時の制御の改善に関する。
【0002】
【従来の技術】
図3は従来の磁石埋込型同期電動機の制御装置のブロック図である。図3のような構成において、先ずdq軸電流制御部511に、回転検出器503によって検出された磁石埋込型同期電動機502の回転信号がケーブル509を介して入力され、回転信号から回転位置信号演算器516により磁極の回転角度θが演算され、演算結果が座標変換器A515及び座標変換器B512へ供給される。
【0003】
座標変換器A515では回転位置信号演算器516からの磁極の回転角度θを用いて、電流検出器506により検出した磁石埋込型同期電動機502に流れる3相の電流のうちu相及びv相に流れる電流iu 、iv が2相dq軸座標の信号Id 、Iq に変換される。
【0004】
次に、アプリケーション制御部521ではq軸電流指令演算器526及びd軸電流指令演算器527で演算されたq軸電流指令Iq * 及びd軸電流指令値Id * に対し、座標変換器A515から出力されたq軸電流Iq 及びd軸電流Id を帰還することによって得られるq軸電流制御偏差信号がq軸電流制御器513にd軸電流制御偏差信号がd軸電流制御器514に夫々入力される。
【0005】
さらに、速度検出信号演算器517により、回転検出器503からの回転信号に基づいて電動機回転速度ωr を得、電動機回転速度ωr 、q軸電流指令Iq * 及びd軸電流指令値Id * をフィードフォード補償器518に入力することにより、dq軸電流制御の外乱となっている誘起電圧を打ち消すための外乱補償信号が演算される。
【0006】
次に、比例積分演算器を備えたd軸電流制御器514において、d軸電流制御の偏差信号を増幅した信号に外乱補償信号を加え、その信号がd軸電圧指令Vd * として座標変換器B512に入力される。同様にして、比例積分演算器を備えたq軸電流制御器513において、q軸電流制御の偏差信号を増幅した信号に外乱信号補償信号を加え、その信号がq軸電圧指令Vq * として座標変換器B512に入力される。
【0007】
座標変換器B512では、q軸電圧指令Vq * 及びd軸電圧指令Vd * のdq軸2相電圧指令がVu * 、Vv * 、Vw * の3相の電圧指令に変換され、PWM制御器508に入力される。PWM制御器508では、3相指令Vu * 、Vv * 、Vw * に対応して電力変換器507が作動し、磁石埋込型同期電動機502の駆動制御に必要な周波数で電圧が制御されて、磁石埋込型同期電動機502の各相にiu 、iv 、iw の電流が供給される。
【0008】
次に、アプリケーション制御部521の動作について説明する。
速度検出信号演算器517より得られた電動機速度信号ωr が速度指令信号ωr * に対して帰還され、その偏差信号が比例積分器を備えた速度制御器522で増幅され、この信号がq軸電流指令演算器526及びd軸電流指令演算器527に供給される。ここで、d軸電流指令演算器527に与えられたトルク指令T* に対して、以下の式9によって最大トルク効率となるd電流指令値Id * を算出する。
【0009】
【数9】

Figure 0003796556
【0010】
但し、I11=φ1 /[(Ld −Lq )I1r
(φ1 :回転子永久磁石の1次鎖交磁束の最大値、Lq :q軸インダクタンス、Ld :d軸インダクタンス、I1r:電動機定格電流)とする。
【0011】
上記式9を用いて得られたd軸電流指令Id * 及びトルク指令T* に基づいて式10からq軸電流指令Iq * を得、q軸電流指令Iq * 及びd軸電流指令Id * によりq軸及びd軸の電流を制御する。
【0012】
【数10】
Figure 0003796556
【0013】
【発明が解決しようとする課題】
しかしながら、上述したよう従来の磁石埋込型同期電動機の制御では、以下に示す問題点がある。すなわち、最大トルク効率制御は負荷率に関係なく適用されているので、負荷率が小さいとき、特に無負荷の場合には、トルク指令T* が小さく、それに応じて式4及び式5で決まるd軸電流指令Id * 及びq軸電流指令Iq * も小さくなり、電動機電流としても小さな値となる。このように電動機電流が小さい場合には、電流検出器506のオフセットや分解能の影響を受けやすくなる。特に、オフセット分は電動機の脈動トルクを発生する要因となり、その脈動トルクが回転リップルの増加につながる。
【0014】
本発明は、上記事情に鑑みてなされたものであって、軽負荷時でも安定した良好な出力を得ることができる磁石埋込型同期電動機の制御方法および制御装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
以下に、上記目的を達成するための手段について述べる。
磁石埋込型同期電動機の制御において、最大トルク効率制御d軸電流指令Id * を得る場合、トルク指令T* に基づく最大トルク効率とするためのd軸電流指令Id1 * (式11)に、さらにトルク指令T* が小さい場合に電動機電流の下限値Id00 が設定されたd軸電流指令Id0 * (式12)を加算してd軸電流制御指令Id * (式13)を得る。
