JP3687043B2 - Control method of synchronous motor - Google Patents

Control method of synchronous motor Download PDF

Info

Publication number
JP3687043B2
JP3687043B2 JP16793296A JP16793296A JP3687043B2 JP 3687043 B2 JP3687043 B2 JP 3687043B2 JP 16793296 A JP16793296 A JP 16793296A JP 16793296 A JP16793296 A JP 16793296A JP 3687043 B2 JP3687043 B2 JP 3687043B2
Authority
JP
Japan
Prior art keywords
base
synchronous motor
axis
axis current
ref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16793296A
Other languages
Japanese (ja)
Other versions
JPH1014299A (en
Inventor
恭祐 宮本
栄治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP16793296A priority Critical patent/JP3687043B2/en
Publication of JPH1014299A publication Critical patent/JPH1014299A/en
Application granted granted Critical
Publication of JP3687043B2 publication Critical patent/JP3687043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同期電動機、特に永久磁石を界磁に用いた永久磁石同期電動機の制御方式に関し、さらに詳しくは、広範囲の定出力範囲を必要とする電動機の高効率駆動制御方法に関する。
【0002】
【従来の技術】
従来における同期電動機の一種である永久磁石同期電動機の制御方法は、図6,7に示すように負荷率に対しても、モータ回転速度に対しても、モータに流す電流を、モータの誘起電圧(以降EMFと称す)と同相、つまり電流をd−q理論の直軸成分Idと横軸成分Iqに振り分けた時、電流がId=0の磁石磁束に対し直交するように流れるよう制御する事が一般的であった。
また、特開平4−101692号公報には、回転速度に対応する位相の遅れとトルク指令の振幅補正係数をそれぞれ位相補正テーブルと振幅補正係数データテーブルを予め作成しておき、モータの回転速度が定格を越えた場合に、その回転速度に応じて各テーブルより読み出した補正係数により位相とトルク指令を補正することによって、定出力制御を可能にした永久磁石界磁をもつ直流ブラシレスモータの制御装置が開示されている。
【0003】
【発明が解決しようとする課題】
ところが、図6,7に示す従来技術では、界磁が永久磁石という固定界磁に加え、前記Id=0であるために界磁制御を行なえないため、モータの出力特性は、図7に示すように定トルク特性となり、定出力特性を得ようとする場合は、より大きな電源容量を必要とした。
また、特開平4−101692号公報に開示された制御装置では、位相補償を行う制御を行っているが、これでは結果としてd軸電流、q軸電流が流れ、高速域の出力特性の改善が可能である。しかし、定出力を得ることを目的とせず、結果としては近い特性を得る可能性はあるものの、必要とされる定出力特性を正確に得ることができないという問題があった。
本発明が解決しようとする課題は、大きな電源容量を要することなく定出力特性を実現し、また電動機効率の向上を図ることにある。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は、1:nの定出力比を必要とする同期電動機の制御方法であって、
同期電動機最高回転速度をNtopとし、基底回転速度Nbase
base=Ntop/n
と表したとき、同期電動機回転速度Nが(1)0<N≦Nbaseの範囲と、(2)Nbase<N≦Ntopの二つの制御範囲に分け、
(1) 0<N≦Nbaseでは、所要出力を確保するのに必要な、トルク指令Tref(%)に準拠して流れるq軸電流Iqとd軸電流の関係を、
q=Iq1=Iqmax×(Tref/100) [但し、Iqmaxは100%定格時のIq電流]
d=Id1=Kd1×Iq [但し、Kd1は比例定数]
と定め、
(2) Nbase<N≦Ntopでは、前記所要出力を確保するためのIq1とId1の関係に加え、同期電動機端子電圧を抑制させるためのd軸電流Id0を、
d0=Kd2×(N−Nbase)/(Ntop−Nbase)[但し、Kd2は比例定数]
とし、
d=Id0+Id1
と定めてベクトル制御を行う同期電動機の制御方法において、
前記q軸電流I q とd軸電流I d の関係式に、
d2 =K d3 ×{(T ref /100)−1} [但し、K d3 は比例定数]
を付加し、
(1)0<N≦N base では、
所要出力を確保するのに必要な、トルク指令T ref (%)に準拠して流れるq軸電流I q とd軸電流の関係を、
q =I qmax ×(T ref /100)[但し、I qmax は100%定格時のI q 電流]
d =I d1 +I d2 =K d1 ×I q +[K d3 ×{(T ref /100)−1}]
[但し、K d1 ,K d3 は比例定数]
と定め、
(2)N base <N≦N top では、前記所要出力を確保するためのI q1 とI d1 の関係に加え、同期電動機端子電圧を抑制させるためのd軸電流I d0 を、
d0 =K d2 ×(N−N base )/(N top −N base )[但し、K d2 は比例定数]
とし、
d =I d0 +I d1 +I d2
と定めてベクトル制御を行うものである。
【0005】
この制御方法における実施態様として前記比例定数Kd1,Kd2,Kd3を負数(−)にし、制御対象となる同期電動機を、直軸(d軸)インダクタンスLdが、横軸(q軸)インダクタンスLqよりも小さいLq>Ldとなる突極性を有する永久磁石同期電動機とする。
【0006】
本発明においては、速度0から基底回転速度Nbaseまでは、直軸電流Id1を横軸電流Iqの比例関数におき、さらに基底回転速度から最高回転速度までは、もう一つの直軸電流Id0を速度の関数におき、これを足し合わせることで、同期電動機の等価界磁制御を行う。
また、同期電動機の負荷率の変化に対応した直軸電流Id3を、上記等価界磁制御に加えることで、低負荷時(同期電動機の100%負荷トルク以下の領域)の効率特性を改善させるものである。
上記手段により、同期電動機、特に永久磁石同期電動機の定出力制御が可能になる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1に、本発明の第1実施例のブロック図を示す。図中1はベクトル演算部、2はPWM発生器、3はインバータパワー部、4は永久磁石同期電動機(モータ)、5は位置検出器、6は速度演算器、7は3相d−q変換器、8はId1演算器、9はId0演算器、10は電流検出器、11〜13は減算器、14は加算器である。
本第1実施例は、速度制御を前提としたものになっている。速度指令ω*から速度フィードバック信号ωfdを減算して得られたq軸電流指令Iq *が、トルク指令比例成分としてId1演算器8に入力されることで、q軸電流指令Iq *に比例係数Kd1を掛けたd軸電流指令Id1 *が生成される。q軸電流指令Iq *は、モータ電流を3相d−q変換器7に入力することで得られたq軸電流フィードバックIqfbと減算され、ベクトル演算部1に入る。一方、d軸電流指令Id *は、速度比例成分として、速度フィードバックωfbがId0演算器9に入ることで作られたd軸電流指令Id0 *と前記d軸電流指令Id1 *とが足し合わされることで作られ、d軸電流フィードバックIdfbと足し引きされベクトル演算部1に入力される。そして、このベクトル演算部1でモータ4の電圧指令V*と位相制御角指令θ*を作り、この信号がPWM発生器2に入ることで、インバータパワー部3をコントロールしモータ4の速度制御を行うものである。
【0008】
図2に、図1のブロック図での各軸電流の流れ方を示す。
図2において、モータ最高回転速度をNtopとしたとき、基底回転速度Nbase
base=Ntop/n
となり、モータの制御方法を、モータ回転速度Nが(1)0<N≦Nbaseの範囲と、(2)Nbase<N≦Ntopの二つの制御範囲に分ける。
(1) 0<N≦Nbaseでは、所要出力を確保するのに必要な、トルク指令Tref(%)に準拠して流れるq軸電流Iqとd軸電流の関係を、
q=Iq1=Iqmax×(Tref/100) [但し、Iqmaxは100%定格時のIq電流]
d=Id1=Kd1×Iq [但し、Kd1は比例定数]
と定める。
(2) Nbase<N≦Ntopでは、前記所要出力を確保するためのIq1とId1の関係に加え、モータ端子電圧を抑制させるためのd軸電流Id0を、モータ回転速度に比例した関数式で次のように表す。
d0=Kd2×(N−Nbase)/(Ntop−Nbase)[但し、Kd2は比例定数]
従って、総合したd軸電流Idは、
d=Id0+Id1
となり、この結果q軸電流Iqとd軸電流Idとの関係は、
d=Id0+Id1=Kd2×(N−Nbase)/(Ntop−Nbase)+Kd1×Iq
=Kd2×(N−Nbase)/(Ntop−Nbase)+Kd1×Iqmax×(Tref/100)
で表される。そして、上記関数式のIqmax,Kd1,Kd2,Nbase,Ntopをパラメータ入力させることで汎用性を持たせる。
【0009】
図3は、図1の制御を、負荷トルクが小さい場合のモータ効率が良くなるように更に改良した第2実施例であり、基本的には、図1の制御構成と同じであるが、Id1演算器8の代わりにId2演算器8’を設けた点が異なる。前記図1に示すd軸電流指令Id *に、負荷トルク率に応じて変化する成分として、速度指令ω*から作られたトルク指令と、速度フィードバックωfbとが、Id2演算器8’に入ることで作られたd軸電流指令Id2 *を足し込んでいる。具体的には、前記トルク指令比例成分となるd軸電流指令Id1 *に、負荷トルク率100%の場合を0とし、100%以上は、電流を加え、100%以下の場合は、電流を減じるものである。
【0010】
図4に、図3のブロック図での各軸電流の流れ方を示す。
本実施例では、前記q軸電流Iqd軸電流Idの関係式に、
d2=Kd3×{(Tref/100)−1} [但し、Kd3は比例定数]
を付加し、
(1)0<N≦Nbaseでは、所要出力を確保するのに必要な、トルク指令Tref(%)に準拠して流れるq軸電流Iqとd軸電流の関係を、
q=Iqmax×(Tref/100) [但し、Iqmaxは100%定格時のIq電流]
d=Id1+Id2=d1×Iq+[Kd3×{(Tref/100)−1}]
[但し、Kd1,Kd3は比例定数]
と定める。
(2)Nbase<N≦Ntopでは、前記所要出力を確保するためのIq1とId1ノ関係に加え、モータ端子電圧を抑制させるためのd軸電流Id0を、モータ回転速度に比例した関数式で次のように表す。
d0=Kd2×(N−Nbase)/(Ntop−Nbase)[但し、Kd2は比例定数]
従って、総合したd軸電流Idは、
d=Id0+Id1+Id2
となり、この結果q軸電流Iqとd軸電流Idとの関係は、
d=Id0+Id1+Id2=Kd2×(N−Nbase)/(Ntop−Nbase
+Kd1×Iq+[Kd3×{(Tref/100)−1}]
=Kd2×(N−Nbase)/(Ntop−Nbase
+Kd1×Iqmax×(Tref/100)+[Kd3×{(Tref/100)−1}]
で表される。そして、上記関数式のIqmax,Kd1,Kd2,Kd3,Nbase,Ntopをパラメータ入力させることで汎用性を持たせたる。
【0011】
前記比例定数Kd1,Kd2,Kd3を負数(−)にし、制御対象となる同期電動機を、直軸(d軸)インダクタンスLdが、横軸(q軸)インダクタンスLqよりも小さいLq>Ldとなる突極性を有する永久磁石同期電動機とすることができる。
図5はその例を示すものである。同図のように、d軸上には、永久磁石が存在し、ステータ側からの電機子反作用による磁束は通りにくく、従ってd軸方向インダクタンスLdは小さい。逆にこれと直交する方向のq軸方向は、電機子反作用磁束が鉄心コア(ロータコア)があるため通りやすく、q軸方向インダクタンスLqは大きくなり、Lq>Ldの関係の突極形となっている。(これに対してLq=Ldは円筒形という)。
そして、直交するd−q座標軸上で、磁石磁束ベクトル方向をプラス(+)方向に取った場合、この磁石磁束を弱める方向、つまりマイナス(−)方向にId電流(−Id)を流すようにする。このために、比例定数Kd1,Kd2,Kd3を負数(−)にして制御すると、電流ベクトルは、モータの誘起電圧ベクトルに対し進み位相となり、前記モータの誘起電圧が弱められ(抑制され)、さらに前記突極性によりリラクタンストルクが磁石トルクに重畳されるので、モータの定出力範囲を広くとることができる。
また図5の磁石が挿入されていない場合がリラクタンス形同期電動機となり、この場合は、図5中のd軸、q軸が入れ替わる(d軸→q軸に変更、q軸→d軸に変更)。そして、比例定数Kd1,Kd2,Kd3を正数(+)にして、+Idを流すように制御する。このため、電流ベクトルは、d軸磁束ベクトルに対し、遅れ位相となり、リラクタンストルクが発生する。加えて、本発明の制御式を用いることで、これも広範囲の定出力特性が得られる。
【0012】
【発明の効果】
以上述べたように、本発明によれば、同期電動機のd−q軸制御方式において、d軸電流指令Id *を、q軸電流指令Iq *に比例したd軸電流指令Id1 *と、同期電動機の回転速度の関数となるd軸電流指令Id0 *を足し合わしたものにすることで、同期電動機、中でも、従来の制御法では困難であった永久磁石同期電動機の定出力制御を可能にした。
また、前記制御方式において、d軸電流指令Id *に、更に負荷率の関数となるd軸電流指令Id2 *を加えることで、負荷トルクが小さい場合でも、同期電動機効率が最大に近くなる電流位相角にコントロールすることができ、このポイントの効率の改善が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す制御ブロツク図である。
【図2】 本発明の実施例を示す出力カーブおよび各軸電流パターンである。
【図3】 本発明の応用(改良)例を示す制御ブロック図である。
【図4】 本発明の応用(改良)例を示す出力カーブおよび各軸電流パターンである。
【図5】 本発明の他の実施例を示す説明図である。
【図6】 従来制御方式の制御ブロック図である。
【図7】 従来制御方式の出力カーブおよび各軸電流パターンである。
【符号の説明】
1 ベクトル演算部、2 PWM発生器、3 インバータパワー部、4 永久磁石同期電動機(モータ)、5 位置検出器、6 速度演算器、7 3相d−q変換器、8 Id1演算器、8’ Id2演算器、9 Id0演算器、10 電流検出器、11〜13 減算器、14 加算器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for a synchronous motor, particularly a permanent magnet synchronous motor using a permanent magnet as a field, and more particularly to a high-efficiency drive control method for a motor that requires a wide constant output range.
[0002]
[Prior art]
As shown in FIGS. 6 and 7, the control method of a permanent magnet synchronous motor, which is a kind of conventional synchronous motor, is based on the induced voltage of the motor, regardless of the load factor and the motor rotational speed. (Hereinafter referred to as EMF), that is, when the current is distributed to the direct-axis component I d and the horizontal-axis component I q of the dq theory, the current flows so as to be orthogonal to the magnetic flux of I d = 0. It was common to control.
Japanese Patent Laid-Open No. 4-101692 discloses that a phase delay table and an amplitude correction coefficient data table are prepared in advance for the phase delay corresponding to the rotation speed and the amplitude correction coefficient of the torque command, respectively. Control device for DC brushless motor with permanent magnet field that enables constant output control by correcting the phase and torque command with the correction coefficient read from each table according to the rotation speed when exceeding the rating Is disclosed.
[0003]
[Problems to be solved by the invention]
However, in the prior art shown in FIGS. 6 and 7, the field characteristics cannot be controlled because the field is in addition to the fixed field of permanent magnets and I d = 0. Therefore, the output characteristics of the motor are as shown in FIG. In order to obtain constant torque characteristics and to obtain constant output characteristics, a larger power source capacity was required.
Further, the control device disclosed in Japanese Patent Laid-Open No. 4-101692 performs control for phase compensation, but as a result, d-axis current and q-axis current flow, and the output characteristics in the high-speed region are improved. Is possible. However, the purpose is not to obtain a constant output. As a result, there is a possibility that a close characteristic may be obtained, but there is a problem that a required constant output characteristic cannot be obtained accurately.
The problem to be solved by the present invention is to realize a constant output characteristic without requiring a large power source capacity and to improve the motor efficiency.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a control method of a synchronous motor that requires a constant output ratio of 1: n ,
The maximum rotation speed of the synchronous motor is N top and the base rotation speed N base is N base = N top / n
The synchronous motor rotational speed N is divided into two control ranges of (1) 0 <N ≦ N base and (2) N base <N ≦ N top ,
(1) When 0 <N ≦ N base , the relationship between the q-axis current I q flowing in accordance with the torque command T ref (%) and the d-axis current necessary to ensure the required output is
I q = I q1 = I qmax × (T ref / 100) [where I qmax is I q current at 100% rating]
I d = I d1 = K d1 × I q [where K d1 is a proportional constant]
And
(2) In N base <N ≦ N top , in addition to the relationship between I q1 and I d1 for ensuring the required output, the d-axis current I d0 for suppressing the synchronous motor terminal voltage is
I d0 = K d2 × (N−N base ) / (N top −N base ) [where K d2 is a proportional constant]
age,
I d = I d0 + I d1
A method for controlling a row cormorants synchronous motor vector control stipulates that,
In the relational expression between the q-axis current I q and the d-axis current I d ,
I d2 = K d3 × {(T ref / 100) −1} [where K d3 is a proportional constant]
And add
(1) If 0 <N ≦ N base ,
The relationship between the q-axis current I q and the d-axis current flowing in accordance with the torque command T ref (%) necessary to secure the required output
I q = I qmax × (T ref / 100) [where I qmax is I q current at 100% rating ]
I d = I d1 + I d2 = K d1 × I q + [K d3 × {(T ref / 100) −1}]
[However, K d1 and K d3 are proportional constants]
And
(2) the N base <N N top, in addition to the relationship of I q1 and I d1 to ensure the required output, the d-axis current I d0 in order to suppress the synchronous motor terminal voltage,
I d0 = K d2 × (N−N base ) / (N top −N base ) [where K d2 is a proportional constant]
age,
I d = I d0 + I d1 + I d2
And vector control is performed .
[0005]
As an embodiment of the control method, the proportionality constant K d1, K d2, K d3 negative (-) to, control a control subject to the synchronous motor, the direct-axis (d-axis) inductance L d, the horizontal axis ( (q axis) A permanent magnet synchronous motor having a saliency that satisfies L q > L d smaller than the inductance L q .
[0006]
In the present invention, from the speed 0 to the base rotational speed N base , the direct current I d1 is placed as a proportional function of the horizontal current I q , and from the base rotational speed to the maximum rotational speed, another direct current I d0 is set as a function of speed, and by adding these, equivalent field control of the synchronous motor is performed.
In addition, by adding the direct current I d3 corresponding to the change of the load factor of the synchronous motor to the equivalent field control, the efficiency characteristic at the time of low load (region of 100% load torque or less of the synchronous motor) is improved. is there.
By the above means, it becomes possible to perform constant output control of a synchronous motor, particularly a permanent magnet synchronous motor.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 shows a block diagram of a first embodiment of the present invention. In the figure, 1 is a vector calculation unit, 2 is a PWM generator, 3 is an inverter power unit, 4 is a permanent magnet synchronous motor (motor), 5 is a position detector, 6 is a speed calculator, and 7 is a three-phase dq conversion. 8 is an I d1 arithmetic unit, 9 is an I d0 arithmetic unit, 10 is a current detector, 11 to 13 are subtractors, and 14 is an adder.
The first embodiment is premised on speed control. The q-axis current command I q * obtained by subtracting the speed feedback signal ω fd from the speed command ω * is input to the I d1 calculator 8 as a torque command proportional component, whereby the q-axis current command I q *. Is multiplied by a proportional coefficient K d1 to generate a d-axis current command I d1 * . The q-axis current command I q * is subtracted from the q-axis current feedback I qfb obtained by inputting the motor current to the three-phase dq converter 7 and enters the vector calculation unit 1. On the other hand, the d-axis current command I d * is a velocity proportional component, and the d-axis current command I d0 * and the d-axis current command I d1 * are generated by the speed feedback ω fb entering the I d0 calculator 9. Are added together and added to the d-axis current feedback I dfb and input to the vector calculation unit 1. The vector calculation unit 1 creates a voltage command V * and a phase control angle command θ * for the motor 4 and these signals enter the PWM generator 2 to control the inverter power unit 3 and control the speed of the motor 4. Is what you do.
[0008]
FIG. 2 shows how each axis current flows in the block diagram of FIG.
In FIG. 2, when the maximum motor rotation speed is N top , the base rotation speed N base is N base = N top / n
Thus, the motor control method is divided into two control ranges in which the motor rotation speed N is (1) 0 <N ≦ N base and (2) N base <N ≦ N top .
(1) When 0 <N ≦ N base , the relationship between the q-axis current I q flowing in accordance with the torque command T ref (%) and the d-axis current necessary to ensure the required output is
I q = I q1 = I qmax × (T ref / 100) [where I qmax is I q current at 100% rating]
I d = I d1 = K d1 × I q [where K d1 is a proportional constant]
It is determined.
(2) When N base <N ≦ N top , in addition to the relationship between I q1 and I d1 for ensuring the required output, the d-axis current I d0 for suppressing the motor terminal voltage is proportional to the motor rotation speed. This is expressed as follows in the function expression.
I d0 = K d2 × (N−N base ) / (N top −N base ) [where K d2 is a proportional constant]
Therefore, the total d-axis current I d is
I d = I d0 + I d1
As a result, the relationship between the q-axis current I q and the d-axis current I d is
I d = I d0 + I d1 = K d2 × (N−N base ) / (N top −N base ) + K d1 × I q
= K d2 × (N−N base ) / (N top −N base ) + K d1 × I qmax × (T ref / 100)
It is represented by Then, I qmax , K d1 , K d2 , N base , and N top of the above function formula are input as parameters to provide versatility.
[0009]
FIG. 3 is a second embodiment in which the control of FIG. 1 is further improved to improve the motor efficiency when the load torque is small, and is basically the same as the control configuration of FIG. The difference is that an I d2 computing unit 8 ′ is provided instead of the d1 computing unit 8. In FIG. 1 to show d-axis current command I d *, as a component which varies according to the load torque factor, and a torque command made from the speed command omega *, and a speed feedback omega fb, I d2 calculator 8 ' The d-axis current command I d2 * created by entering is added. Specifically, the d-axis current command I d1 * , which is the torque command proportional component, is set to 0 when the load torque ratio is 100%, the current is added when the load torque rate is 100% or more, and the current is applied when the load torque rate is 100% or less. It will be reduced.
[0010]
FIG. 4 shows how each axis current flows in the block diagram of FIG.
In this embodiment, the relational expression between the q-axis current I q and the d- axis current Id is
I d2 = K d3 × {(T ref / 100) −1} [where K d3 is a proportional constant]
And add
(1) When 0 <N ≦ N base , the relationship between the q-axis current I q and the d-axis current flowing in accordance with the torque command T ref (%) necessary to secure the required output is
I q = I qmax × (T ref / 100) [where I qmax is the I q current at 100% rating]
I d = I d1 + I d2 = K d1 × I q + [K d3 × {(T ref / 100) −1}]
[However, K d1 and K d3 are proportional constants]
It is determined.
(2) When N base <N ≦ N top , in addition to the relationship between I q1 and I d1 for ensuring the required output, the d-axis current I d0 for suppressing the motor terminal voltage is proportional to the motor rotation speed. This is expressed as follows in the function expression.
I d0 = K d2 × (N−N base ) / (N top −N base ) [where K d2 is a proportional constant]
Therefore, the total d-axis current I d is
I d = I d0 + I d1 + I d2
As a result, the relationship between the q-axis current I q and the d-axis current I d is
I d = I d0 + I d1 + I d2 = K d2 × (N−N base ) / (N top −N base )
+ K d1 × I q + [K d3 × {(T ref / 100) −1}]
= K d2 × (N−N base ) / (N top −N base )
+ K d1 × I qmax × (T ref / 100) + [K d3 × {(T ref / 100) −1}]
It is represented by Then, I qmax , K d1 , K d2 , K d3 , N base , and N top in the above functional formula are input as parameters to provide versatility.
[0011]
The proportional constants K d1 , K d2 , and K d3 are set to negative numbers (−), and the synchronous motor to be controlled is set to have a direct axis (d axis) inductance L d smaller than a horizontal axis (q axis) inductance L q. A permanent magnet synchronous motor having a saliency that satisfies q > L d can be obtained.
FIG. 5 shows an example. As shown in the figure, a permanent magnet exists on the d-axis, and the magnetic flux due to the armature reaction from the stator side hardly passes, and therefore the d-axis direction inductance L d is small. Conversely, in the q-axis direction perpendicular to this, the armature reaction magnetic flux easily passes through the iron core (rotor core), the q-axis direction inductance L q becomes large, and the salient pole shape in the relationship of L q > L d. It has become. (On the other hand, L q = L d is called cylindrical).
When the magnet magnetic flux vector direction is taken in the plus (+) direction on the orthogonal dq coordinate axes, an I d current (−I d ) is caused to flow in a direction in which the magnet magnetic flux is weakened, that is, in the minus (−) direction. Like that. For this reason, when the proportional constants K d1 , K d2 , and K d3 are controlled to be negative numbers (−), the current vector becomes a leading phase with respect to the induced voltage vector of the motor, and the induced voltage of the motor is weakened (suppressed). In addition, since the reluctance torque is superimposed on the magnet torque by the saliency, the constant output range of the motor can be widened.
5 is the reluctance type synchronous motor. In this case, the d-axis and the q-axis in FIG. 5 are switched (changed from d-axis to q-axis, changed from q-axis to d-axis). . Then, the proportional constants K d1 , K d2 , K d3 are set to positive numbers (+), and control is performed so that + I d flows. For this reason, the current vector has a delayed phase with respect to the d-axis magnetic flux vector, and reluctance torque is generated. In addition, a wide range of constant output characteristics can be obtained by using the control formula of the present invention.
[0012]
【The invention's effect】
As described above, according to the present invention, in the dq axis control method of the synchronous motor, the d axis current command I d * is changed to the d axis current command I d1 * proportional to the q axis current command I q *. By adding the d-axis current command I d0 *, which is a function of the rotational speed of the synchronous motor, the constant output control of the synchronous motor, especially the permanent magnet synchronous motor, which is difficult with the conventional control method, can be achieved. Made possible.
Further, in the control method, the d-axis current command I d *, by adding further a function of the load factor d-axis current command I d2 *, even when the load torque is small, the synchronous motor efficiency is close to the maximum The current phase angle can be controlled, and the efficiency of this point can be improved.
[Brief description of the drawings]
FIG. 1 is a control block diagram showing an embodiment of the present invention.
FIG. 2 is an output curve and an axial current pattern showing an example of the present invention.
FIG. 3 is a control block diagram showing an application (improved) example of the present invention.
FIG. 4 is an output curve and an axial current pattern showing an application (improved) example of the present invention.
FIG. 5 is an explanatory diagram showing another embodiment of the present invention.
FIG. 6 is a control block diagram of a conventional control method.
FIG. 7 is an output curve and a current pattern of each axis in the conventional control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vector calculating part, 2 PWM generator, 3 Inverter power part, 4 Permanent magnet synchronous motor (motor), 5 Position detector, 6 Speed calculator, 7 3 phase dq converter, 8 Id1 calculator, 8 ' Id2 calculator, 9 Id0 calculator, 10 current detector, 11-13 subtractor, 14 adder

Claims (2)

1:nの定出力比を必要とする同期電動機の制御方法であって、
同期電動機最高回転速度をNtopとし、基底回転速度Nbase
base=Ntop/n
と表したとき、同期電動機回転速度Nが(1)0<N≦Nbaseの範囲と、(2)Nbase<N≦Ntopの二つの制御範囲に分け、
(1) 0<N≦Nbaseでは、所要出力を確保するのに必要な、トルク指令Tref(%)に準拠して流れるq軸電流Iqとd軸電流の関係を、
q=Iq1=Iqmax×(Tref/100) [但し、Iqmaxは100%定格時のIq電流]
d=Id1=Kd1×Iq [但し、Kd1は比例定数]
と定め、
(2) Nbase<N≦Ntopでは、前記所要出力を確保するためのIq1とId1の関係に加え、同期電動機端子電圧を抑制させるためのd軸電流Id0を、
d0=Kd2×(N−Nbase)/(Ntop−Nbase)[但し、Kd2は比例定数]
とし、
d=Id0+Id1
と定めてベクトル制御を行う同期電動機の制御方法において、
前記q軸電流I q とd軸電流I d の関係式に、
d2 =K d3 ×{(T ref /100)−1} [但し、K d3 は比例定数]
を付加し、
(1)0<N≦N base では、
所要出力を確保するのに必要な、トルク指令T ref (%)に準拠して流れるq軸電流I q とd軸電流の関係を、
q =I qmax ×(T ref /100)[但し、I qmax は100%定格時のI q 電流]
d =I d1 +I d2 =K d1 ×I q +[K d3 ×{(T ref /100)−1}]
[但し、K d1 ,K d3 は比例定数]
と定め、
(2)N base <N≦N top では、前記所要出力を確保するためのI q1 とI d1 の関係に加え、同期電動機端子電圧を抑制させるためのd軸電流I d0 を、
d0 =K d2 ×(N−N base )/(N top −N base )[但し、K d2 は比例定数]
とし、
d =I d0 +I d1 +I d2
と定めてベクトル制御を行うことを特徴とする同期電動機の制御方法。
A method for controlling a synchronous motor that requires a constant output ratio of 1: n ,
The maximum rotation speed of the synchronous motor is N top and the base rotation speed N base is N base = N top / n
The synchronous motor rotational speed N is divided into two control ranges of (1) 0 <N ≦ N base and (2) N base <N ≦ N top ,
(1) When 0 <N ≦ N base , the relationship between the q-axis current I q flowing in accordance with the torque command T ref (%) and the d-axis current necessary to ensure the required output is
I q = I q1 = I qmax × (T ref / 100) [where I qmax is I q current at 100% rating]
I d = I d1 = K d1 × I q [where K d1 is a proportional constant]
And
(2) In N base <N ≦ N top , in addition to the relationship between I q1 and I d1 for ensuring the required output, the d-axis current I d0 for suppressing the synchronous motor terminal voltage is
I d0 = K d2 × (N−N base ) / (N top −N base ) [where K d2 is a proportional constant]
age,
I d = I d0 + I d1
A method for controlling a row cormorants synchronous motor vector control stipulates that,
In the relational expression between the q-axis current I q and the d-axis current I d ,
I d2 = K d3 × {(T ref / 100) −1} [where K d3 is a proportional constant]
And add
(1) If 0 <N ≦ N base ,
The relationship between the q-axis current I q and the d-axis current flowing in accordance with the torque command T ref (%) necessary to secure the required output
I q = I qmax × (T ref / 100) [where I qmax is I q current at 100% rating ]
I d = I d1 + I d2 = K d1 × I q + [K d3 × {(T ref / 100) −1}]
[However, K d1 and K d3 are proportional constants]
And
(2) the N base <N N top, in addition to the relationship of I q1 and I d1 to ensure the required output, the d-axis current I d0 in order to suppress the synchronous motor terminal voltage,
I d0 = K d2 × (N−N base ) / (N top −N base ) [where K d2 is a proportional constant]
age,
I d = I d0 + I d1 + I d2
And controlling the synchronous motor by performing vector control .
前記比例定数K d1 ,K d2 ,K d3 を負数(−)にし、制御対象となる同期電動機を、直軸(d軸)インダクタンスL d が、横軸(q軸)インダクタンスL q よりも小さいL q >L d となる突極性を有する永久磁石同期電動機に適用することを特徴とする請求項1に記載の同期電動機の制御方法。 The proportional constants K d1 , K d2 , and K d3 are set to negative numbers (−), and the synchronous motor to be controlled is set to have a direct axis (d axis) inductance L d smaller than a horizontal axis (q axis) inductance L q. The method for controlling a synchronous motor according to claim 1 , wherein the method is applied to a permanent magnet synchronous motor having a saliency that satisfies q > L d .
JP16793296A 1996-06-27 1996-06-27 Control method of synchronous motor Expired - Fee Related JP3687043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16793296A JP3687043B2 (en) 1996-06-27 1996-06-27 Control method of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16793296A JP3687043B2 (en) 1996-06-27 1996-06-27 Control method of synchronous motor

Publications (2)

Publication Number Publication Date
JPH1014299A JPH1014299A (en) 1998-01-16
JP3687043B2 true JP3687043B2 (en) 2005-08-24

Family

ID=15858738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16793296A Expired - Fee Related JP3687043B2 (en) 1996-06-27 1996-06-27 Control method of synchronous motor

Country Status (1)

Country Link
JP (1) JP3687043B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238601A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Ipm motor and control method for the same
US7733044B2 (en) 2005-02-24 2010-06-08 Mitsubishi Heavy Industries, Ltd. IPM motor system and control method thereof
JP4931105B2 (en) * 2005-09-22 2012-05-16 東芝三菱電機産業システム株式会社 Electric vehicle power converter
JP5800933B2 (en) 2014-02-28 2015-10-28 ファナック株式会社 Motor control device for controlling synchronous motor

Also Published As

Publication number Publication date
JPH1014299A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
US6690137B2 (en) Sensorless control system for synchronous motor
JP3668870B2 (en) Synchronous motor drive system
US8044618B2 (en) Control apparatus for AC motor
US7816876B2 (en) Motor control device and motor drive system
US6504329B2 (en) Apparatus and method for controlling permanent magnet electric machines
JPWO2009040884A1 (en) Electric motor control device
JPS627396A (en) Method and apparatus for operation at fixed horse power
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
JP3531428B2 (en) Motor control device and control method
JP2000032799A (en) Controller and control method for electric rotating machine
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP2004064909A (en) Motor control device
JP2001161099A (en) Control scheme for synchronous motor
JP4522273B2 (en) Motor control device and motor drive system having the same
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP3570467B2 (en) Control device for synchronous motor
JP3796556B2 (en) Method and apparatus for controlling magnet-embedded synchronous motor
JP3687043B2 (en) Control method of synchronous motor
JP5050387B2 (en) Motor control device
JPH1014273A (en) Controller for permanent magnet synchronous motor for driving vehicle
JP4043741B2 (en) Electric motor control device
JP3290099B2 (en) Control device for reluctance type synchronous motor
JP3798645B2 (en) Control device for synchronous motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees