JPS59165450A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59165450A
JPS59165450A JP3911083A JP3911083A JPS59165450A JP S59165450 A JPS59165450 A JP S59165450A JP 3911083 A JP3911083 A JP 3911083A JP 3911083 A JP3911083 A JP 3911083A JP S59165450 A JPS59165450 A JP S59165450A
Authority
JP
Japan
Prior art keywords
insulating film
polycrystalline silicon
region
taper angle
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3911083A
Other languages
Japanese (ja)
Inventor
Yasuhisa Oana
保久 小穴
Nobuo Mukai
向井 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3911083A priority Critical patent/JPS59165450A/en
Publication of JPS59165450A publication Critical patent/JPS59165450A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent the occurrence of a stepwise disconnection and to improve the yield and reliability by previously forming an insulating film of the prescribed shape having a taper angle on a thin polycrystalline silicon film, implanting silicon ions and then removing an unnecessary region. CONSTITUTION:A polycrystalline silicon layer 2 is formed on an amorphous substrate 1, and an insulating film 3 is further accumulated. Then, an insulating film 3' of the prescribed shape having a taper angle is formed. Subsequently, silicon ions 4 are implanted, a damage region 5 is formed in the silicon layer, etched by a CDE method, thereby forming an insular polycrystalline silicon region 6 having the prescribed taper angle. Then, the region 6 having the taper angle and the substrate 1 are covered entirely with an insulating film 7. Thereafter, phosphorus ions are implanted to form a source and drain region 8, source, gate, drain electrodes 9, 10, 11 are formed of aluminum, sintered in forming gas, thereby producing an aluminum gate MOSFET.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は非晶質基板上に形成された多結晶シリコン薄膜
半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method of manufacturing a polycrystalline silicon thin film semiconductor device formed on an amorphous substrate.

〔従来技術とその問題点〕[Prior art and its problems]

ガラス等の非晶質基板上に多結晶シリコン薄膜半導体装
置を形成する場合、製造技術上の最大の問題点は島状多
結晶シリコンの周囲に垂直段差が生じ、配線、層間絶縁
膜に段切れと称する破′断が発生する。段切れを防ぐた
めには段差形状を水平化(テニパーをつける)するか、
膜厚を薄くして段差を少なくするか、あるいはステップ
カバレージの優れた方法を用いて絶縁膜、配線材料を堆
積しなければならない。しかし、多結晶シリコン薄膜は
、SOSプロセスで用いられるウェット方式異方性エツ
チング技術では、テーパー・エツチングすることは出来
ない。また、ドライ方式を用いてもテーパー・エツチン
グは難かしい。シリコン膜を薄くすることも試みられて
いるが、半導体装置の電気的特性を低下させないために
は、多結晶シリコン膜は少しでも厚い方が良く、0.3
μ01以下の膜厚にすることは、電気的特性上、極めて
不利である。層間絶縁膜等をスパッタ装置等で形成する
方法もあるが、半導体装置がMOSFETのように絶縁
膜の形成方法によって電気的特性が左右される場合、ス
パッタ法は使えない。
When forming a polycrystalline silicon thin film semiconductor device on an amorphous substrate such as glass, the biggest problem in terms of manufacturing technology is that vertical steps occur around the island-like polycrystalline silicon, causing breaks in wiring and interlayer insulating films. A rupture called rupture occurs. To prevent step breakage, either level out the step shape (install a teniper), or
Insulating films and wiring materials must be deposited by reducing the thickness of the film to reduce the step difference, or by using a method with excellent step coverage. However, polycrystalline silicon thin films cannot be tapered etched using the wet anisotropic etching technique used in the SOS process. Further, taper etching is difficult even if a dry method is used. Attempts have been made to make the silicon film thinner, but in order not to deteriorate the electrical characteristics of the semiconductor device, it is better for the polycrystalline silicon film to be as thick as possible;
A film thickness of μ01 or less is extremely disadvantageous in terms of electrical characteristics. Although there is a method of forming an interlayer insulating film or the like using a sputtering device or the like, the sputtering method cannot be used when the semiconductor device is a MOSFET whose electrical characteristics are affected by the method of forming the insulating film.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みなされたものであり、島状多結
晶シリコン膜のテーパー・エツチングを可能にした半導
体装置の製造方法を提供するものである。
The present invention has been made in view of the above points, and provides a method for manufacturing a semiconductor device that enables taper etching of an island-shaped polycrystalline silicon film.

〔発明の概要〕[Summary of the invention]

即ち本発明は必要とする島状多結晶シリコン領域の周囲
にテーパー角度をつける技術であり、予めテーパー角度
を持つ所定の形状の絶縁膜を多結晶シリコン薄膜上に形
成し、シリコンイオン注入を行ない、続いてケミカルド
ライ・エツチング(CDE)法により不要シリコン領域
を除去することにより、本発明を可能にしたものである
That is, the present invention is a technique for forming a taper angle around a required island-like polycrystalline silicon region, in which an insulating film having a predetermined shape with a taper angle is formed in advance on a polycrystalline silicon thin film, and silicon ions are implanted. The present invention was made possible by subsequently removing unnecessary silicon regions by chemical dry etching (CDE).

そして、残すべき島状多結晶シリコン領域周囲へのシリ
コンイオン注入量を、予めテーパー角度を持つ所定の絶
縁膜で制御するようにしたものである。
The amount of silicon ions implanted around the island-like polycrystalline silicon region to be left is controlled by a predetermined insulating film having a taper angle in advance.

〔発明の効果〕 本発明によって、多結晶シリコン膜厚が1μmとと厚く
なっても、およそ60度のテーノく一角を持った島状シ
リコン領域が形成可能になり、厚さ1000XのCVD
−810,を堆積しても、周辺部での段切れの発生を防
ぐことが出来た。これにより、半導体装置製造工程万一
短縮され、低コスト化が可能になり更に、装置の歩留り
、信頼性が著しく向上した。
[Effects of the Invention] According to the present invention, even if the polycrystalline silicon film is as thick as 1 μm, it is possible to form an island-like silicon region with an angle of approximately 60 degrees, and CVD with a thickness of 1000× is possible.
Even if -810 was deposited, it was possible to prevent the occurrence of step breakage in the peripheral area. This shortens the semiconductor device manufacturing process, makes it possible to reduce costs, and significantly improves device yield and reliability.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は非晶質基板(1)上に多結晶シリコン層(2)
が形成され、更に絶縁膜(3)が堆積された状態を示す
。本実施例では、非晶質基板はコーニング7059ガラ
ス、多結晶シリコン層は真空蒸着法で形成され、基板温
度500℃、膜厚4000Xである。絶縁膜CVD法で
形成された5i02であり膜厚は600Xである。
Figure 1 shows a polycrystalline silicon layer (2) on an amorphous substrate (1).
is formed and an insulating film (3) is further deposited. In this example, the amorphous substrate is Corning 7059 glass, the polycrystalline silicon layer is formed by vacuum evaporation, the substrate temperature is 500° C., and the film thickness is 4000×. The film is 5i02 formed by an insulating film CVD method and has a film thickness of 600X.

第2図は、本発明の特徴の1つであるチーツク−角度を
持つ所定の形状の絶縁膜(3′)を多結晶シリコン層上
に形成したものである。絶縁膜(3′)の作製手順は1
979春季、第26回応用物理学金運合講演会購演予稿
集P、 457 、29 p−Q、−6テーパー・ブク
ズマ・プロセス技術(TAPP)に記載されている。こ
こではCF4プラズマ照射時間を8分間行なうことによ
り、絶縁膜周囲のテーパー角度をおよそ30度に制御し
ている。
FIG. 2 shows an insulating film (3') having a predetermined shape having a cheek angle, which is one of the features of the present invention, formed on a polycrystalline silicon layer. The steps for making the insulating film (3') are 1.
It is described in Proceedings of the 26th Applied Physics Conference, Spring 979, P, 457, 29 p-Q, -6 Taper Bukuzuma Process Technology (TAPP). Here, the taper angle around the insulating film is controlled to approximately 30 degrees by performing CF4 plasma irradiation for 8 minutes.

第3図は、第2図に示した試料にシリコン・イオン(4
)を注入し、シリコン層内に損傷領域(非晶質領域)(
5)を形成した状態を示す。本実施例のイオン注入東件
は、加速電圧40 KeV、注入量3 XIO”/ r
ylであり、注入量の温度上昇を防ぐため、注入電流は
1μs/crl以下に制゛御した。この結果、損傷領域
の分布は、絶縁膜(3′)のない領域では、表面からお
よそ5ooXの範囲(〜Rp+△Rp)である。
Figure 3 shows that silicon ions (4
) is implanted into the silicon layer to form a damaged region (amorphous region) (
5) is shown. The ion implantation conditions of this example were an acceleration voltage of 40 KeV and an implantation amount of 3 XIO"/r.
yl, and the injection current was controlled to 1 μs/crl or less in order to prevent the temperature of the injection amount from rising. As a result, the distribution of the damaged region is approximately 5ooX from the surface (~Rp+ΔRp) in the region without the insulating film (3').

絶縁膜(3′)周囲のテーパー角度のある部分では、絶
縁膜の厚さに応じて、損傷領域が浅くなり膜厚600X
の絶縁膜下にはシリコン・イオンによる損傷域は形成さ
れない。
In the part with a taper angle around the insulating film (3'), the damaged area becomes shallower depending on the thickness of the insulating film, and the film thickness is 600X.
No damaged area by silicon ions is formed under the insulating film.

第4図は、ケミカル・ドライ・エツチング(CDE)法
を用いて第3図に示す試料をエツチングし、所定のテー
パー角度を持つ島状多結晶シリコン領域(6)を形成し
たものである。このように多結晶シリコン層にテーパー
・エツチングが出来る理由は、非晶質化したシリコンと
多結晶シリコンとではフッ素ラジカルに対する゛エツチ
ングのされ方が違い、非晶質化シリコンのエツチング速
度が多結晶シリコンのそれに対して大きいためである。
In FIG. 4, the sample shown in FIG. 3 is etched using a chemical dry etching (CDE) method to form island-shaped polycrystalline silicon regions (6) having a predetermined taper angle. The reason why taper etching is possible in a polycrystalline silicon layer is that amorphous silicon and polycrystalline silicon are etched differently by fluorine radicals, and the etching speed of amorphous silicon is higher than that of polycrystalline silicon. This is because it is larger than that of silicon.

本実施例では、テーパー角度はおよそ60度であったが
、角度はCDE装置に依存していた。絶縁膜(3,3’
)の厚さは、能動領域となる多結晶シリコン膜へのシリ
コン・イオンの注入を阻止出来れば良い。シリコン膜厚
に対する損傷領域の厚さの割合は、V4〜1/6程度が
最適であり、加速電圧は30〜60keV注入量は3×
1015〜5X10”/crIの範囲でのイオン注入条
件である。
In this example, the taper angle was approximately 60 degrees, but the angle depended on the CDE device. Insulating film (3, 3'
) may be set as long as it can prevent silicon ions from being implanted into the polycrystalline silicon film that will become the active region. The optimal ratio of the thickness of the damaged region to the silicon film thickness is about V4 to 1/6, and the acceleration voltage is 30 to 60 keV, and the implantation amount is 3×
The ion implantation conditions are in the range of 1015 to 5×10”/crI.

本発明の応用例としてMO8FET試作例を第5図に示
す。テーパー角度を持つ島状多結晶シリコン領域(6)
およびガラス基板(1)全面をゲート絶縁膜(7)で被
覆する。本実施例ではCVD法を用い膜厚1500Xの
S IQ、膜を470℃で形成した。次に、テヤンネ層
領域をレジスト等でマスキングした後、ソースドレーン
領域(8)形成用に、リン・イオン注入を行なう。注入
条件は2xlO”P”/ffl、  j60keVであ
る。活性化は500℃20時間窒素巾で熱処理すること
によって行なわれた。続いて、ソース・ゲートドレーン
電極(9,10,11)をアルミニウムによって形成し
、フォーミングガス中でシンターすることによってアル
ミゲートMO8FFiTが試作された。
As an application example of the present invention, a prototype MO8FET is shown in FIG. Island-shaped polycrystalline silicon region with taper angle (6)
Then, the entire surface of the glass substrate (1) is covered with a gate insulating film (7). In this example, a SIQ film with a thickness of 1500× was formed at 470° C. using the CVD method. Next, after masking the Tejanne layer region with a resist or the like, phosphorus ions are implanted to form a source/drain region (8). The implantation conditions are 2xlO"P"/ffl, j60keV. Activation was carried out by heat treatment at 500° C. for 20 hours under a blanket of nitrogen. Subsequently, source/gate drain electrodes (9, 10, 11) were formed of aluminum and sintered in a forming gas to fabricate an aluminum gate MO8FFiT.

膜厚4000Xの多結晶シリコン膜を用いたアルミ・ゲ
ー) MOSFETの製造歩留りを本発明を実施した場
合としない場合とで比較すると実施した場合はおよそ9
5%、従来製法ではおよそ35%の歩留りを示し、本発
明は歩留り向上に画期的な効果をもたらす。
Comparing the manufacturing yield of MOSFETs using a polycrystalline silicon film with a thickness of 4000X with and without implementing the present invention, it was approximately 9% when the present invention was implemented.
5%, and the conventional manufacturing method shows a yield of about 35%, and the present invention brings about a revolutionary effect in improving the yield.

多結晶シリコン膜周囲に60度のテーパー角度を持たせ
ることによりCVT)  5i02の膜厚を1000X
にしても段切れは全く生じなかった。同様にアルミニウ
ム電極・配線の厚さは′3000Xにしても段切れは生
じなかった。一方、従来方法では、島状多結晶シリコン
膜の周囲の垂直段差を乗り切るためには、cvn=s+
o、膜は2000λ、アルミニウム5000X以上の厚
さが必要であった。
By creating a 60 degree taper angle around the polycrystalline silicon film, the film thickness of CVT) 5i02 is increased to 1000X.
However, no breakage occurred at all. Similarly, even when the thickness of the aluminum electrode/wiring was set to 3000X, no breakage occurred. On the other hand, in the conventional method, cvn=s+
o, the film needed to have a thickness of 2000λ and 5000X or more of aluminum.

〔発明の他の実施例〕[Other embodiments of the invention]

本発明の実施例として、予めテーパー角度を持つ絶縁膜
としてeVD−’5in2を用いたが、PSG膜を使っ
ても同等の結果が得られる。
In the embodiment of the present invention, eVD-'5in2 was used as the insulating film having a taper angle in advance, but equivalent results can be obtained even if a PSG film is used.

実施例として、コーニング7059基板を用いたが、石
英を基板としても同様の効果を提供することは言うまで
もない。また、ガラス基板と多結晶シリコン膜との間に
絶縁膜を設けた場合も同様である。
Although a Corning 7059 substrate was used as an example, it goes without saying that similar effects can be provided by using quartz as a substrate. Further, the same applies when an insulating film is provided between the glass substrate and the polycrystalline silicon film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は、/本発明の実施
工程を示す断面図、第5図は本発明をアルミ・ゲー) 
MOSFETに応用した様子を示す断面図である。 図において、 1・・・非晶質基板、   2・・・多結晶シリコン層
、3・・・絶縁膜、 3′・・・テーパーを持つ絶縁膜、 4・・・シリコン・イオン、5・・・損傷領域、6・・
・島状多結晶領域、7・・・ゲート絶縁膜、8・・・ソ
ース・ドレーン領域、 9.10.11・・・ソース・ゲート・ドレーン領域。 代理人 弁理士 則 近 憲 佑(他1名)第  1 
 図 第  2  図 第  3  図 第  4  図
Figures 1, 2, 3, and 4 are cross-sectional views showing the process of implementing the present invention, and Figure 5 is a cross-sectional view showing the process of implementing the present invention.
FIG. 2 is a cross-sectional view showing how it is applied to a MOSFET. In the figure, 1...Amorphous substrate, 2...Polycrystalline silicon layer, 3...Insulating film, 3'...Tapered insulating film, 4...Silicon ion, 5...・Damage area, 6...
- Island-shaped polycrystalline region, 7... Gate insulating film, 8... Source/drain region, 9.10.11... Source/gate/drain region. Agent: Patent Attorney Noriyuki Chika (and 1 other person) No. 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 非晶質基板上に形成された多結晶シリコン薄膜を態動領
域として用いる半導体装置の製造工程において、周囲に
テーパー角度を持つ所定の形状の絶縁膜を該多結晶シリ
コン薄膜上に形成する工程と、絶縁膜が形成された多結
晶シリコン薄膜にシリコン・イオンを注入する工程、次
に、選択的にシリコン・イオンが注入された該絶縁膜付
シリコン薄膜をドライエツチング法によりテーパー角度
を周囲に持つ島状多結晶シリコン領域を形成する工程か
ら成ることを特徴とする半導体装置の製造方法。
In the manufacturing process of a semiconductor device using a polycrystalline silicon thin film formed on an amorphous substrate as a state region, a step of forming an insulating film of a predetermined shape with a taper angle around the polycrystalline silicon thin film on the polycrystalline silicon thin film; , a process of implanting silicon ions into a polycrystalline silicon thin film on which an insulating film has been formed, and then forming a taper angle around the silicon thin film with an insulating film into which silicon ions have been selectively implanted by a dry etching method. 1. A method of manufacturing a semiconductor device, comprising a step of forming an island-like polycrystalline silicon region.
JP3911083A 1983-03-11 1983-03-11 Manufacture of semiconductor device Pending JPS59165450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3911083A JPS59165450A (en) 1983-03-11 1983-03-11 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3911083A JPS59165450A (en) 1983-03-11 1983-03-11 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59165450A true JPS59165450A (en) 1984-09-18

Family

ID=12543936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3911083A Pending JPS59165450A (en) 1983-03-11 1983-03-11 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59165450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337232B1 (en) 1995-06-07 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabrication of a crystalline silicon thin film semiconductor with a thin channel region
US6797550B2 (en) 2001-12-21 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US6911358B2 (en) 2001-12-28 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541795B2 (en) 1994-06-14 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and production method for the same
US6337232B1 (en) 1995-06-07 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabrication of a crystalline silicon thin film semiconductor with a thin channel region
US6797550B2 (en) 2001-12-21 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7319055B2 (en) 2001-12-21 2008-01-15 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing crystallization of semiconductor region with laser beam
US6911358B2 (en) 2001-12-28 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7129121B2 (en) 2001-12-28 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7635883B2 (en) 2001-12-28 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4466172A (en) Method for fabricating MOS device with self-aligned contacts
US4517729A (en) Method for fabricating MOS device with self-aligned contacts
US4516143A (en) Self-aligned power MOSFET with integral source-base short and methods of making
JPS6140035A (en) Manufacture of semiconductor device
JP2994128B2 (en) Method for manufacturing semiconductor device
JP2717739B2 (en) Semiconductor device and manufacturing method thereof
CA1131796A (en) Method for fabricating mos device with self-aligned contacts
JPS59165450A (en) Manufacture of semiconductor device
KR100244402B1 (en) Method of forming a trench isolation in a semiconductor device
JP2806999B2 (en) Polycrystalline silicon thin film transistor and method of manufacturing the same
JP3131850B2 (en) Method for manufacturing thin film transistor
JPH05335578A (en) Manufacture of thin film transistor
JPS59165451A (en) Manufacture of semiconductor device
JPH1027794A (en) Semiconductor device and its manufacturing method
KR970002428B1 (en) Fabricating method of semiconductor device
KR100412137B1 (en) Method for forming gate spacer of semiconductor device
KR100214460B1 (en) Method for fabricating thin film transistor
JPH03109739A (en) Manufacture of thin-film semiconductor device
JPH11176959A (en) Manufacture of semiconductor device
JPS607145A (en) Semiconductor device
KR100252769B1 (en) Method for forming conduction layer of semiconductor device
KR960011639B1 (en) Formation of shallow-junction using titanium silicide
JPH08204189A (en) Manufacture of semiconductor device
JPH0296377A (en) Manufacture of semiconductor device
JPS60111422A (en) Manufacture of semiconductor device