【0016】
【数11】
Figure 0003796556
【0017】
【数12】
Figure 0003796556
【0018】
【数13】
Figure 0003796556
【0019】
このようにして、d軸電流制御指令Id * を得ることにより、トルク指令T* が小さいときは、d軸電流指令Id1 * に電動機電流の下限値Id00 が設定されたd軸電流指令Id0 * が加算されるので、軽負荷時でも下限値Id00 以上のd軸電流指令値Id * により制御される。
【0020】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の実施の形態に係る磁石埋込型同期電動機の制御装置のブロック図である。
図1に示されるように、負荷104に接続された磁石埋込型同期電動機102と、磁石埋込型同期電動機102の回転を検出する回転検出器103と、制御信号を磁石埋込型同期電動機102を駆動するための電力に変換する電力変換部101と、磁石埋込型同期電動機102の電機子に流れる電流及び回転磁界を制御するdq軸電流制御部111と、磁石埋込型同期電動機102の速度及びトルクを制御する速度制御器122、d軸電流指令演算器(1)127とq軸電流指令演算器126とから成る最大トルク効率制御部、軽負荷時にd軸電流指令演算器(1)127の出力に補正値を加算するd軸電流指令演算器(2)128で構成するアプリケーション制御部121と、磁石埋込型同期電動機102とdq軸電流制御部111とを接続する信号ケーブル109と、磁石埋込型同期電動機102と電力変換部101とを接続する電動機回路ケーブル105とで構成されている。
【0021】
以下に、上記のように構成された磁石埋込型同期電動機の制御装置による磁石埋込型同期電動機の駆動方法について説明する。
先ず、速度検出信号演算器117で得られる電動機回転速度ωr と回転検出器103により検出した信号に基づいて演算された電動機速度信号ωr * との偏差信号が比例積分器を備えた速度制御器122に入力されて増幅された後、電動機トルク指令T* として出力される。
【0022】
次段の最大トルク効率制御部を構成するd軸電流指令演算器(1)127では、電動機トルク指令T* に基づき、先の式11からd軸電流指令演算値Id1 * が算出される。
d軸電流指令演算器(2)128では、電動機トルク指令T* に基づき、先の式12からd軸電流指令Id0 * が算出される。
【0023】
その後、加算器129においてd軸電流指令Id1 * 及びId0 * を先の式13に基づき加算して最大トルク効率d軸電流指令Id * を得る。
q軸電流指令演算器126では、d軸電流指令Id * 及びトルク指令T* に基づき、先の式10からq軸電流指令Iq * を算出する。
【0024】
以下、図2を参照してd軸電流指令Id1 * 及びId0 * 並びに最大トルク効率d軸電流指令Id * の関係を説明する。図2において、縦軸は最大トルク効率d軸電流指令Id * 、横軸はトルク指令T* を示している。
図2に示されるように、d軸電流指令Id0 * には下限値Id00 が設定されているので、最大トルク効率d軸電流指令Id * は、トルク指令T* が0(無負荷)のときに下限値Id00 となる。その後、最大トルク効率d軸電流指令Id * は、トルク指令T* の増加に伴い、d軸電流指令Id1 * にd軸電流指令Id0 * が加算されて底上げされる。従って、d軸電流指令値Id * は、トルク指令T* が小さいとき、つまり軽負荷時でも下限値Id00 以上となるように補正され、これにより、磁石埋込型同期電動機102の電流が下限値以上に設定され、電流検出器106のオフセットや分解能の影響を受け難くなる。
【0025】
上述のようにして得られたd軸電流指令Id * 及びq軸電流指令Iq * が次段のdq軸電流制御部111へ供給される。
以下、dq軸電流制御部111について説明する。
先ず、回転検出器103により検出した磁石埋込型同期電動機102の回転信号が、信号ケーブル109を介してdq軸電流制御部111を構成する回転位置信号演算器116に供給されて、磁石埋込型同期電動機102の磁極の回転角度θが算出され、該回転角度θは座標変換器A115及び座標変換器B112へ供給される。
【0026】
座標変換器A115は、電力変換器101を構成する電流検出器106で検出した3相電流の中のu相及びv相に流れる電流iu 、iv を2相dq軸座標の信号Id 、Iq に変換して出力する。
信号Id 、Iq は、それぞれアプリケーション制御部121で得られたd軸電流指令値Id * 及びq軸電流指令Iq * に対して帰還され、これにより得られるd軸電流制御偏差信号及びq軸電流制御偏差信号が、比例積分器を備えたd軸電流制御器114及びq軸電流制御器113に入力されて増幅される。
【0027】
また、磁石埋込型同期電動機102の回転信号は速度検出信号演算器117にも供給される、速度検出信号演算器117で得られる電動機回転速度ωr と、アプリケーション制御部121で得られたd軸電流指令値Id * 及びq軸電流指令Iq * とがフィードフォワード補償器118へ供給される。フィードフォワード補償器118は、dq軸電流制御の外乱となっている誘起電圧を打ち消すための外乱補償信号を算出する。
【0028】
フィードフォワード補償器118で得られた外乱補償信号は、d軸電流制御器114からの出力信号に加算され、d軸電圧指令Vd * として座標変換器B112へ供給される。同様にして、外乱補償信号はq軸電流制御器113からの出力信号に加算され、q軸電圧指令Vq * として座標変換器B112に供給される。座標変換器B112は、d軸電圧指令Vd * 及びq軸電圧指令Vq * の2相電圧指令をVU * 、VV * 、VW * の3相の電圧指令に変換する。変換された3相電圧指令VU * 、VV * 、VW * はPWM制御器108へ供給され、対応して電力変換器107が作動し、磁石埋込型同期電動機102の駆動制御に必要な周波数で電圧が制御されて、磁石埋込型同期電動機102の各相にiU 、iV 、iW の電流が供給される。
【0029】
以上説明したように、定常状態では、d軸とq軸の電流を制御することによって、電動機トルクに対して1次電流が最小となるように制御され、電動機トルクが速度制御器122より出力されるトルク指令T* に比例するように、線形制御されると同時に、軽負荷時にはId0 * によって補正されたd軸電流指令Id * により制御されるので、電流検出器106のオフセットや分解能の影響が軽減される。
【0030】
【発明の効果】
以上説明したように、本発明によれば、軽負荷時のd軸電流指令の下限値が設定された補正用のd軸電流指令を加算して、最大トルク効率d軸電流指令Id * を得ているので、従来、軽負荷時に発生していた電流検出器のオフセット等による電動機の脈動トルクの発生を抑えることができるので、軽負荷時でも安定した良好な出力を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る磁石埋込型同期電動機の制御装置のブロック図である。
【図2】図1に示すアプリケーション制御部における制御関数の関係を示す図である。
【図3】従来の磁石埋込型同期電動機の制御装置のブロック図である。
【符号の説明】
101 電力変換部
102 磁石埋込型同期電動機
103 回転検出器
104 負荷
105 電動機回路ケーブル
106 電流検出器
107 電力変換器
108 PWM制御器
109 信号ケーブル
111 dq軸電流制御部
112 座標変換器B
113 q軸電流制御器
114 d軸電流制御器
115 座標変換器A
116 回転位置信号演算器
117 速度検出信号演算器
118 FF補償器
121 アプリケーション制御部
122 速度制御器
126 q軸電流指令演算器
127 d軸電流指令演算器(1)
128 d軸電流指令演算器(2)
129 加算器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the speed of a magnet-embedded synchronous motor that is a synchronous motor having a structure in which a permanent magnet is embedded in a rotor (see, for example, Japanese Utility Model Laid-Open Nos. 4-28745 and 3-97354). The present invention relates to torque control, and particularly to improvement of control at light load.
[0002]
[Prior art]
FIG. 3 is a block diagram of a conventional control apparatus for an embedded magnet synchronous motor. In the configuration shown in FIG. 3, first, the rotation signal of the embedded magnet synchronous motor 502 detected by the rotation detector 503 is input to the dq axis current control unit 511 via the cable 509, and the rotation position signal is obtained from the rotation signal. The rotation angle θ of the magnetic pole is calculated by the calculator 516, and the calculation result is supplied to the coordinate converter A515 and the coordinate converter B512.
[0003]
The coordinate converter A515 uses the rotation angle θ of the magnetic pole from the rotation position signal calculator 516 to convert the u-phase and v-phase out of the three-phase currents flowing through the embedded magnet synchronous motor 502 detected by the current detector 506. current flows i u, i v signal I d of the two-phase dq-axis coordinate is converted to I q.
[0004]
Next, the application control unit 521 uses the coordinate converter A515 for the q-axis current command I q * and the d-axis current command value I d * calculated by the q-axis current command calculator 526 and the d-axis current command calculator 527. The q-axis current control deviation signal obtained by feeding back the q-axis current I q and the d-axis current I d output from the q-axis current controller 513 and the d-axis current control deviation signal to the d-axis current controller 514, respectively. Each is entered.
[0005]
Further, the speed detection signal calculator 517 obtains the motor rotation speed ω r based on the rotation signal from the rotation detector 503, and the motor rotation speed ω r , the q-axis current command I q * and the d-axis current command value I d. By inputting * to the Feedford compensator 518, a disturbance compensation signal for canceling the induced voltage which is a disturbance of the dq axis current control is calculated.
[0006]
Next, in a d-axis current controller 514 provided with a proportional integration calculator, a disturbance compensation signal is added to the signal obtained by amplifying the deviation signal of the d-axis current control, and the signal is converted into a coordinate converter as a d-axis voltage command V d * . Input to B512. Similarly, in a q-axis current controller 513 provided with a proportional integration calculator, a disturbance signal compensation signal is added to a signal obtained by amplifying the deviation signal of the q-axis current control, and the signal is coordinated as a q-axis voltage command V q *. Input to converter B512.
[0007]
The coordinate converter B512 converts the dq-axis two-phase voltage command of the q-axis voltage command V q * and the d-axis voltage command V d * into a three-phase voltage command of V u * , V v * , V w * , Input to the PWM controller 508. In the PWM controller 508, the power converter 507 operates in response to the three-phase commands V u * , V v * , and V w * , and the voltage is controlled at a frequency necessary for drive control of the embedded magnet synchronous motor 502. Thus, currents i u , i v , and i w are supplied to the phases of the embedded magnet synchronous motor 502.
[0008]
Next, the operation of the application control unit 521 will be described.
The motor speed signal ω r obtained from the speed detection signal calculator 517 is fed back to the speed command signal ω r * , and the deviation signal is amplified by a speed controller 522 provided with a proportional integrator, and this signal is q This is supplied to the shaft current command calculator 526 and the d-axis current command calculator 527. Here, with respect to the torque command T * given to the d-axis current command calculator 527, the d current command value I d * that gives the maximum torque efficiency is calculated by the following equation 9.
[0009]
[Equation 9]
Figure 0003796556
[0010]
However, I 11 = φ 1 / [(L d −L q ) I 1r ]
1 : maximum value of primary interlinkage magnetic flux of the rotor permanent magnet, L q : q-axis inductance, L d : d-axis inductance, I 1r : motor rated current).
[0011]
Based on the d-axis current command I d * and the torque command T * obtained by using the above equation 9, the q-axis current command I q * is obtained from the equation 10, and the q-axis current command I q * and the d-axis current command I The current of q axis and d axis is controlled by d * .
[0012]
[Expression 10]
Figure 0003796556
[0013]
[Problems to be solved by the invention]
However, as described above, the conventional embedded magnet synchronous motor control has the following problems. That is, since the maximum torque efficiency control is applied regardless of the load factor, the torque command T * is small when the load factor is small, particularly when there is no load, and is determined by Equations 4 and 5 accordingly. The shaft current command I d * and the q-axis current command I q * are also small, and the motor current is also small. Thus, when the electric motor current is small, the current detector 506 is easily affected by the offset and resolution. In particular, the offset amount becomes a factor that generates pulsation torque of the electric motor, and the pulsation torque leads to an increase in rotational ripple.
[0014]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control method and a control device for an embedded magnet synchronous motor that can obtain a stable and stable output even at a light load. .
[0015]
[Means for Solving the Problems]
The means for achieving the above object will be described below.
When obtaining the maximum torque efficiency control d-axis current command I d * in the control of the embedded magnet synchronous motor, the d-axis current command I d1 * (Formula 11) is used to obtain the maximum torque efficiency based on the torque command T *. Further, when the torque command T * is smaller, the d-axis current control command I d * (Equation 13) is obtained by adding the d-axis current command I d0 * (Equation 12) in which the lower limit value I d00 of the motor current is set. .
[0016]
[Expression 11]
Figure 0003796556
[0017]
[Expression 12]
Figure 0003796556
[0018]
[Formula 13]
Figure 0003796556
[0019]
By obtaining the d-axis current control command I d * in this way, when the torque command T * is small, the d-axis current command in which the lower limit value I d00 of the motor current is set in the d-axis current command I d1 *. Since I d0 * is added, control is performed with a d-axis current command value I d * equal to or greater than the lower limit value I d00 even at light loads.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of a controller for an embedded magnet synchronous motor according to an embodiment of the present invention.
As shown in FIG. 1, an embedded magnet synchronous motor 102 connected to a load 104, a rotation detector 103 that detects the rotation of the embedded magnet synchronous motor 102, and a control signal as an embedded magnet synchronous motor. A power conversion unit 101 that converts power to drive the motor 102, a dq-axis current control unit 111 that controls a current and a rotating magnetic field that flows through the armature of the magnet-embedded synchronous motor 102, and a magnet-embedded synchronous motor 102 A speed controller 122 for controlling the speed and torque of the motor, a maximum torque efficiency control unit comprising a d-axis current command calculator (1) 127 and a q-axis current command calculator 126, a d-axis current command calculator (1 ) The application control unit 121 configured by the d-axis current command calculator (2) 128 that adds the correction value to the output of 127, the magnet-embedded synchronous motor 102, and the dq-axis current control unit 111 are connected. A signal cable 109 to, and a motor circuit cable 105 that connects the magnet-embedded synchronous motor 102 and the power conversion unit 101.
[0021]
Hereinafter, a method of driving the embedded magnet synchronous motor by the embedded magnet synchronous motor control apparatus configured as described above will be described.
First, the deviation signal between the motor rotation speed ω r obtained by the speed detection signal calculator 117 and the motor speed signal ω r * calculated based on the signal detected by the rotation detector 103 is a speed control provided with a proportional integrator. After being input to the amplifier 122 and amplified, it is output as a motor torque command T * .
[0022]
In the d-axis current command calculator (1) 127 constituting the maximum torque efficiency control unit in the next stage, the d-axis current command calculation value I d1 * is calculated from the previous equation 11 based on the motor torque command T * .
In the d-axis current command calculator (2) 128, the d-axis current command I d0 * is calculated from the previous equation 12 based on the motor torque command T * .
[0023]
Thereafter, the adder 129 adds the d-axis current commands I d1 * and I d0 * based on Equation 13 above to obtain the maximum torque efficiency d-axis current command I d * .
The q-axis current command calculator 126 calculates the q-axis current command I q * from the previous equation 10 based on the d-axis current command I d * and the torque command T * .
[0024]
The relationship between the d-axis current commands I d1 * and I d0 * and the maximum torque efficiency d-axis current command I d * will be described below with reference to FIG. In FIG. 2, the vertical axis represents the maximum torque efficiency d-axis current command I d * , and the horizontal axis represents the torque command T * .
As shown in FIG. 2, since the lower limit value I d00 is set in the d-axis current command I d0 * , the maximum torque efficiency d-axis current command I d * has a torque command T * of 0 (no load). In this case, the lower limit value Id00 is obtained. Thereafter, the maximum torque efficiency d-axis current command I d * is raised by adding the d-axis current command I d0 * to the d-axis current command I d1 * as the torque command T * increases. Therefore, the d-axis current command value I d * is corrected so as to be equal to or greater than the lower limit value I d00 even when the torque command T * is small, that is, at light load, and thereby the current of the embedded magnet synchronous motor 102 is increased. It is set to be equal to or higher than the lower limit value, and is not easily affected by the offset and resolution of the current detector 106.
[0025]
The d-axis current command I d * and the q-axis current command I q * obtained as described above are supplied to the dq-axis current control unit 111 in the next stage.
Hereinafter, the dq axis current control unit 111 will be described.
First, the rotation signal of the embedded magnet synchronous motor 102 detected by the rotation detector 103 is supplied to the rotation position signal calculator 116 constituting the dq axis current control unit 111 via the signal cable 109, and the magnet embedded The rotation angle θ of the magnetic pole of the type synchronous motor 102 is calculated, and the rotation angle θ is supplied to the coordinate converter A115 and the coordinate converter B112.
[0026]
Coordinate converter A115, the current i u flowing through the u-phase and v-phase of the three-phase current detected by the current detector 106 which constitutes a power converter 101, i v signal of the two-phase dq-axis coordinate of I d, Convert to I q and output.
The signals I d and I q are fed back to the d-axis current command value I d * and the q-axis current command I q * obtained by the application control unit 121, respectively, and a d-axis current control deviation signal obtained thereby and The q-axis current control deviation signal is input to the d-axis current controller 114 and the q-axis current controller 113 having a proportional integrator and amplified.
[0027]
Further, the rotation signal of the magnet-embedded synchronous motor 102 is also supplied to the speed detection signal calculator 117, the motor rotation speed ω r obtained by the speed detection signal calculator 117, and d obtained by the application control unit 121. The shaft current command value I d * and the q-axis current command I q * are supplied to the feedforward compensator 118. The feedforward compensator 118 calculates a disturbance compensation signal for canceling the induced voltage that is a disturbance of the dq axis current control.
[0028]
The disturbance compensation signal obtained by the feedforward compensator 118 is added to the output signal from the d-axis current controller 114 and supplied to the coordinate converter B112 as a d-axis voltage command V d * . Similarly, the disturbance compensation signal is added to the output signal from the q-axis current controller 113 and supplied to the coordinate converter B112 as the q-axis voltage command V q * . The coordinate converter B112 converts the two-phase voltage command of the d-axis voltage command V d * and the q-axis voltage command V q * into a three-phase voltage command of V U * , V V * , and V W * . The converted three-phase voltage commands V U * , V V * , and V W * are supplied to the PWM controller 108, and the power converter 107 is operated correspondingly, and is necessary for drive control of the embedded magnet synchronous motor 102. The voltage is controlled at an appropriate frequency, and i U , i V , and i W currents are supplied to the phases of the embedded magnet synchronous motor 102.
[0029]
As described above, in the steady state, the d-axis and q-axis currents are controlled so that the primary current is minimized with respect to the motor torque, and the motor torque is output from the speed controller 122. The linear control is performed in proportion to the torque command T * , and at the same time, it is controlled by the d-axis current command I d * corrected by I d0 * at a light load. Impact is reduced.
[0030]
【The invention's effect】
As described above, according to the present invention, the maximum torque efficiency d-axis current command I d * is obtained by adding the correction d-axis current command in which the lower limit value of the d-axis current command at light load is set. Therefore, since it is possible to suppress the generation of pulsation torque of the motor due to the offset of the current detector, which has been conventionally generated at light load, stable and good output can be obtained even at light load.
[Brief description of the drawings]
FIG. 1 is a block diagram of a control device for an embedded magnet synchronous motor according to an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship of control functions in the application control unit shown in FIG.
FIG. 3 is a block diagram of a controller for a conventional embedded magnet synchronous motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Power converter 102 Embedded magnet synchronous motor 103 Rotation detector 104 Load 105 Motor circuit cable 106 Current detector 107 Power converter 108 PWM controller 109 Signal cable 111 dq axis current controller 112 Coordinate converter B
113 q-axis current controller 114 d-axis current controller 115 coordinate converter A
116 Rotation position signal calculator 117 Speed detection signal calculator 118 FF compensator 121 Application controller 122 Speed controller 126 q-axis current command calculator 127 d-axis current command calculator (1)
128 d-axis current command calculator (2)
129 Adder

Claims (2)

回転子内部に永久磁石が埋め込まれた構造を有する同期電動機である磁石埋込型同期電動機のd軸電流Id およびq軸電流Iq を制御することによって前記磁石埋込型同期電動機の速度とトルクを周期演算を用いて制御する磁石埋込型同期電動機の制御方法において、電動機1次鎖交磁束の最大値をφ1 、q軸インダクタンスをLq 、d軸インダクタンスをLd 及び電動機定格電流をI1rとした場合に、I11=φ1 /[(Lq −Ld )I1r]、かつ前記周期演算により得られる電動機トルク指令をT* とし、
前記電動機トルク指令T* に基づき、
Figure 0003796556
から前記d軸電流Id を制御する最大トルク効率d軸電流指令Id * を得るための第1のd軸電流指令Id1 * を算出するとともに、前記電動機トルク指令T* 及び前記d軸電流指令Id * に基づき、
Figure 0003796556
から前記q軸電流Iq を制御するq軸電流指令Iq * を算出し、さらに、前記電動機トルク指令T* に基づき、
Figure 0003796556
から前記電動機トルク指令T* に応じて前記d軸電流指令Id * の下限値Id00 が設定された第2のd軸電流指令値Id0 * を算出し、前記第1のd軸電流指令Id1 * 及び第2の前記d軸電流指令値Id0 * に基づき、
Figure 0003796556
から前記d軸電流指令Id * を算出することを特徴とする磁石埋込型同期電動機の制御方法。
By controlling the d-axis current I d and the q-axis current I q of a magnet-embedded synchronous motor that is a synchronous motor having a structure in which a permanent magnet is embedded in the rotor, the speed of the magnet-embedded synchronous motor is controlled. In a control method for a magnet-embedded synchronous motor that controls torque using periodic calculation, the maximum value of the motor primary linkage flux is φ 1 , the q-axis inductance is L q , the d-axis inductance is L d, and the motor rated current Is I 1r , I 11 = φ 1 / [(L q −L d ) I 1r ], and the motor torque command obtained by the period calculation is T * ,
Based on the motor torque command T * ,
Figure 0003796556
A first d-axis current command I d1 * for obtaining a maximum torque efficiency d-axis current command I d * for controlling the d-axis current I d from the motor torque command T * and the d-axis current Based on the command I d *
Figure 0003796556
Wherein calculating a q-axis current I q controls the q-axis current command I q *, Further, based on the motor torque command T * from
Figure 0003796556
To calculate a second d-axis current command value I d0 * in which a lower limit value I d00 of the d-axis current command I d * is set in accordance with the motor torque command T *, and the first d-axis current command Based on I d1 * and the second d-axis current command value I d0 * ,
Figure 0003796556
The d-axis current command I d * is calculated from the control method for the embedded magnet synchronous motor.
回転子内部に永久磁石が埋め込まれた構造を有する同期電動機である磁石埋込型同期電動機に接続され、前記磁石埋込型同期電動機のd軸電流Id 及びq軸電流Iq を制御することによって前記磁石埋込型同期電動機の速度とトルクを周期演算を用いて制御する磁石埋込型同期電動機の制御装置において、電動機1次鎖交磁束の最大値をφ1 、q軸インダクタンスをLq 、d軸インダクタンスをLd 及び電動機定格電流をI1rとした場合に、I11=φ1 /[(Lq −Ld )I1r]とし、
前記周期演算により電動機トルク指令T* を得る速度制御器と、
前記電動機トルク指令T* に基づき、
Figure 0003796556
から前記d軸電流Id を制御する最大トルク効率d軸電流指令Id * を得るための第1のd軸電流指令Id1 * を算出する最大トルク効率制御d軸電流指令演算器と、
前記電動機トルク指令T* 及び前記d軸電流指令Id * に基づき、
Figure 0003796556
から前記q軸電流Iq を制御するq軸電流指令Iq * を算出するq軸電流指令演算器とを有し、
さらに、前記電動機トルク指令T* に基づき、
Figure 0003796556
から前記電動機トルク指令T* に応じて前記d軸電流指令Id * の下限値Id00 が設定された第2のd軸電流指令値Id0 * を算出するd軸電流指令演算器と、
前記第1のd軸電流指令Id1 * 及び第2の前記d軸電流指令値Id0 * に基づき、
Figure 0003796556
から前記d軸電流指令Id * を算出する加算器と、
を具備したことを特徴とする磁石埋込型同期電動機の制御装置。
It is connected to a magnet-embedded synchronous motor that is a synchronous motor having a structure in which a permanent magnet is embedded in the rotor, and controls the d-axis current I d and the q-axis current I q of the magnet-embedded synchronous motor. In the control device for an embedded magnet synchronous motor that controls the speed and torque of the embedded magnet synchronous motor using periodic calculation, the maximum value of the primary linkage flux of the motor is φ 1 , and the q-axis inductance is L q When the d-axis inductance is L d and the motor rated current is I 1r , I 11 = φ 1 / [(L q −L d ) I 1r ],
A speed controller for obtaining a motor torque command T * by the cycle calculation;
Based on the motor torque command T * ,
Figure 0003796556
A maximum torque efficiency control d-axis current command calculator for calculating a first d-axis current command I d1 * for obtaining a maximum torque efficiency d-axis current command I d * for controlling the d-axis current I d from
Based on the motor torque command T * and the d-axis current command I d * ,
Figure 0003796556
And a q-axis current command calculator for calculating a q-axis current command I q * for controlling the q-axis current I q from
Further, based on the motor torque command T * ,
Figure 0003796556
A d-axis current command calculator for calculating a second d-axis current command value I d0 * in which a lower limit value I d00 of the d-axis current command I d * is set according to the motor torque command T * ,
Based on the first d-axis current command I d1 * and the second d-axis current command value I d0 * ,
Figure 0003796556
An adder for calculating the d-axis current command I d * from
A control apparatus for a magnet-embedded synchronous motor, comprising:
JP14398897A 1997-06-02 1997-06-02 Method and apparatus for controlling magnet-embedded synchronous motor Expired - Fee Related JP3796556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14398897A JP3796556B2 (en) 1997-06-02 1997-06-02 Method and apparatus for controlling magnet-embedded synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14398897A JP3796556B2 (en) 1997-06-02 1997-06-02 Method and apparatus for controlling magnet-embedded synchronous motor

Publications (2)

Publication Number Publication Date
JPH10337100A JPH10337100A (en) 1998-12-18
JP3796556B2 true JP3796556B2 (en) 2006-07-12

Family

ID=15351703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14398897A Expired - Fee Related JP3796556B2 (en) 1997-06-02 1997-06-02 Method and apparatus for controlling magnet-embedded synchronous motor

Country Status (1)

Country Link
JP (1) JP3796556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290929A (en) * 2008-05-27 2009-12-10 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
WO2015159694A1 (en) * 2014-04-17 2015-10-22 アイシン・エィ・ダブリュ株式会社 Rotating electric machine control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556322B2 (en) * 2000-11-17 2010-10-06 シンフォニアテクノロジー株式会社 Motor control method
JP4539065B2 (en) * 2003-09-29 2010-09-08 ダイキン工業株式会社 Motor control method and motor control apparatus
JP4557605B2 (en) * 2004-06-01 2010-10-06 東洋電機製造株式会社 Control device for synchronous machine
JP2006191721A (en) * 2005-01-05 2006-07-20 Yaskawa Electric Corp Motor controller and control method
JP2006230200A (en) * 2006-06-05 2006-08-31 Hitachi Ltd Control unit of ac motor
JP5265962B2 (en) * 2008-05-09 2013-08-14 東芝機械株式会社 Current control method, current control program, recording medium, servo motor and injection molding machine for servo motor
TWI654827B (en) 2016-09-05 2019-03-21 日商東芝股份有限公司 Converter control device and motor driving system
CN114257147B (en) * 2021-11-23 2023-06-06 清华大学苏州汽车研究院(吴江) Current feedforward decoupling method and device for permanent magnet synchronous motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290929A (en) * 2008-05-27 2009-12-10 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
WO2015159694A1 (en) * 2014-04-17 2015-10-22 アイシン・エィ・ダブリュ株式会社 Rotating electric machine control device
JPWO2015159694A1 (en) * 2014-04-17 2017-04-13 アイシン・エィ・ダブリュ株式会社 Rotating electrical machine control device
US9998052B2 (en) 2014-04-17 2018-06-12 Aisin Aw Co., Ltd. Rotary electric machine control device

Also Published As

Publication number Publication date
JPH10337100A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
JP5580384B2 (en) Parameter estimation device for permanent magnet synchronous motor drive system
JP3668870B2 (en) Synchronous motor drive system
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
JP3467961B2 (en) Control device for rotating electric machine
JP3531428B2 (en) Motor control device and control method
JPS627396A (en) Method and apparatus for operation at fixed horse power
JP2008109850A (en) Method and system for controlling synchronous motor drive system
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
US20040183496A1 (en) Motor control apparatus and motor control method
JP3686987B2 (en) Control method and control apparatus for IPM motor
JP3796556B2 (en) Method and apparatus for controlling magnet-embedded synchronous motor
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP3397013B2 (en) Control device for synchronous motor
JP4522273B2 (en) Motor control device and motor drive system having the same
JP4425091B2 (en) Motor position sensorless control circuit
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP3570467B2 (en) Control device for synchronous motor
JP5385374B2 (en) Control device for rotating electrical machine
JP5262267B2 (en) Three-phase AC motor drive device
JP3687043B2 (en) Control method of synchronous motor
JP4211110B2 (en) Position sensorless motor control device
JP3738865B2 (en) IPM motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees